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1. Background material

1.1 The upper half plane and PSL2(R)

A model of the hyperbolic plane is given by

H = {z = x + iy | x, y ∈ R, y > 0}.

The group
SL2(R) =

{(
a b
c d

)
∈ Mat2(R)| a, b, c, d ∈ R, ad− bc = 1

}
acts on H by fractional linear transformations as follows: for z ∈ H and γ =

(
a b
c d

)
∈

SL2(R), we define

γz :=
az + b
cz + d

.

We also write γ(z) or γ.z instead of γz.

The map given by z 7→ γz (z ∈ H, γ ∈ SL2(R)) is also called Moebius transformation.
The group of all Moebius transformations PSL2(R) satisfies

PSL2(R) ' SL2(R)/{±}.

To ease notation, elements in PSL2(R) will be denoted by matrices in SL2(R).

Recall that the modular group is given by

SL2(Z) =
{(

a b
c d

)
∈ Mat2(Z)| a, b, c, d ∈ Z, ad− bc = 1

}
.

One can consider subgroups Γ ⊆ SL2(Z) of finite index. These are groups such that there
is a coset decomposition

SL2(Z) =
n⋃

j=1

Γgj

for certain g1, . . . , gn ∈ SL2(Z) (n ∈N). The subgroups of finite index play a fundamental
role in the theory of modular forms.
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Lemma 1.1. For γ = ( a b
c d

)
∈ GL2(R) and z ∈ H, we define γz := az+b

cz+d . Then, for(
a b
c d

)
,
( r s

t u
)
∈ GL2(R) and z ∈H, we have

(i)

Im
(

az + b
cz + d

)
=

Im(z)det
(

a b
c d

)
|cz + d|2 .

Hence, if det
(

a b
c d

)
= ad− bc > 0, then

(
a b
c d

)
z ∈H.

(ii)
(

1 0
0 1

)
z = z.

(iii)
(

a b
c d

) (( r s
t u
)
z
)
=
((

a b
c d

)( r s
t u
))

z.
In particular, the modular group SL2(Z) and the subgroup GL+

2 (R) of GL2(R) of matrices
with positive determinant both act on H.

Proof. Exercise. �

The group SL2(R) acts transitively on H, since if z = x + iy ∈H we have γi = z for

γ =

(√
y x√

y

0
√

y

)
.

The stabilizer group

K := StabSL2(R)(i) = {γ ∈ SL2(R) | γ.i = i}

is given by the special orthogonal group

K =

{
k(2θ) :=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
| 0 ≤ θ < 2π

}
The element k(2θ) acts on H by a hyperbolic rotation at i of angle 2θ. One gets

H ' SL2(R)/K,

where z = x + iy corresponds to the right coset(√
y x√

y

0
√

y

)
K ∈ SL2(R)/K.

We want to extend the action of SL2(R) on H to the extended upper half plane

H∗ := H∪R∪ {∞} = H∪P1(R).

We write an element of P1(R) as [r : s] with r, s ∈ R, not both equal to 0. We define

γ[r : s] := [ar + bs : cr + ds]

for γ =
(

a b
c d

)
∈ SL2(R). We also write γ([r : s]) or γ.[r : s] instead of γ[r : s].

Let [0 : 1] =: 0 and [1 : 0] =: ∞. The group SL2(R) acts doubly transitively on P1(R), i.e.
for [r1 : s1], [r2 : s2] ∈ P1(R) there exists σ ∈ SL2(R) such that

σ.0 = [r1 : s1] and σ.∞ = [r2 : s2].
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The hyperbolic line element ds2
hyp is given by

ds2
hyp =

dx2 + dy2

y2 .

It is invariant under the action of SL2(R).

Moreover, for z1, z2 ∈H, we have

dhyp(γz1, γz2) = dhyp(z1, z2)

for any γ ∈ SL2(R), i.e. the elements of SL2(R) act as isometries on H (with respect to the
hyperbolic metric). Here, the hyperbolic distance dhyp(z1, z2) (z1, z2 ∈H) is given by

dhyp(z1, z2) = inf
γ

(∫
γ

ds2
hyp

) 1
2

,

where γ runs over all continuous paths γ : [0, 1] −→H with γ(0) = z1, γ(1) = z2.
We have (see Beardon : "Geometry of discrete groups, p. 131) for z1, z2 ∈H

dhyp(z1, z2) = log
(
|z1 − z̄2|+ |z1 − z2|
|z1 − z̄2| − |z1 − z2|

)
and the useful identity

cosh(dhyp(z1, z2)) = 1 + 2u(z1, z2),

with

u(z1, z2) :=
|z1 − z2|2

4Im(z1)Im(z2)

and cosh(x) := ex+e−x

2 .
The hyperbolic Laplacian on H is defined by

∆hyp := −y2
(

∂

∂x2 +
∂

∂y2

)
.

It is SL2(R) invariant. Finally, the hyperbolic volume element on H is given by

µhyp(z) =
dx ∧ dy

y2 ,

which is also SL2(R) invariant.

The Iwasawa decomposition refines the identification H ∼= SL2(R)/K as follows: We
define the subgroups

N :=
{

n(ζ) :=
(

1 ζ
0 1

)
| ζ ∈ R

}
A :=

{
a(µ) :=

(
µ 0
0 µ−1

)
| µ ∈ R, µ > 0

}
.

The subgroup A acts on H by dilations, N by translations. The Iwasawa decomposition
states that every γ ∈ SL2(R) can be uniquely written as

γ = nak with n ∈ N, a ∈ K, k ∈ K.

That is SL2(R) = NAK. In particular the right coset γK ∈ SL2(R)/K which corresponds
to z = x + iy ∈H can be written as

γK = n(x)a(
√

y)K.
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1.2 Classification of isometries
By

[γ] := {σγσ−1|σ ∈ PSL2(R)}
we denote the conjugacy class of γ in PSL2(R). If z ∈H∗ is a fixed point of γ ∈ PSL2(R)
(i.e. γz = z), then σz is a fixed point of σγσ−1. Therefore the number of fixed points for
γ ∈ PSL2(R) is invariant under conjugation of γ by elements of PSL2(R). If γ = id, every
z ∈H∗ is a fixed point of γ.
If γ =

(
a b
c d

)
∈ PSL2(R), γ 6= id, the fixed point equation

z = γz⇐⇒ cz2 + (d− a)z− b = 0

is quadratic and we obtain the following cases :

(a)

γ is elliptic⇐⇒ |tr(γ)| < 2
⇐⇒ γ has exactly one fixed point in H (and one in −H)

⇐⇒ [γ] = [k(2θ)] for some θ ∈ [0, π]

An elliptic element acts as a hyperbolic rotation centered at the (unique) fixed point of γ
in H.

(b)

γ is parabolic⇐⇒ |tr(γ)| = 2

⇐⇒ γ has exactly one fixed point in P1(R)

⇐⇒ [γ] = [n(1)]

A parabolic element moves points along horocycles i.e. circles in H tangent to P1(R).

(c)

γ is hyperbolic⇐⇒ |tr(γ)| > 2

⇐⇒ γ has exactly two fixed points in P1(R)

⇐⇒ [γ] = [a(µ)] for some µ ∈ R>0

A hyperbolic element acts as a dilatation, one fixed point is repelling, one is attracting.
This classification is invariant under conjugation.

A fixed point z ∈H∗ of a parabolic, hyperbolic or elliptic γ ∈ PSL2(R) is called parabolic,
hyperbolic or elliptic fixed point.

1.3 Fuchsian groups of the first kind
The group SL2(R) can be identified as a topological space with the subset {(a, b, c, d) ∈
R4| ad − bc = 1} of R4. It is a (locally compact) topological group (hausdorff, matrix
multiplication and inversion are continuous) with respect to the metric induced by the
norm

||γ|| := (a2 + b2 + c2 + d2)
1
2 .

This is also true for PSL2(R).
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Definition 1.2. A Fuchsian subgroup Γ ⊂ PSL2(R) is a discrete subgroup of PSL2(R),
that means that {γ ∈ Γ| ||γ|| < k} is finite for every k > 0. Every Fuchsian subgroup of
PSL2(R) is therefore countable.

Fact. Γ ⊂ PSL2(R) is a Fuchsian subgroup if and only if Γ acts properly disontinuously
on H, i.e. for any z1, z2 ∈H there exist neighbourhoods U 3 z1, V 3 z2 s.t.

#{γ ∈ Γ| γU ∩ v 6= ∅} < ∞.

This implies that the orbit Γz of z ∈H under a Fuchsian subgroup Γ is a discrete set in H.
A possible limit point of an orbit Γz for z ∈H can therefore only lie in P1(R).
A Fuchsian subgroup Γ ⊂ PSL2(R) is called of the first kind if every point in P1(R) is a
limit point of an orbit Γz for some z ∈H.

A Fuchsian subgroup Γ ⊂ PSL2(R) can be visualized by a "fundamental domain".

Definition 1.3. Let Γ ⊂ PSL2(R) be a Fuchsian subgroup. A subset FΓ ⊆ H is called
fundamental domain for Γ if

(a) FΓ ⊆H is a domain (non-empty and open)
(b) Distinct points z1 6= z2 of FΓ are not equivalent with respect

to Γ, i.e. @γ ∈ Γ : γz1 = z2
(c) Every orbit Γz, z ∈H, contains a point in the closure FΓ.

Every Fuchsian subgroup Γ ⊂ PSL2(Z) admits a fundamental domain FΓ. A fundamental
domain is not unique but all fundamental domains for a fixed Fuchsian subgroup Γ have
the same hyperbolic volume

volhyp(FΓ) =
∫
FΓ

dxdy
y2 .

which can be infinite. However:
Fact. Γ ⊂ PSL2(R) is a Fuchsian subgroup of the first kind if and only if the hyberbolic
volume volhyp(FΓ) < ∞.

� Example 1.4. (a) The group

Γ :=<

(
1 1
0 1

)
>

is a Fuchsian subgroup (which is not of the first kind). A fundamental domain is
given by

FΓ = {z ∈H | |Re(z)| < 1
2
}.

We calculate volhyp(FΓ) =
∫
FΓ

dxdy
y2 = ∞.

(b) The group

Γ = PSL2(Z) =<

(
1 1
0 1

)
,
(

0 1
−1 0

)
>

is a Fuchsian group of the first kind. A fundamental domain is given by

FΓ = {z ∈H | |Re(z)| < 1
2

, |z| > 1}.

One can calculate that volhyp(FΓ) =
π
3 .

�
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Definition 1.5. When z ∈H∪P1(R) is a fixed point of an elliptic, parabolic or hyper-
bolic element of Γ, we say that z is an elliptic, parabolic or hyperbolic fixed point. A
parabolic fixed point of Γ is also called cusp of Γ.

Definition 1.6. The Γ-orbit of an elliptic, parabolic or hyperbolic fixed point of Γ is called
elliptic, parabolic or hyperbolic fixed point of Γ \H. Parabolic points of Γ \H are called
cusps of Γ \H.

Remark. The number of cusps and elliptic points of Γ \H is finite.

Lemma 1.7. The set of cusps of PSL2(Z) is Q ∪ {∞} ∼= P1(Q) and all cusps of PSL2(Z)
are PSL2(Z)-equivalent, i.e. the number of cusps of PSL2(Z) \H equals one.

Proof. By the classification of isometries, we know that every cusp is an element of P1(R),
since a parabolic element has exactly one fixed point and it lies in P1(R). Clearly, we have
that ∞ = [1 : 0] is a cusp of PSL2(Z), since(

1 1
0 1

)
.[1 : 0] = [1 : 0].

Let [r : s] ∈ P1(R) with s 6= 0, be a cusp of PSL2(Z). Then [r : s] = [ r
s : 1]. Let(

a b
c d

)
∈ PSL2(Z) be parabolic with(

a b
c d

)
.[

r
s

: 1] = [
r
s

: 1].

This is equivalent to [a
( r

s

)
+ b : c

( r
s

)
+ d] = [ r

s : 1], which is again equivalent to

a
( r

s

)
+ b

c
( r

s

)
+ d

=
r
s

,

i.e. r
s is a solution of a quadratic equation with rational coefficients, therefore r

s ∈ Q.
On the other hand every element [q : 1] ∈ P1(Q) with q ∈ Q is a cusp since it is PSL2(Z)-
equivalent to [1 : 0]. To see this let [a : c] ∈ P1(Q) with c 6= 0. We can assume that gcd(a,c)
= 1. The euclidean algorithm gives us integers b, d ∈ Z such that ad− bc = 1. But then(

a b
c d

)
.[1 : 0] = [a : c]

and therefore (
a b
c d

)(
1 1
0 1

)(
a b
c d

)−1

.[a : c] = [a : c].

Hence [a : c] is a cusp. This completes the proof is finished. �



2. Modular curves

2.1 The Riemann surface Γ\H∗

From now on let Γ ⊂ PSL2(Z) be a subgroup of finite index (for example Γ = PSL2(Z) or
Γ = Γ0(N), N ∈N).

Remark. Since Γ is a subset of PSL2(Z) it is a discrete subgroup of PSL2(R) and acts
therefore properly discontinuously on H, i.e. for any two compact sets K1, K2 in H we
have that #{γ ∈ Γ | γK1 ∩ K2} < ∞.

Definition 2.1. We set

H∗ := H∪Q∪ {∞} ∼= H∪P1(Q).

Elements of H are called interior points, elements of P1(Q) are called cusps.

Remark. H∗ is a topological Hausdorff space, if one installs the following topology :
For an interior point z ∈ H, a fundamental system of neighbourhoods is defined in the
same way as in H.
For [1 : 0] = ∞ we can take the sets

{z ∈H | Im(z) > c}, c > 0

as a fundamental system of neighbourhoods.
For [r : s] ∈ P1(Q), s 6= 0, we can take sets

{interior of circles in H tangent to [r : s]} ∪ {∞}.

By construction the topology on H∗ generated by these open sets is Hausdorff.
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Definition 2.2. The stabilizer subgroup of z ∈H∗ in Γ is defined as

Γz := StabΓ(z) = {γ ∈ Γ | γz = z}.

� Example 2.3. (i) PSL2(Z)∞ ∼=<

(
1 1
0 1

)
>

(ii) If Γ ⊂ PSL2(Z) is of finite index, then Γ∞ ∼=<

(
1 h
0 1

)
> for some h ∈ N. Then

number h is called width of ∞.
�

Remark. Consider the orbit space

Γ\H∗ = {Γz | z ∈H∗}.

It is a topological space in the following way : if

π : H∗ −→ Γ\H∗

denotes the canonical projection, then the quotient topology on Γ\H∗ is defined by calling
a subset U ⊆ Γ\H∗ open if and only if π−1(U) ⊆H∗ is open.

In this chapter we want to prove that the topological space Γ\H∗ has the structure of a
Riemann surface. To do this, we first prove that Γ\H∗ is a Hausdorff space. This is clearly
true for Γ\H ⊆ Γ\H∗, since Γ acts properly discontinuously on H (because it is discrete).
It remains to show that you can seperate:

(a) points in Γ\H and orbits of cusps
(b) different orbits of cusps.

Proposition 2.4. For any cusp [r : s] ∈ P1(Q) and every compact set K ⊆H there exists
a neighbourhood H∗ ⊃ U 3 [r : s] such that U ∩ γK = ∅ for all γ ∈ Γ.

Proof. Without loss of generality we can assume that [r : s] = [1 : 0] = ∞. We are going to
prove the claim in 4 four steps :

Claim 1: Let M > 0. Then there exist only finitely many double cosets Γ∞γΓ∞ (γ ∈ Γ),
such that |cγ| ≤ M, where

γ =

(
? ?
cγ ?

)
.

Proof of Claim 1: Left as an exercise.

Claim 2: For any γ ∈ Γ \ Γ∞ we have that

|cγ| > r

for a fixed r = r(Γ) > 0, which only depends on the group Γ. Additionaly we have

Im(z)Im(γz) ≤ 1
r2 .

for any z ∈H.

Proof of Claim 2: Let M > 0 be fixed. Consider the finitely many double cosets

Γ∞γ1Γ∞, . . . , Γ∞γnΓ∞.
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from claim 1. Then for γ ∈
(⋃n

j=1 Γ∞γjΓ∞

)
\ Γ∞ we have |cγ| < M. Since cγ ∈

{cγ1 , . . . , cγn} we define

r :=
1
2

min{|cγi | | i = 1, . . . , n}.

We have r > 0, since otherwise γ ∈ Γ∞, which contradicts our assumption. Obviously
|cγ| > r.
Now let γ =

(
a b
c d

)
∈ Γ \ Γ∞. Then c 6= 0 and for any z ∈H it holds that

Im(γz) =
Im(z)
|cz + d|2

c 6=0
≤ Im(z)

c2Im(z)2 ≤
1

r2Im(z)
,

which proves the second claim.

Claim 3: There exists a neighbourhood H∗ ⊂ U 3 [1 : 0] = ∞ with

Γ∞ = {γ ∈ Γ | γU ∩U 6= ∅}.

Proof of Claim 3: Let

U :=
{

z ∈H∗ | Im(z) >
1
r

}
with r > 0 from claim 2. Then

Γ∞ ⊆ {γ ∈ Γ | γU ∩U 6= ∅}.

Moreover for any γ ∈ Γ \ Γ∞, z ∈ U, we have the estimate

Im(γz) ≤ 1
r2Im(z)2 ≤z∈U

1
r2 ,

i.e. γz ∈ U, hence γU ∩U 6= ∅. This proves claim 3.

Claim 4: Let z ∈H. The orbits π(z) = Γz and π(∞) = Γ∞ have disjoint neighbourhoods.

Proof: Let K ⊆H be compact. We choose A, B > 0, such that

A < Im(z) < B

for all z ∈ K. Furthermore we define

U :=
{

z ∈H∗ | Im(z) > max
{

B,
1

Ar2

}}
,

where r > 0 comes from claim 2. Therefore for any γ ∈ Γ \ Γ∞ and any z ∈ K we get

Im(γz) <
1

Ar2 .

On the other hand
Im(γz) = Im(z) < B

for any γ ∈ Γ∞ and any z ∈ K. Overall we proved that

U ∩ γK = ∅

for all γ ∈ Γ. This proves claim 4.

This finishes the proof of Proposition 2.4. �
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Proposition 2.5. The Hausdorff space Γ\H∗ is compact.

Proof. Let (Uj)j∈J be an open covering of Γ\H∗. Then

(π−1(Uj)j∈J)

is an open covering of H∗. Therefore there exists j1 ∈ J with ∞ ∈ π−1(Uj1). Therefore
there exists C > 0 such that

π−1(Uj1) ⊇ {z ∈H | Im(z) > C} ∪ {∞},

since the sets {z ∈ H | Im(z) > M} ∪ {∞}, M > 0, form a neighbourhood base of ∞ in
H∗. Hence FΓ \ π−1(Uj1) is compact (closed and bounded). Therefore there exist j2, . . . , jn
in J such that

FΓ \ π−1(Uj1) ⊆ π−1(Uj2) ∪ . . . ∪ π−1(Ujn)

Since π(FΓ) = Γ\H∗, we have that

Γ\H∗ = Uj1 ∪ . . . ∪Ujn ,

which proves that Γ\H∗ is compact. �

Recall. A Riemann surface is a connected, topological Hausdorff space X, endowed with
a complex structure S (also called “atlas”) given by

S = (Uα, ϕα)α∈I ,

where I is an index set, (Uα)α∈I is an open covering of X and

ϕα : Uα −→ ϕα(Uα) ⊂ C

is a homeomorphism for every α ∈ I. Furthermore if α, β ∈ I with Uα ∩ Uβ 6= ∅ the map

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩Uβ) −→ ϕβ(Uα ∩Uβ)

is required to be biholomorphic. Finally, S has to be maximal with these properties.

Proposition 2.6. Γ\H∗ is a Riemann surface.

Proof. We have to construct an atlas.

1. case: π(z) ∈ Γ\H∗ with Γz = {id}, so especially z ∈ H. We choose a neighbourhood
Uz ⊂H of z such that

Γz = {γ ∈ Γ | γUz ∩Uz 6= ∅}.

The existence of such a neighbourhood can be seen by a similar argument as in the proof
of claim 3 in Proposition 2.4. Then we have

Γ\H∗ ⊇ Γz \Uz
π←−∼= Uz ⊂H ⊂ C.

Therefore we choose
(Γz \Uz, π−1)

as a chart for π(z).
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2. case: π(z) ∈ Γ\H∗ with Γz ∼= Z/dZ (d ∈ N, d > 1), so especially z ∈ H. Let Uz be
defined as in the first case. Now consider the biholomorphic mapping

λ : H −→ D = {ω ∈ C | |ω| < 1}

z′ 7−→ z′ − z
z′ − z

.

Obviously we have λ(z) = 0. Therefore

λ ◦ Γz ◦ λ−1 = {[D 3 ω 7→ e
2πijω

d ] | j = 1, . . . d− 1}
and we obtain a homeomorphism

ϕz : Γ\H∗ ⊇ Γz \Uz −→ C

π(z′) 7−→ λ(z′)d

Thus we choose the chart (Γz \Uz, ϕz) for π(z).

3. case: π(z) ∈ Γ\H∗ is a cusp, i.e. in particular z ∈ P1(Q). Without loss of generality we
can assume z = ∞ = [1 : 0]. Then

<

(
1 h
0 1

)
>∼= Γ∞

for some h ∈N.
We choose U∞ = {z ∈ H | Im(z) > 1

r } ∪ {∞} with r > 0 as in Proposition 2.4, claim 2.
Then

Γ\H∗ ⊇ Γ∞ \U∞ ∼=
{

z ∈H | − h
2
≤ Re(z) <

h
2

, Im(z) >
1
r

}
∪ {∞}.

With the holomorphic map

ϕ∞ : H∗ −→ C

z 7−→ e
2πiz

h

we find the chart (Γ∞ \U∞, ϕ∞) for ∞. The proof that this atlas satisfies the compability
requirements is left as an exercise. �

Remark. A fundamental domain is a connected subset FΓ ⊂ H∗ such that there is a
bijection FΓ

∼= Γ\H∗. From now on we are going to use this new definition (it turns out
that this definition is easier to work with in technical proofs).

Remark. (a) Let Γ, Γ′ ⊆ PSL2(Z) be subgroups of finite index and
let Γ′ ⊆ Γ. Then there is a natural projection

πΓ′,Γ : Γ′ \H∗ −→ Γ\H∗

and we have the following commutative diagramm :

H∗ H∗

Γ′ \H∗ Γ\H∗

id

πΓ′ πΓ

πΓ′ ,Γ

(b) The number of cusps of Γ\H∗ is finite.
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Lemma 2.7. Let Γ, Γ′ ⊆ PSL2(Z) be subgroups of finite index and let Γ′ ⊆ Γ. Then the
Riemann surface Γ′ \H∗ is a (branched) covering space of the Riemann surface Γ\H∗ of
degree N := [Γ : Γ′].

Proof. The natural projection πΓ′,Γ from the last remark is surjective and holomorphic. It
is a local isomorphism and has degree [Γ : Γ′]. �

Now we want to study the covering Γ\H∗ −→ PSL2(Z) \H∗ for arbitrary Γ ⊆ PSL2(Z)
of finite index.

Proposition 2.8. The fixed points of Γ := PSL2(Z) on H∗ are equivalent (with respect to
PSL2(Z)) to

(a) ∞ (parabolic); Γ∞ =<

(
1 1
0 1

)
>∼= Z,

(b) i (elliptic); Γi =<

(
0 1
−1 0

)
>∼= Z/2Z,

(c) ρ := e
2πi

3 (elliptic); Γρ =<

(
0 −1
1 −1

)
>∼= Z/3Z.

Proof. Ad (a): This has already been proven.
Ad (b), (c): Let z ∈ H be a fixed point of γ =

(
a b
c d

)
∈ Γ, γ 6= id. Since z is not a cusp we

have
az + b
cz + d

= z⇐⇒ cz2 + (d− a)z− b = 0,

and therefore get the solutions

z1,2 =
a− d±

√
(a− d)2 − 4b
2c

=
a− d±

√
(a + d)2 − 4
2c

.

Since z1 or z2 lies in H we have |tr(γ)| = |a + d| < 2. Together with the fact that
a+ d ∈ Z, we get tr(γ) ∈ {−1, 0, 1}. Thus we could have the following three characteristic
polynomials for γ: λ2 + 1, λ2 + λ ++1, λ2 − λ + 1. Therefore we only have to consider
γ’s which satisfy (γ ∈ SL2(Z))

γ4 = id (γ2 6= id), γ3 = id, γ3 = −id.

We start by considering the first equation (which will lead to (b)).

Assume γ4 = id: Consider the polynomial ring Z[γ] ∼= Z[i].
The Z[i]-module Z2 is torsion free. To see this let 0 6= a + ib ∈ Z[i], x ∈ Z2. Then
(a + ib)x = 0 implies (a2 + b2)x = 0. Hence x = 0.
Therefore the Z[i]-modul Z2 is free of rank 1 and there exists u ∈ Z2 such that Z[i].u = Z2.
Hence u and v := γu together are a Z-basis of Z2. Since γ2 = −id we have γ[u, v] =

[u, v]
(

0 1
−1 0

)
.

If det([u, v]) = 1, then γ is conjugate to
(

0 −1
1 0

)
in SL2(Z).

If det([u, v]) = −1, then γ is conjugate to
(

0 1
−1 0

)
in SL2(Z).

Therefore every elliptic fixed point z of order 2 is equivalent to i

and Γi =<

(
0 −1
1 0

)
>. The other cases are left as an exercise. �
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We consider the following situation: For Γ ⊆ PSL2(Z) a subgroup of finite index, we have
the following commutative diagram:

H∗ H∗

Γ\H∗ PSL2(Z)\H∗

id

πΓ πPSL2(Z)

πΓ,PSL2(Z)

Recall that a point πΓ(z) ∈ Γ\H∗ (z ∈H∗) is called fixed point (with respect to Γ), if z has
a non-trivial stabilizer group Γz. Note that this notion is well-defined, since the cardinality
of the stabilizer group is invariant under conjugation.

Definition 2.9. The ramification index eπΓ(z) of a point πΓ(z) ∈ Γ\H∗ is defined as

eπΓ(z) := [PSL2(Z)z : Γz].

A point πΓ(z) ∈ Γ\H∗ is called ramification point (with respect to πΓ,PSL2(Z)), if eπΓ(z) > 1.

Proposition 2.10. Let Γ ⊆ PSL2(Z) be a subgroup of finite index. Let

πΓ(z1), . . . , πΓ(zr) ∈ Γ\H∗

denote the preimages of a point πPSL2(Z)(z) ∈ PSL2(Z)\H∗. Then, the following
assertions hold:

(a) The point πΓ(zj) (j = 1, . . . , r) can only be a fixed point, if πPSL2(Z)(z) is a fixed
point. Hence, the fixed points of Γ\H∗ lie all above

πPSL2(Z)(i), πPSL2(Z)(ρ), πPSL2(Z)(∞).

(b) We have
r

∑
j=1

eπΓ(zj) = [PSL2(Z) : Γ] =: N.

Proof. The first assertion of (a) follows immediately from Γz ⊆ PSL2(Z)z. The second
assertion of (a) follows from Proposition 2.8.
To prove (b), we recall how one obtains the points πΓ(zj) (j = 1, . . . , r) from the point
πPSL2(Z)(z): We start with the decomposition

N⋃
k=1

Γγk = PSL2(Z),

which exists, since Γ ⊆ PSL2(Z) is of finite index N. From this we obtain an orbit
decomposition of the form

πPSL2(Z)(z) = PSL2(Z)z =
N⋃

k=1

Γγkz.

Now we order the γk’s in such a way that the first r ≤ N orbits represent exactly all
pairwise disjoint orbits, i.e. we have a disjoint union

πPSL2(Z)(z) =
⋃̇r

j=1
πΓ(zj),
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where we have set zj := γjz. We now prove that for j = 1, . . . , r, we have the identity

eπΓ(zj) = #{γk | Γγkz = Γγjz , i.e., Γzk = Γzj}.

We have

#{γk | Γγkz = Γγjz} = #{γk | ∃γ ∈ Γ : γγkγ−1
j zj = zj}

= |PSL2(Z)zj /Γ ∩ PSL2(Z)zj |
= [PSL2(Z)zj : Γzj ] = eπΓ(zj).

All in all, this yields

N = [PSL2(Z) : Γ] =
r

∑
j=1

eπΓ(zj),

as asserted. �

Digression. (The genus of a Riemann surface)
Let X be a compact Riemann surface. From topology we know that such 2-dimensional
real, oriented, closed surfaces can be given the structure of a 4g-gon :

a1b1a−1
1 b−1

1 . . . agbga−1
g b−1

g

(see for example: Seifert, Lehrbuch der Topologie, pp. 130 –142).
The number g ∈ N is the homeomorphy type of X, called genus of X. The genus g can
also be computed with the help op a triangulation of X. Let

E : # 0-simplices (vertices),
K : # 1-simplices (edges),
F : # 2-simplices (areas).

Then, we have the Euler polyeder formula

2− 2g = E− K + F.

The genus can also be computed in terms of Betti numbers.

Proposition 2.11. Let Γ ⊆ PSL2(Z) be a subgroup of finite index and let X(Γ) := Γ\H∗.
Further let

N := [PSL2(Z) : Γ],
v2 := # of fixed points of order 2 of X(Γ),
v3 := # of fixed points of order 3 of X(Γ),

v∞ := # of cusps of X(Γ).

Then, the genus g := g(X(Γ)) of X(Γ) is given by

g = 1 +
N
12
− v2

4
− v3

3
− v∞

2
.

Proof. We start by considering the covering map

X(Γ) = Γ\H∗
πΓ,PSL2(Z)−→ PSL2(Z)\H∗ ∼= P1(C)
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Assume that the ramification points of X(Γ) lie over the points

P1(C) 3 xj (j = 1, . . . , h)

and denote these (for the moment) by

ξ jk (j = 1, . . . , h; k = 1, . . . , rj),

see also the picture given in the lecture. Starting from the preimages of a point

x0 ∈ P1(C), x0 6= xj (j = 1, . . . , h),

we perform disjoints cuts from

π−1
Γ,PSL2(Z)

(x0) to ξ jk

in every sheet. Thereby, the Riemann surface X(Γ) decomposes into F = N copies of
P1(C), and we have performed K = N · h cuts. Finally, since there are N points lying over
x0, we have

E = N +
h

∑
j=1

rj.

Applying the Euler polyeder formula, we thus get

2− 2g = E− K + F

= (N +
h

∑
j=1

rj)− (N · h) + N

= 2N −
h

∑
j=1

(N − rj).

Let now e(ξ jk) denote the ramification orders of the points ξ jk. Then, applying Proposition
2.10 (b), we compute (for j = 1, . . . , h)

rj

∑
k=1

(e(ξ jk)− 1) = N − rj.

Therefore, for the genus g of X(Γ), we get the following formula

g = 1− N +
1
2

h

∑
j=1

(N − rj)

= 1− N +
1
2

h

∑
j=1

rj

∑
k=1

(e(ξ jk)− 1). (2.1)

�

Lemma 2.12. Let πΓ(z1), . . . , πΓ(zr) ∈ Γ\H∗ be the points lying over a point πPSL2(Z)(z) ∈
PSL2(Z)\H∗. If Γ is a normal subgroup of PSL2(Z), we have the identity

eπΓ(zj) = eπΓ(z1)

for j = 1, . . . , r.
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Proof. The group PSL2(Z)/Γ acts on {πΓ(z1), . . . , πΓ(zr)}. Therefore

eπΓ(zj) = |StabPSL2(Z)/Γ(πΓ(zj)|
= |StabPSL2(Z)/Γ(πΓ(z1)| = eπΓ(z1).

�

Remark. Let Γ ⊆ PSL2(Z) be a normal subgroup, as in the Lemma before. The points
lying above πΓ(i) (resp. πΓ(ρ)) are either all of order 2 (resp. 3) or all of order 1, i.e. no
fixed points.

2.2 Congruence groups

We now discuss some examples of congruence groups.

Definition 2.13. Let N ∈N, N ≥ 1. We define the subgroup

Γ(N) =
{(

a b
c d

)
∈ SL2(Z)

∣∣ a ≡ d ≡ 1 mod N , b ≡ c ≡ 0 mod N
}

.

The group Γ(N) := Γ(N)/{±id} ⊆ PSL2(Z) is called principle congruence subgroup of
level N.

Note that Γ(1) = SL2(Z) and Γ(1) = PSL2(Z).

Lemma 2.14. For the index of the principle congruence Γ(N) in PSL2(Z), we have

[PSL2(Z) : Γ(N)] =


N3

2 ∏
p |N

(1− p−2), if N > 2;

6, if N = 2.

Proof. We first observe that following short sequence

1 −→ Γ(N) −→ SL2(Z)
f−→ SL2(Z/NZ) −→ 1

is exact, which yields
SL2(Z)/Γ(N) ∼= SL2(Z/NZ).

To prove this claim, it remains to show that f is surjective. Let
( α β

γ δ

)
∈ SL2(Z/NZ). We

have to find
(

a b
c d

)
∈ SL2(Z) with

(
a b
c d

)
≡
( α β

γ δ

)
mod N. We know (α, β, N) = 1, hence

we can find β′ ∈ Z with (α, β + β′N) = 1. Therefore, we can assume without loss of
generality that (α, β) = 1. Now, we can choose γ′, δ′ ∈ Z such that

αδ′ − βγ′ = 1.

We then set

a := α,
b := β,
c := γ + γ′(1− αδ + βγ),
d := δ + δ′(1− αδ + βγ).



2.2 Congruence groups 21

Then one easily verifies that
(

a b
c d

)
∈ SL2(Z) and that

(
a b
c d

)
satisfies the required proper-

ties.
Let N = ∏p pλp be the prime factorization of N. Then, we have

[SL2(Z) : Γ(N)] = |SL2(Z/NZ)| = ∏
p |N
|SL2(Z/pλp Z)|.

To compute the orders |SL2(Z/pλp Z)|, we observe that

|SL2(Z/pλp Z)| = |GL2(Z/pλp Z)|
pλp − pλp−1 =

|GL2(Z/pλp Z)|
pλp(1− p−1)

,

and we employ well-known facts for the general linear group, namely

GL2(Z/pZ) = (p2 − 1)(p2 − p).

We now consider the exact sequence

1 −→ ker( f ′) −→ GL2(Z/pλp Z)
f ′−→ GL2(Z/pZ) −→ 1.

Since ker( f ′) consists of the elements in M2(Z/pλp Z) which are congruent to the identity
matrix modulo p, we find easily find that

|ker( f ′)| = p4(λp−1).

All in all, we get

|SL2(Z/pλp Z)| = p4(λp−1) · (p2 − 1)(p2 − p)
pλp(1− p−1)

= p3λp(1− p−2).

Hence, we obtain
[SL2(Z) : Γ(N)] = N3 ∏

p |N
(1− p−2).

Finally, observing that −1 ∈ Γ(N) if and only if N = 2, the claimed formula follows. �

Lemma 2.15. Let N > 1 and X(Γ(N)) = Γ(N)\H∗. Then
(a)

v∞ =
[PSL2(Z) : Γ(N)]

N
=


N2

2 ∏
p |N

(1− p−2), if N > 2;

3, if N = 2.

(b)
v2 = v3 = 0.

Proof. (a) Since Γ(N) is a normal subgroup of PSL2(Z) the ramification orders of all cusps
of X(Γ(N)) are equal (by Lemma 2.12) say equal to e. We first notice that

Γ(N)∞ =<

(
1 N
0 1

)
> .

Hence
e = [PSL2(Z)∞ : Γ(N)∞] = N
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and, since v∞e = [PSL2(Z) : Γ(N)], we have v∞ = [PSL2(Z) : Γ(N)]/N. Together with
the last lemma the claim follows.
(b) Since Γ(N) is a normal subgroup of PSL2(Z) we only have to consider the elliptic fixed
points πΓ(N)(i) and πΓ(N)(ρ).
We have

PSL2(Z)i =<

(
0 1
−1 0

)
> ,

(
0 1
−1 0

)
6∈ Γ(N).

Hence Γ(N)i is trivial for all N > 1. Therefore v2 = 0. The proof of v3 = 0 is analogous. �

Corollary 2.16. For N > 1, the genus g of X(Γ(N)) is given by

g = 1 +
[PSL2(Z) : Γ(N)]

12N
(N − 6) = 1 +

v∞

12
(N − 6).

Proof. Using the formula given in Proposition 2.11, we get

g = 1 +
[PSL2(Z) : Γ(N)]

12
− v2

4
− v3

3
− v∞

2
= 1 +

[PSL2(Z) : Γ(N)]

12
− [PSL2(Z) : Γ(N)]

2N
,

which yields the claim. �

� Example 2.17. The Riemann surface X(Γ(2)) has 6/2 = 3 cusps, which can be repre-
sented by ∞ = [1 : 0], 0 = [0 : 1], and 1 = [1 : 1]. Thus, we have g(Γ(2)) = 0. See the
lecture for a picture of a fundamental domain, or, e.g., the book of Katok.
One can show, that the genus of X(Γ(N)) is zero, if and only if N = 1, 2, 3, 4, 5. �

Definition 2.18. A subgroup Γ ⊆ PSL2(Z) is called congruence subgroup of PSL2(Z), if
Γ(N) ⊆ Γ for some N ∈N. The level of a congruence subgroup Γ is the smallest such
N. (Note that from this definition it immediately follows that congruence groups are
examples for groups of finite index in PSL2(Z).)

Remark. The literature on congruence subgroups is vast, and the subject remains very
active. Rademacher conjectured that there are only finitely many genus 0 congruence
subgroups. Stronger versions of the conjecture were proved by Thompson, and Cox and
Parry, which show that the number of congruence subgroups of any genus is finite.

Definition 2.19. Let N ∈N. We define

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) | c ≡ 0 mod N

}
and Γ0(N) := Γ0(N)/{±id}; it is is called Hecke congruence group of level N.

Lemma 2.20. For the index of the congruence Γ0(N) in PSL2(Z), we have

[PSL2(Z) : Γ0(N)] = N ∏
p |N

(1 + p−1).

Proof. This proof is left as exercise. For completeness, we give the idea of proof. We
consider the map f as in the proof of Lemma for Γ(N). Considering the image of Γ0(N)
under f , we get

Γ0(N)/Γ(N) ∼=
{(

a b
0 a−1

)
∈ SL2(Z/NZ)

}
.
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Hence, we get
[Γ0(N) : Γ(N)] = Nϕ(N) = N2 ∏

p |N
(1− p−1).

Since −id ∈ Γ0(N), we have

[PSL2(Z) : Γ0(N)] = [SL2(Z) : Γ0(N)] =
[SL2(Z) : Γ(N)]

[Γ0(N) : Γ(N)]

=
N3 ∏p |N(1− p−2)

N2 ∏p |N(1− p−1)
= N ∏

p |N
(1 + p−1).

�

Remark. (Legendre symbol/quadratic residue symbol) Let p be an odd prime number. We
define (

n
p

)
=


1 p 6 | n ∧ x2 ≡ n mod p is solvable in Z

−1 p 6 | n ∧ x2 ≡ n mod p is not solvable in Z

0 p| n

If p = 2 we define (n
2

)
=


1 n ≡ 1 mod 8
−1 n ≡ 5 mod 8
0 otherwise

Lemma 2.21. For X(Γ0(N)) = Γ0(N)\H∗ we have
(a) v∞ = ∑d|N

d>0
ϕ((d, N

d )) with Euler’s ϕ-function

(b) v2 =

{
0 4|N
∏p|N

(
1 +

(
−1
p

))
otherwise

(c) v3 =

{
0 9|N
∏p|N

(
1 +

(
−3
p

))
otherwise

with(
−1
p

)
=


1 p ≡ 1 mod 4
−1 p ≡ 3 mod 4
0 otherwise

and(
−3
p

)
=


1 p ≡ 1 mod 3
−1 p ≡ 2 mod 3
0 otherwise

.

Proof. We will only prove the case where N = p is an odd prime.

(a) In this case the two cusps πΓ0(p)(∞) and πΓ0(p)(0) lie above πPSL2(Z)(∞). For the
ramification indices we compute

e(πΓ∞(p)(∞)) = 1 , πΓ0(p)(0) = p.

Since their sum is p + 1 = µ0
p we conclude v∞ = 2, as asserted.



24 Chapter 2. Modular curves

(b) We have to study how the SL2(Z) conjugation class S1 of
(

0 −1
1 0

)
(resp. the conjuga-

tion class S2 of
(

0 1
−1 0

)
) splits into Γ0(p) conjugation classes.

To do this let, let Λ := Z2, Λp := Z⊕ pZ. If σ ∈ S1 (resp. σ ∈ S2) then Z[σ] ∼= Z[i],
hence Λ is a free Z[σ]-module of rank 1. Therefore there exists a Z-linear isomorphism
fσ : Z[i] −→ Λ.
For the submodule Λp ⊂ Λ we define aσ := f−1

σ (Λp) ⊆ Z[i].
Then

aσ ⊆ Z[i] ideal⇐⇒ σ ∈ S1 ∩ Γ0(p) (resp. σ ∈ S2 ∩ Γ0(p)).

Since
Z[i]/aσ

∼= Λ/Λp ∼= Z/pZ

we get
(i) NQ(i)/Q(aσ) = p

(ii) aσ 6∈ Z.
Furthermore we have the following bijections :{

Γ0(p)-conjugacy classes of
(

0 −1
1 0

)
,
(

0 1
−1 0

)}
∼= {a ⊆ Z[i], ideal |NQ(i)/Q(aσ) = p , aσ 6∈ Z}
∼= {a ⊆ Z[i], prime ideal |NQ(i)/Q(aσ) = p , p decomposes}

The cardinality of the last set equals 0, if p ≡ 3 mod 4 and it is 2, if p ≡ 1 mod 4. Thus
we get

v2 = 1 +
(
−1
p

)
.

(c) Analogous to (b). �

Corollary 2.22. The genus of X(Γ0(p)), if p is an odd prime, is given by

g =
p + 1

12
− 1

4

(
1 +

(
−1
p

))
− 1

3

(
1 +

(
−3
p

))
� Example 2.23. The Riemann surface X(Γ0(4)) has 3 cusps, which can be represented
by ∞ = [1 : 0], 0 = [0 : 1], and 1/2 = [1 : 2]. Thus, we have g(Γ(4)) = 0. Picture of a
fundamental domain:
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One can show, that Riemann surfaces of the form X(Γ0(N)), with genus 0 and no elliptic
fixed points, are exactly the one with N = 4, 6, 8, 9, 12, 16, 18. �

Remark. Article of Elstrodt on fundamental domains https://arxiv.org/abs/2308.11997.

Remark. Fundamental drawer by H. A. Verrill and I. Breeze

https://www.mathamaze.co.uk/complexplane/

Exercise 2.1 For N ∈N, N > 1, we consider the subgroup

Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z)

∣∣∣ c ≡ 0 mod N
}

of SL2(Z). Let

E =

(
1 0
0 1

)
, S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
,

and let p be a prime number. For j ∈N, 0 ≤ j ≤ p, we set

αj :=

{
ST j, if 0 ≤ j ≤ p− 1;
E, if j = p.

(a) Prove that
SL2(Z) =

⋃̇p

j=0
α−1

j Γ0(p) =
⋃̇p

j=0
Γ0(p)αj.

(b) Using (a), conclude that there is a fundamental domain FΓ0(p) for Γ0(p) satisfying

FΓ0(p) =
p⋃

j=0

αjFSL2(Z).

(c) Draw a fundamental domain FΓ0(2) and determine all the cusps of Γ0(2), i.e., the
orbits Γ0(2)[r : s] with [r : s] ∈ P1(Q).

�

Exercise 2.2 Determine the genus of the Riemann surface X(Γ) for

Γ ∈
{

Γ0(2), Γ0(4), Γ0(11)
}

.

�





3. Modular forms for SL2(Z)

In this chapter, we let Γ := SL2(Z).

Definition 3.1. A modular function (resp. a modular form) of weight k ∈ Z for SL2(Z) is a
function f : H −→ C satisfying

(i) f (γz) = (cz + d)k f (z) for any γ =
(

a b
c d

)
∈ SL2(Z) and z ∈H.

(ii) f is meromorphic (resp. holomorphic) on H.
(iii) f is meromorphic (resp. holomorphic) at ∞, i.e., f has a Fourier expansion of the

form

f (z) =
∞

∑
n=n0

anqn (3.1)

for some n0 ∈ Z (resp. n0 ∈N), where q := e2πiz and with coefficients

an =
∫ 1

0
f (z)q−ndz ∈ C.

Definition 3.2. A cusp form of weight k for SL2(Z) is a modular form of weight k for
SL2(Z), which vanishes at ∞, i.e., we have n0 > 0 in (3.1), that is a0 = 0.

Remark. Since
(

1 1
0 1

)
∈ SL2(Z), we have f (z + 1) = f (z) for all z ∈H∗ for a function

that satisfies (i) and since

f (z) = ∑
n<0

anqn + a0 + ∑
n>0

anqn,

where anqn = O(e−2πny), the starting index n0 from (iii) tells us how a modular function f
behaves at ∞.
Remark. (a) If k is odd, there are no modular functions f 6= 0 of weight k. Namely,
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applying (i) of Definition 3.1 with
( −1 0

0 −1

)
∈ SL2(Z), we obtain the equality

f (z) = (0z− 1)k f (z) = (−1)k f (z) = − f (z).

(b) To verify property (i) from Definition 3.1 it suffices to verify (i) for the generators

T :=
(

1 1
0 1

)
, S :=

(
0 −1
1 0

)
of SL2(Z), i.e., it suffices to show that

f (z + 1) = f (z), f
(
−1

z

)
= f (z)

holds for all z ∈H.
(c) If k = 0, then f is a well-defined function on Γ\H. If f is a modular form of weight

k = 2, then f (z)dz defines a differential form on Γ\H, since then, we have

f (z)dz !
= f (γz)d(γz)

for all γ ∈ Γ.
Remark. The set

Mk(Γ) : = { f | f is a modular form of weight k for Γ}, resp.
Sk(Γ) : = { f | f is a cusp form of weight k for Γ}

is a C-vector space. Functions inMk(SL2(Z)) resp. Sk(SL2(Z)) are also called modular
forms resp. cusp forms of level 1.
We now consider/define the following examples.

� Example 3.3. (i) The constant functions are modular forms of weight 0 for Γ.
(ii) The normalized Eisenstein series Ek(z) := Gk(z)/(2ζ(k)) of weight k (k ∈N, k > 2,

k even) satisfies (cf. Definition 6.1)

Ek(z) : =
Gk(z)
2ζ(k)

=
1
2 ∑

(m,n)∈Z2

(m,n)=1

1
(mz + n)k

= 1− 2k
Bk

∞

∑
n=1

σk−1(n) · qn (3.2)

with the Bernoulli numbers Bk (see Definition 6.7) and with (cf. (6.1))

σk−1(n) = ∑
d|n

1≤d≤n

dk−1,

and is an element ofMk(Γ) \ Sk(Γ). The last claim follows from Proposition 6.3
together with Proposition 6.6. The proof of expansion (3.2) will be given on the next
pages. To explicitly determine the coefficients of the q-series for E4(z) and E6(z),
note that −8/B4 = 240 = 24 · 3 · 5 and −12/B6 = −504 = −23 · 32 · 7.
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(iii) The ∆-function, also called discriminant modular form, is defined by

∆(z) :=
E4(z)3 − E6(z)2

1728
= q− 24q2 + . . .

=:
∞

∑
n=1

τ(n) · qn,

with the so-called Ramanujan τ function, and is an element of S12(Γ). In 1947,
Lehmer conjectured that τ(n) 6= 0 for all n ∈N>0. This assertion is also known as
Lehmer’s conjecture and it is still open today, even though it has been verified for all
n ∈N with n < 816212624008487344127999 (in the year 2013).

(iv) The j-function is defined by

j(z) :=
E4(z)3

∆(z)
= 1728

E4(z)3

E3
4(z)− E2

6(z)
(3.3)

=
1
q
+ 744 + . . .

and is a modular function for Γ of weight 0 (but not a modular form Γ). Note that
we will later see that ∆ has no zeros on H.

�

Proof of expansion (3.2). By Proposition 6.6, we have (for k ≥ 4 an even integer) the identity

Gk(z) = 2ζ(k) + 2
(2πi)k

(k− 1)!

∞

∑
n=1

σk−1(n) · qn

Hence, we get

Ek(z) =
Gk(z)
2ζ(k)

= 1 +
(2π)kik · k

ζ(k)k!

∞

∑
n=1

σk−1(n) · qn.

Using (6.4) (with 2k replaced by k), namely

ζ(k) =
−(2π)kik

k!
· Bk

2
.

we get

Ek(z) = 1− 2k
Bk

∞

∑
n=1

σk−1(n) · qn,

as asserted. �

In the following, we will be interested in computing the dimension of the space of modular
forms resp. cusp forms of weight k for Γ. In a first step, we prove the k

12 -formula, also
called valence formula, for Γ.

Definition 3.4. Let f 6= 0 be a modular function of weight k for Γ. For z ∈H, we define

νz( f )

to be the order of the zero (respectively, minus the order of the pole) of f (z) at z. By

v∞( f ),
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we denote the index of the first non-vanishing term in the q-series (3.1) of f .

Remark. (i) Since (cz + d)k has no zeros in H, we have

vγz( f ) = vz( f )

for all γ ∈ Γ and z ∈H.
(ii) For the functions given in Example 3.3, we have

ν∞(Ek) = 0, ν∞(∆) = 1, ν∞(j) = −1.

Theorem 3.5 — k
12 -formula, valence formula for SL2(Z). Let f 6= 0 be a modular function

of weight k for Γ. Then, we have

ν∞( f ) +
νi( f )

2
+

νρ( f )
3

+ ∑
Γz∈Γ\H
z 6∈Γi,Γρ

νz( f ) =
k

12
, (3.4)

where ρ := e2πi/3.

Proof. The idea of proof is to count the zeros and poles of f in Γ\H by integrating the
logarithmic derivative of f along the boundary of a (standard) fundamental domain FΓ.
The proof is conducted in four steps.

1. step: We choose T > 0 in such a way that T is greater than the imaginary part of any
zero or pole of f in H. This is possible, since after a change of coordinates z 7→ q, the
function f̃ = f (q) is a meromorphic function in a disc about q = 0.

picture

2. step: We cut the fundamental domain FΓ at height T and obtain FT
Γ := FΓ ∩ {Im(z) ≤

T}. We then choose a closed path C along the boundary of FT
Γ in such a way (see picture!)

that every zero and every pole of f lying on the boundary of FT
Γ is avoided by the segment

of a circle of radius ε > 0 (ε small) and every Γ-equivalence class of a zero or a pole of f is
contained exactly once inside of C, and such that, if Γi or Γρ contain zeros or poles of f ,
they lie outside of C.

picture with C1 up to C8

By the residue theorem, we then have

∑
Γz∈Γ\H
z/∈Γi,Γ$

νz( f ) =
1

2πi

∫
C

f ′(z)
f (z)

dz =
1

2πi
lim
ε→0

Iε,

where we have set

Iε :=
8

∑
j=1

Ij

with

Ij :=
∫
Cj

f ′(z)
f (z)

dz.
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3. step: We now consider step by step the integrals Ij. First of all, we have

I7 =
∫
C7

f ′(w)

f (w)
dw =

∫
−C1

f ′(z− 1)
f (z− 1)

dz = −I1,

where we substituted z := w + 1 in the first equality, and made use of f (z− 1) = f (z)
and f ′(z− 1) = f ′(z) for the second equality. Next, we compute

I5 =
∫
C5

f ′(w)

f (w)
dw =

∫
−C3

f ′(− 1
z )

f (− 1
z )

d(−1
z
) = −I3 + k ·

∫
−C3

dz
z

,

where we substituted w := − 1
z in the first equality, and made use of

d
(
−1

z

)
=

dz
z2 ,

f
(
−1

z

)
= zk f (z),

f ′
(
−1

z

) 1
z2 = kzk−1 f (z) + zk f ′(z)

for the second equality. Furthermore, we get

1
2πi

I8 =
1

2πi

∫
C8

f ′(z)
f (z)

dz =
1

2πi

∮
circle around 0 of radius e−2πT

f̃ ′(q)
f̃ (q)

dq = −ν∞( f ),

with

f (z) =
∞

∑
n=n0

anqn =: f̃ (q).

Finally, to compute I2, resp. I4, resp. I6, we employ the formula

1
2πi

∫
segment of a circle

around w of angle ϑ

f ′(z)
f (z)

dz→ − ϑ

2π
νz( f ),

as ε→ 0, with w = ρ, ϑ = 2π
6 , resp. w = i, ϑ = π, resp. w = − 1

ρ , ϑ = 2π
6 .

4. step: Adding up the results obtain in step 3, yields

1
2πi

lim
ε→0

Iε =
k

2πi

(
lim
ε→0

∫
−C3

dz
z

)
− ν∞( f )− 1

6
ν$( f )− 1

2
νi( f )− 1

6
ν−1/$( f )

After substituting z := eir, we get the equality

lim
ε→0

∫
−C3

dz
z

= i

2π
3∫

π
2

dr =
πi
6

.

Also, by Remark 3, we have ν−1/$( f ) = ν$( f ). All in all, we thus get

1
2πi

lim
ε→0

Iε =
k

12
− ν∞( f )− νi( f )

2
−

ν$( f )
3

,

which proves the claim. �
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Remark. Since ν∞(∆) = 1 and ∆ ∈ S12(SL2(Z)), we deduce from (3.4) the identity

1 +
νi( f )

2
+

νρ( f )
3

+ ∑
Γz∈Γ\H
z 6∈Γi,Γρ

νz( f ) = 1.

Hence, ∆ has no zeros on H.
We now will apply the k/12-formula to obtain dimension formulas forMk(SL2(Z)) and
Sk(SL2(Z)).

Lemma 3.6. Let Γ := SL2(Z). For k ∈ Z, k even, we have:
(i) Mk(Γ) = {0} for k < 0.

(ii) M0(Γ) = C.
(iii) M2(Γ) = {0},
(iv) Mk(Γ) = C · Ek for k = 4, 6, 8, 10, 14.
(v) Sk(Γ) = {0} for k = 4, 6, 8, 10, 14.

Proof. (i) The left hand side of the k
12 -formula (3.4) consists of non-negative terms,

whereas right hand side of (3.4) is negative for k < 0. This proves (i).
(ii) Let f ∈ M0(Γ) and let c be a value of f . Then the function f − c ∈ M0(Γ) has a zero.

Hence the LHS of (3.4) is positive, but the RHS of (3.4) equals zero for k = 0. Hence
f − c ≡ 0, that is, f (z) = c for all z ∈H.

(iii) This claim follows, since

α +
β

2
+

γ

2
=

1
6

has no solution for α, β, γ ∈ Z≥0.
(iv) Let f ∈ Mk(Γ), f 6= 0. We have the following table (easy exercise):

k k
12 νi∞( f ) νi( f ) ν$( f )

4 1
3 0 0 1

6 1
2 0 1 0

8 2
3 0 0 2

10 5
6 0 1 1

14 7
6 0 1 2

Hence f and Ek have the same zeros and therefore

f (z)
Ek(z)

∈ M0(Γ).

From (ii), we thus conclude that

f (z)
Ek(z)

= c

for a constant c ∈ C. This proves (iv).
(v) For k = 4, 6, 8, 10, 14 the claim follows from the table in (iv).

�
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Proposition 3.7. For k ∈N, k even, we have:
(i) Sk(Γ) = ∆ ·Mk−12(Γ), if k ≥ 12. In particular, we have S12(Γ) = C · ∆.

(ii) Mk(Γ) = C · Ek ⊕ Sk(Γ) if k > 2.

Proof. (a) Let k ≥ 12 be even and let f ∈ Sk(Γ), hence v∞( f ) ≥ 1. Since ∆ has no
zeros on H (by the table in (iv) above, see also the remark above) we conclude

f (z)
∆(z)

∈ Mk−12(Γ).

This proves the claim. For k = 12, we use thatM0(Γ) = C.
(b) Let k > 2 be even and let f ∈ Mk(Γ). Then there exists a constant c (more

precisely, c = a0( f ), where f = ∑∞
n=0 an( f )qn is the Fourier expansion of f ) with

f − c · Ek ∈ Sk(Γ).

This proves the claim.
�

Remark. Using the above results, on can easily compute dimCMk(Γ) for k = 0, 2, 4, . . . , 14.

k 0 2 4 6 8 10 12 14

dimCMk(Γ) 1 0 1 1 1 1 2 1

Theorem 3.8 For k ∈N, k even, we have:

dimCMk(Γ) =


[

k
12

]
, if k ≡ 2 mod 12;[

k
12

]
+ 1, if k 6≡ 2 mod 12.

Proof. By Lemma 3.6 and Proposition 3.7 the assertion is true for 0 ≤ k ≤ 14, k even. We
already know that

(i) dimCMk(Γ) = 1 + dimC Sk(Γ) for k > 2, k even.
(ii) dimC Sk(Γ) = dimCMk−12(Γ) for k ≥ 12, k even.

Hence for k ≥ 12, k even, it holds that

dimCMk(Γ) = 1 + dimCMk−12(Γ)

The claim follows from induction on k (exercise). �

Theorem 3.9 Let k ∈N, k > 2 be even and let f ∈ Mk(Γ). Then, we can write

f (z) = ∑
a,b∈N

ca,b · E4(z)a · E6(z)b

for certain constants ca,b ∈ C.

Proof. To ease notation, we writeMk :=Mk(Γ) and Sk :=Mk(Γ). For k = 4, 6, 8, 10, 14,
we observe that

E4 ∈ M4, E6 ∈ M6, E2
4 ∈ M8, E4 · E6 ∈ M10, E2

4 · E6 ∈ M14
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and that these functions generateMk, since dimCMk = 1, by Lemma 3.6 (iv). Now let
k = 12 or k > 14. Since k is even, we have

k = 4 ·m or k = 4 ·m + 2 = 4(m− 1) + 6 (m ∈N, m ≥ 3).

Therefore there exist a, b ∈N such that 4a + 6b = k. In this case it follows that

Ea
4 · Eb

6 ∈ Mk.

Let now f ∈ Mk. Since E4(z)a · E6(z)b has no zero at ∞ (see its Fourier expansion), there
exists a constant c ∈ C with

f − c · Ea
4 · Eb

6 ∈ Sk.

By Proposition 3.7 (i), we thus get that

f − c · Ea
4 · Eb

6 = ∆ · g

for some g ∈ Mk−12. Therefore, we have

f (z) = c · E4(z)a · E6(z)b + ∆ · g

= c · E4(z)a · E6(z)b +
(E4(z)3 − E6(z)2

1728

)
· g.

Now the claim follows by a simple induction on k. �

We end this chapter with some results for the j-function defined in (3.3).

Theorem 3.10 Let f : H→ C be a meromorphic function. Then the following statements
are equivalent:

(i) f is a modular function of weight 0 for Γ.
(ii) f is the quotient of two modular forms of the same weight for Γ.

(iii) f is a rational function in j, i.e. f is of the form

f (z) =
F(j(z))
G(j(z))

for polynomials F, G, G 6= 0, with complex coefficients.
In particular, the field of all modular functions of weight 0 for Γ equals C(j).

Proof. Let f : H→ C be a meromorphic function.
(iii) =⇒ (ii) : Let F = ∑n

r=0 arXr and G = ∑m
r=0 brXr be two polynomials with complex

coefficients with

f (z) =
F(j(z))
G(j(z))

.

Recalling that

j(z) =
E4(z)3

∆(z)
,

we thus have

f (z) =
F(j(z))
G(j(z))

=
∑n

r=0 ar j(z)r

∑m
r=0 br j(z)r =

∑n
r=0 arE4(z)3r∆(z)−r

∑m
r=0 brE4(z)3r∆(z)−r

=
∆(z)m ∑n

r=0 arE4(z)3r∆(z)n−r

∆(z)n ∑m
r=0 brE4(z)3r∆(z)m−r ,
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where we expanded the fraction in the last step by ∆(z)n∆(z)m. This is a quotient
of modular forms of the same weight 12(n + m). (Every term in the numerator has
weight 12 ·m + 4 · 3 · r + 12 · (n− r) = 12 · (n + m) and a similar formula holds for
the denominator.) This proves (ii).

(ii) =⇒ (i) : Clear, by the definition of a modular function of weight 0 for Γ.
(i) =⇒ (iii) : Let f be a modular function of weight 0 for Γ. Further, let z1, . . . , zr ∈ FΓ∩H

be all the different poles of f in FΓ ∩H, i.e. representative of the poles of f modulo
Γ, and let ν1, . . . , νr be the orders of these poles. Consider the function

h(z) :=
r

∏
k=1

(
j(z)− j(zk)

)νk .

Then, the function
f (z)h(z)

is holomorphic on H by construction (since the function h(z) has zeros of order at
least νk in zk). Hence, there exists m ∈N, such that the function

g(z) := f (z)h(z)(∆(z))m

is holomorphic on H and at ∞. Therefore

g(z) ∈ M12m(Γ)

and, by Theorem 3.9, we can write g(z) as a sum of terms of the form

E4(z)a E6(z)b (a, b ∈N; 4a + 6b = 12m).

Now, since h(z) is obviously the claimed form, it suffices to prove that the terms of
the form

E4(z)a E6(z)b

∆(z)m

can be written as rational functions in j. We note that, since 4a + 6b = 12m, there
exist natural numbers a′, b′ with

a = 3a′, b = 2b′ and m = a′ + b′.

Recalling that

∆(z) =
E4(z)3 − E6(z)2

1728
⇐⇒ E6(z)2 = E4(z)3 − 1728∆(z),

we thus get

E4(z)a E6(z)b

∆(z)m =
(E4(z)3)a′

∆(z)a′
(E6(z)2)b′

∆(z)b′

= j(z)a′ (E4(z)3 − 1728∆(z))b′

∆(z)b′

= j(z)a′(j(z)− 1728
)b′ .

This finishes the proof.
�





4. Modular forms of higher level

In this chapter we let Γ ⊆ SL2(Z) be a subgroup of finite index.

4.1 Modular forms of weight k

Remark. We recall/refine some facts on cusps
(i) Γ \ P1(Q) is the set of cusps of Γ\H and #Γ \ P1(Q) ≤ [SL2(Z) : Γ]. Identifying

P1(Q) with Q∪ {∞}, we write a cusp [a : c] often as a
c .

(b) SL2(Z)∞ =

{
±
(

1 k
0 1

)
| m ∈ Z

}
=< ± id ,

(
1 1
0 1

)
>

(c) Let σ :=
(

a b
c d

)
∈ SL2(Z). Then the stabilizer of the cusp a

c is given by

Γ a
c
= Γ ∩ σ < ± id ,

(
1 1
0 1

)
> σ−1 =< ± id , σ

(
1 1
0 1

)
σ−1 > .

Also, the width of the cusp a
c is the smallest positive number h, such that

σ

(
1 h
0 1

)
σ−1 ∈ Γ a

c
or σ

(
−1 −h
0 −1

)
σ−1 ∈ Γ a

c
.

Then Γ a
c

equals either < σ

(
1 h
0 1

)
σ−1 >, < −id , σ

(
1 h
0 1

)
σ−1 > or < σ

(
−1 −h
0 −1

)
σ−1 >.

In the first two cases we say that a
c is regular, in the last case we call a

c irregular.
Remark. Irregular cusps are somehow exceptional, e.g. for Γ0(N) there are no irregular
cusps (left as exercise).

Definition 4.1. Let k ∈ Z, γ =
(

a b
c d

)
∈ GL+

2 (R) and f : H −→ C be a function. We
define j(γ, z) := cz + d and

f |kγ : H −→ C, z 7→ det(γ)
k
2 j(γ, z)−k f (γz).
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The operator f 7→ f |kγ is called weight-k-operator.

Remark. (a) If f : H −→ C is holomorphic, then f |kγ is holomorphic for every γ ∈ Γ.
(b) Let γ, γ′ ∈ GL+

2 (R), then f |k(γγ′) = ( f |kγ)|kγ′.

Definition 4.2. A weak modular form of weight k for Γ is a holomorphic function f : H −→
C such that for all γ =

(
a b
c d

)
∈ Γ and z ∈H the transformation property

f (γz) = (cz + d)k f (z)

is satisfied, i.e. we have f |kγ = f for all γ =
(

a b
c d

)
∈ Γ.

Proposition 4.3. Let f : H −→ C be a weak modular form of weight k for Γ. Let
σ =

(
a b
c d

)
∈ SL2(Z) and let h̃ be the width of the cusp a

c .
We set

h :=

{
h̃ if a

c is regular
2h̃ if a

c is irregular

Then the function f |kσ has a Fourier expansion of the form :

( f |kσ)(z) =
∞

∑
n=−∞

ane
2πinz

h =
∞

∑
n=−∞

anq
n
h .

Proof. It suffices to show that f |kσ has period h. Using the above remark, we compute

f |kσ(z + h) = ( f |kσ)|k
(

1 h
0 1

)
(z)

= f |k
(

σ

(
1 h
0 1

)
σ−1σ

)
(z)

= f |kσ(z),

which proves the claim. �

Definition 4.4. Let f , σ, h and a
c be as in the last Proposition. We call f meromorphic at the

cusp a
c , if there exists m ∈ Z such that

f |kσ(z) =
∞

∑
n=m

anq
n
h .

We say that f is holomorphic at the cusp a
c , if in addition m ≥ 0, and we say that f vanishes

at the cusp a
c , if m ≥ 1.

Definition 4.5. A weak modular form f of weight k for Γ is called
- modular function of weight k for Γ, if f is meromorphic at all the cusps of Γ.
- modular form of weight k for Γ, if f is holomorphic at all the cusps of Γ.
- cusp form of weight k for Γ, if f vanishes at all cusps of Γ.
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We use the notation

Mk(Γ) := { f | f is a modular form of weight k for Γ},
Sk(Γ) := { f | f is a cusp form of weight k for Γ}.

Remark. If f and g are two modular forms of weight k for Γ, then their sum f + g is also
a modular form of weight k for Γ, as is λ f for any λ ∈ C. Thus for any fixed weight k and
congruence subgroup Γ we obtain a C-vector spaceMk(Γ) that contains the cusp forms
Sk(Γ) as a subspace. The dimension of these vector spaces is finite, and can be explicitly
in terms of invariants of the corresponding modular curve Γ\H.

Remark. Note that it suffices to check the ’cusp conditions’ on a system of representatives
of the cusps of Γ.

Using the Riemann–Roch theorem, one can prove the following dimension formulas.

Proposition 4.6. Let Γ be a congruence subgroup of genus g. For k = 0, we have
dim(Mk(Γ)) = 1 and dim(Sk(Γ)) = 0. For any even integer k > 0, we have

dim(Mk(Γ)) = (k− 1)(g− 1) +
⌊

k
4

⌋
ν2 +

⌊
k
3

⌋
ν3 +

k
2

ν∞.

For k = 2, we have
dim(Sk(Γ)) = g

and for k > 2, we have

dim(Sk(Γ)) = (k− 1)(g− 1) +
⌊

k
4

⌋
ν2 +

⌊
k
3

⌋
ν3 +

(
k
2
− 1
)

ν∞.

Proof. See, e.g., Diamond and Shurman, Thm. 3.5.1. �

Remark. Use the commands dimension_cusp_forms and dimension_modular_forms to com-
pute in sagemath the dimensions of, e.g., Sk(Γ0(N)) andMk(Γ0(N)), respectively:

sage: dimension_cusp_forms(Gamma0(2007),2)
221

sage: dimension_modular_forms(Gamma0(2007),2)
228

Proposition 4.7. Let Γ be such that Γ(N) ⊆ Γ for some N ∈ N and let f be a weak
modular form of weight k for Γ, which is holomorphic at ∞. If there exists a constant
C > 0 such that

an ≤ Cnr

for all n ∈N, then f is a modular form of weight k for Γ.

Proof. At ∞ we have f (z) = ∑∞
n=0 anq

n
N , since the width of every cusp divides N. First we

are going to prove that there exists constants C0, C1 > 0 such that

| f (z)| ≤ C0 + C1
1

Im(z)r .
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To see this let z = x + iy ∈H. Then we have

| f (z)| = |
∞

∑
n=0

anq
n
N |

≤
∞

∑
n=0
|an|e−

2πny
N

≤ |a0|+ C
∞

∑
n=1

nre−
2πny

N

= |a0|+ C
(

N
2π

)r 1
yr

∞

∑
n=1

(
2πyn

N

)r

e−
2πny

N

< |a0|+ C
(

N
2π

)r 1
yr C2Γ(r + 1)

=: C0 + C1
1
yr .

We now prove that f is holomorphic at the cusps. For σSL2(Z) let f |kσ(z) = ∑∞
n=−∞ bnq

n
N .

It suffices to show that
lim

Im(z)→∞
q

1
N ( f |kσ)(z) = 0.

We use that |cz + d| behaves as |c|Im(z) for large Im(z) and Re(z) ≤ N. We compute

| f |kσ(z)| = 1
|cz + d|k

∣∣∣∣ f ( az + b
cz + d

)∣∣∣∣
≤ 1
|cz + d|k

∣∣∣∣∣C0 + C1Im
(

az + b
cz + d

)−r
∣∣∣∣∣

=
1

|cz + d|k

∣∣∣∣C0 + C1
|cz + d|2r

Im(z)r

∣∣∣∣
<

for large Im(z)
C3Im(z)r−k.

for some constant C3 > 0.
Hence

lim
Im(z)→∞

|q 1
N ( f |kσ)(z)| ≤ lim

Im(z)→∞
|e−2πIm(z)C3Im(z)r−k| = 0.

This proves the claim. �

Remark. Let Γ ⊆ Γ′ ⊆ SL2(Z) be subgroups of finite index. Then every modular form of
weight k for Γ′ is a modular form of weight k for Γ. The same statement holds for modular
functions and cusp forms.

Definition 4.8. Let f be a modular form of weight k for Γ1(N) and let χ : (Z/NZ)× −→
C× be a Dirichlet character. We say that f has character χ if

f (γz) = χ(d)(cz + d)k f (z)

for all γ ∈ Γ0(N).

Remark. If χ is trivial, i.e. χ(n) = 1 for all n : (n, N) = 1, then a modular form for Γ1(N)
has character χ, if it is a modular form for Γ0(N).
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Notation 4.1.

Mk(Γ, χ) := { f | f is a mod. form of weight k for Γ and has character χ}
Sk(Γ, χ) := { f | f is a cusp form of weight k for Γ and has character χ}

4.2 Old and new forms

We first define old forms. The newforms then are defined in the next chapter as a vector
subspace of the modular forms of level N, complementary to the space spanned by the
oldforms, i.e. the orthogonal space with respect to the Petersson inner product.

Proposition 4.9. Let M, N ∈N and let f be a modular form of weight k with respect to
Γ0(N). Then for any divisor m |M, the function

g(z) := f (mz)

is a modular form of weight k for Γ0(NM). The analogous statement holds for cusp
forms.

Proof. Clearly g is holomorphic on H, since f is holomorphic on H.

Let
(

a b
c d

)
∈ Γ0(NM). We observe that

(
a bm
c
m d

)
∈ Γ0(N). Hence

g
((

a b
c d

)
z
)
= f

(
m

az + b
cz + d

)
= f

(
a(mz) + bm

c
m (mz) + d

)
= (

c
m
(mz) + d)k f (mz)

= (cz + d)kg(z).

To see the holomorphicity at the cusps let σ =
(

a b
c d

)
∈ SL2(Z) and let ρ := (c, ma). We

can find r, s ∈ Z : ρ = sc + rma (eucl. algorithm). Then

α :=
(−r −s

c
ρ −ma

ρ

)
∈ SL2(Z)

and

α

(
ma mb
c d

)
=

(
x y
0 v

)
with x, y, v ∈ Z.
Hence (

ma mb
c d

)
= α−1

(
x y
0 v

)
:= (∗)
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Since g = f |k
(

m 0
0 1

)
we get

g|kσ(z) = f |k
(

ma mb
c d

)
(z)

= f |k
(

α−1
(

x y
0 v

))
(z)

=
1
zk ( f |kα−1)

(
xz + y

v

)
.

Since f is a modular form, the limit lim
Im(z)→∞

f |kα−1(z) exists. Let this limit be denoted by

C. Then

lim
Im(z)→∞

1
zk ( f |kα−1)

(
xz + y

v

)
=

C
zk < ∞.

This proves the holomorphicity at the cusp a
c . If f is a cusp form, then C = 0 and therefore

g is also a cusp form. �

Definition 4.10. A modular form of weight k for Γ0(N) is called old form, if it is a linear
combination of modular forms

gi(diz),

where Mi > 1 is a divisor of N, di ≥ 1 is a divisor of Mi and the gi are modular forms
of weight k for Γ0

(
N
Mi

)
.



5. Theory of Hecke Operators

In order to understand the relationship between modular forms and elliptic curves we
need to construct a suitable basis for S2(Γ0(N)). To do this, we use the theory of Hecke
operators. For any n ∈N≥1 the Hecke operator T(n) (sometimes also denoted by Tn) is a
linear operator that can be applied to any of the vector spaces Mk(Γ0(N)), and it fixes the
subspace of cusp forms, so it is also a linear operator on Sk(Γ0(N)).

5.1 Theory of Hecke Operators for SL2(Z)

In this section we let Γ = SL2(Z) and k ≥ 1 be an even(!) natural number. Note that it is
possible to generalize the following results for arbitrary congruence subgroups. So the
case Mk(Γ0(N)) is analogous, but the details are more involved and we address N > 1
shortly in the next section.

We start by defining the n-th Hecke-Operator T(n) for (n ∈N≥1) on the spaceMk(Γ).

Definition 5.1. Let
⋃

j Γγj be a decomposition of the double coset Γ
(

1 0
0 n

)
Γ in (finitely

many) left cosets Γγj. Then, for f ∈ Mk(Γ), we set

f |T(n)(z) := f |kΓ
(

1 0
0 n

)
Γ(z) := n

k
2−1 ∑

j
f |kγj.

Remark. One can easily see that the definition of the Hecke Operator is independent of
the choice of the system of representatives {γj}.
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Lemma 5.2. For n ∈N≥ we have the disjoint union

Γ
(

1 0
0 n

)
Γ =

⋃
a>0

ad=n
b mod d

Γ
(

a b
0 d

)
.

Proof. We have to show that, for every γ ∈ Γ
(

1 0
0 n

)
Γ, there exists a unique A ∈ Γ (and

unique a > 0, ad = n, b mod d) such that

Aγ =

(
a b
0 d

)
.

Existence: Let

γ :=
(

a′ b′

c′ d′

)
∈ Γ

(
1 0
0 n

)
Γ

with c′ 6= 0. We write − a′
c′ in reduced form, i.e.

− a′

c′
=

r
s

⇐⇒ a′s + c′r = 0,

where r, s ∈ Z with (r, s) = 1. By the euclidean algorithm, we can find p, q ∈ Z such that

rp− sq = 1.

Now, multiplication from the left by A′ :=
(

p q
s r

)
∈ Γ yields

A′γ =

(
p q
s r

)(
a′ b′

c′ d′

)
=

(
a b′′

0 d

)
,

where without loss of generality we can assume a > 0. Since γ ∈ Γ
(

1 0
0 n

)
Γ, we have

det(γ) = n, and therefore
a > 0 and ad = n.

Finally, multiplication from the left by an appropriate matrix A′′ =
(

1 ∗
0 1

)
, the condition

b mod d

can be satisfied as well. This also shows that the existence in case c′ = 0 is trivial.

Uniqueness: Let
(

a1 b1
0 d1

)
,
(

a2 b2
0 d2

)
with aj > 0, ajdj = n and bj mod dj (j = 1, 2) be

two "representatives” of γ. Then there exists B =

(
α β
η δ

)
∈ Γ with

(
a2 b2
0 d2

)
=

(
α β
η δ

)(
a1 b1
0 d1

)
.

Comparing coefficients yields η = 0 (since a1 > 0). Without loss of generality we can
therefore assume α = δ = 1, i.e. we have(

a2 b2
0 d2

)
=

(
1 β
0 1

)(
a1 b1
0 d1

)
.
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This yields
a2 = a1, d2 = d1,

and
b2 = b1 + βd1 ≡ b1 mod d1.

This proves that the ”representation”
(

a b
0 d

)
with a > 0, ad = n and b mod d is unique.

�

Remark. For f ∈ Mk(Γ) and n ∈N≥1, we get

f |T(n)(z) = nk−1 ∑
a>0

ad=n
b mod d

d−k f
(

az + b
d

)

= n−1 ∑
a>0

ad=n
b mod d

ak f
(

az + b
d

)
.

Proposition 5.3. For n ∈N≥1, we have

f ∈ Mk(Γ) =⇒ f |T(n) ∈ Mk(Γ).

Proof. The last remark yields the proof of holomorphicity of f |T(n) on H, since f is
holomorphic on H. It remains to show that f |T(n) has weight k with respect to Γ and that
the Fourier expansion of f |T(n) in ∞ starts with an index ≥ 0, and that f |T(n) has weight
k w.r.t. to Γ.
To prove the last assertion, we work from the decomposition given in Lemma 5.2, namely,
for n ∈N≥, we have

Γ
(

1 0
0 n

)
Γ =

⋃
a>0

ad=n
b mod d

Γ
(

a b
0 d

)
.

We need the following Lemma:

Lemma 5.4. Assume the above notation and let A =
( α β

γ δ

)
∈ Γ. Then there exist M =(

a b
0 d

)
, M′ =

(
a′ b′

0 d′

)
in the above decomposition such that

MA = A′M′, A′ :=
(

α′ β′

γ′ δ′

)
∈ Γ

and a′(γz + δ) = a(γ′M′z + δ′).

Proof. Since MA ∈ Γ
(

1 0
0 n

)
Γ, the existence of A′, M′ follows from Lemma 5.2. To prove

the second claim we observe(
α′ β′

γ′ δ′

)
= A′ = MAM′−1 =

(
a b
0 d

)(
α β
γ δ

)
1
n

(
d′ −b′

0 a′

)
=

1
n

(
∗ ∗

dγ dδ

)(
d′ −b′

0 a′

)
=

1
n

(
∗ ∗

dd′γ −db′γ + da′δ

)
.
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Comparing coefficients yields (recalling that ad = n, a > 0)

γ′ =
dd′γ

n
=

d′

a
γ

δ′ =
−db′γ + da′δ

n
= −b′

a
γ +

a′

a
δ.

In other words, we get (observe for (i) that d′ 6= 0)

(i) aγ′ = d′γ⇒ aγ′

d′
= γ

and
(ii) aδ′ = −b′γ + a′δ.

This results in (in the third step we employ (i) and (ii))

a(γ′M′z + δ′) = a
(

γ′
a′z + b′

d′
+ δ′

)
=

aγ′a′z
d′

+
aγ′b′

d′
+ aδ′

= a′γz + b′γ− b′γ + a′δ
= a′(γz + δ),

as asserted. �

With the help of Lemma 5.4, we are now going to prove that f |T(n) has weight k with
respect to Γ. Let f ∈ Mk(Γ) and A =

( α β
γ δ

)
∈ Γ. We have (using det(A) = 1)

( f |T(n))|k A(z) = n−1 ∑
a>0,ad=n
b mod d

ak f (MAz)(γz + δ)−k

Lemma 5.4
= n−1 ∑

a′>0,a′d′=n
b′ mod d

a′k f (A′M′z)(γ′M′z + δ′)−k

= n−1 ∑
a′>0,a′d′=n
b′ mod d

a′k f |k A′(M′z)

A′∈Γ
f∈Mk(Γ)

= n−1 ∑
a′>0,a′d′=n
b′ mod d

a′k f (M′z).

If M runs through a complete system of representatives of cosets Γ
(

1 0
0 n

)
Γ, then M′ will

do so as well. Hence
( f |T(n))|k A = f |T(n),

and, since A ∈ Γ was arbitrary, this yields the assertion.
Finally, we are going to show that f |T(n) is holomorphic at ∞ by studying its Fourier
expansion. Let f ∈ Mk(Γ) and let

f (z) =
∞

∑
m=0

a(m) e2πimz
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be its Fourier expansion. Then, f |T(n) has the expansion

f |T(n)(z) = nk−1 ∑
a>0,ad=n
b mod d

d−k f
(

az + b
d

)

= nk−1 ∑
d | n

d−k
d−1

∑
b=0

∞

∑
m=0

a(m) e2πim
(

nz+bd
d2

)

=
∞

∑
m=0

∑
d | n

(n
d

)k−1
a(m) e2πimnz/d2 1

d

d−1

∑
b=0

e2πimb/d

=
∞

∑
m=0

∑
d |m
d | n

(n
d

)k−1
a(m) e2πimnz/d2

m=m′d
=

∞

∑
m′=0

∑
d | n

(n
d

)k−1
a(m′d) e2πim′nz/d

d′=n/d
=

∞

∑
m′=0

∑
d′ | n

d′k−1a(
m′n
d′

) e2πim′d′z

m=m′d′
=

∞

∑
m=0

∑
d′ |m
d′ | n

d′k−1a(
mn
d′2

) e2πimz.

Here, for the 4th identity, we observe that

1
d

d−1

∑
b=0

e2πimb/d =

{
1, if d|m;
0, else .

Hence, f |T(n) has the Fourier expansion

f |T(n)(z) =
∞

∑
m=0

a′(m)qm (5.1)

with

a′(m) := ∑
d | (m,n)

dk−1a
(mn

d2

)
. (5.2)

Therefore, all in all, we have shown that f |T(n) ∈ Mk(Γ). This completes the proof. �

Remark. The above proof also shows:

(i) Let f ∈ Mk(Γ) and let

f (z) =
∞

∑
m=0

a(m) e2πimz

be its Fourier expansion. Then, the Fourier expansion of f |T(n) is of the form (5.1) with
coefficients given by (5.2). In particular, we have

a′(0) = σk−1(n)a(0) and a′(1) = a(n).

(ii) f ∈ Sk(Γ)⇒ f |T(n) ∈ Sk(Γ).
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Corollary 5.5. For n = p, p prime, the m-th Fourier coefficient a′(m) of f | T(p) (m ∈N)
satisfies the identity

a′(m) = a(mp) + pk−1a
(

m
p

)
,

where we have set a(m
p ) := 0, if m

p 6∈ Z.

Proposition 5.6. For all m, n ∈N≥1 with (m, n) = 1, we have

T(mn) = T(m)T(n).

Proof. We consider the action of T(mn) and T(m)T(n) on elements f ∈ Mk(Γ). We have

(( f |T(m))|T(n)) (z) =

 1
m ∑

α>0,αδ=m
β mod δ

αk f
((

α β
0 δ

)
z
) ∣∣∣T(n)

=
1
m ∑

α>0,αδ=m
β mod δ

αk 1
n ∑

a>0,ad=n
b mod d

ak f
((

a b
0 d

)(
α β
0 δ

)
z
)

=
1

mn ∑
α>0,αδ=m
β mod δ

∑
a>0,ad=n
b mod d

(aα)k f
((

aα aβ + bδ
0 dδ

)
z
)

.

If a (respectively α) runs through all positive divisors of n (resp. m), then a′ := aα runs
through all positive divisors of mn (since (m, n) = 1). By the chinese remainder theorem
we also know that if b (resp. β) runs through all remainders mod d (resp. mod δ) then
b′ := aβ + bδ runs through all remainders mod d′ := dδ. Hence, we get

(( f |T(m))|T(n)) (z) = 1
mn ∑

a′>0,a′d′=mn
b′ mod d′

(a′)k f
((

a′ b′

0 d′

)
z
)

= f |T(mn)(z).

This proves the claim. �

Proposition 5.7. Let r ∈N≥1 and let p be a prime number. Then, we have

T(pr)T(p) = T(pr+1) + pk−1T(pr−1).

Proof. First we observe that, for f , g ∈ Mk(Γ), we have
(i)

f |T(pr)(z) = p−r ∑
0≤t≤r

0≤bt<pt

p(r−t)k f
(

pr−tz + bt

pt

)

(ii)

g|T(p)(z) = pk−1g(pz) + p−1 ∑
0≤b<p

g
(

z + b
p

)
.
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Thus, for f ∈ Mk(Γ), we get

(( f |T(pr))|T(p)) (z) = p−r ∑
0≤t≤r

0≤bt<pt

p(r−t)k

pk−1 f
(

p
pr−tz + bt

pt

)
+ p−1 ∑

0≤b<p
f

 pr−tz+bt
pt + b

p


= pk−1−r ∑

0≤t≤r
0≤bt<pt

p(r−t)k f
(

pr+1−tz + pbt

pt

)
+

p−1−r ∑
0≤t≤r

0≤bt<pt

p(r−t)k ∑
0≤b<p

f
(

pr−tz + ptb + bt

pt+1

)

= p−1−r ∑
0≤t≤r

0≤bt<pt

p(r+1−t)k f
(

pr−tz + bt

pt−1

)
+

p−1−r ∑
0≤t≤r

0≤bt<pt

∑
0≤b<p

p((r+1)−(t+1))k f

(
p(r+1)−(t+1)z + ptb + bt

pt+1

)

= p−1−r ∑
0<t≤r

0≤bt<pt

p(r+1−t)k f
(

pr−tz + bt

pt−1

)
+

p−1−r ∑
0≤t′≤r+1
0≤b′t′<pt′

p((r+1)−t′)k f

(
pr+1−t′z + b′t′

pt′

)

= p−1−r ∑
1≤t≤r

0≤bt<pt

p(r+1−t)k f
(

pr−tz + bt

pt−1

)
+ f |T(pr+1)(z).

Let us now write bt in the form

bt = qt pt−1 + rt , 0 ≤ rt < pt−1.

Then, bt runs through a complete system of representatives mod pt, if rt runs through a
complete system of representatives mod pt−1 and qt runs through a complete system of
representatives mod p. Hence

f
(

pr−tz + bt

pt−1

)
= f

(
pr−tz + rt

pt−1 + qt

)
= f

(
pr−tz + rt

pt−1

)
and also

(( f |T(pr))|T(p)) (z) = f |T(pr+1)(z) + p p−1−r ∑
1≤t≤r

0≤rt<pt−1

p(r−(t−1))k f

(
p(r−1)−(t−1)z + rt

pt−1

)

= f |T(pr+1)(z) + pk−1 p−(r−1) ∑
0≤t′≤r−1
0≤r′t′<pt′

p(r−1−t′)k f

(
pr−1−t′z + r′t′

pt′

)

= f |T(pr+1)(z) + pk−1 f |T(pr−1)(z).

This finishes the proof. �
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Remark. The above propositions show that it suffices to understand the behavior of T(p)
for p prime.

Corollary 5.8. For m, n ∈N≥1, we have

T(m)T(n) = ∑
d | (m,n)

dk−1T
(mn

d2

)
.

In particular, we have
T(m)T(n) = T(n)T(m).

Proof. If (m, n) = 1 the first assertion follows from Proposition 5.6. It remains to prove the
first claim for m = pr, n = ps, i.e., we have to show that

T(pr)T(ps) =
r

∑
t=0

pt(k−1)T(pr+s−2t)

for all r and s ≥ r. This can be done by using Proposition 5.7 and induction (exercise). The
second claim clearly follows from the first claim. �

Remark. Consider

H :=

{
∞

∑
n=1

cnT(n) | cn ∈ C, cn = 0 for almost all n

}
.

By Corollary 5.8, H is a commutative C-algebra, called the Hecke algebra. We have also
seen that H is a commutative subalgebra of End(Mk(Γ)), generated by all T(p) for p a
prime number.

We now define a scalar product 〈·, ·〉 on Sk(Γ). We will see that the Hecke operators are
self-adjoint with respect to 〈·, ·〉.

Definition 5.9. Let f , g ∈ Mk(Γ), where at least one of them is a cusp form. Then, the
Petersson scalar product of f and g is defined by

〈 f , g〉 :=
∫

Γ\H

f (z)g(z)Im(z)kµhyp(z),

where z = x + iy and µhyp(z) = dxdy/y2.

Proposition 5.10. Let f , g ∈ Mk(Γ), where at least one of them is a cusp form. Then,
〈 f , g〉 converges absolutely and satisfies the following properties:

(i) 〈 f , g〉 is linear in f , and conjugate linear in g.
(ii) 〈 f , g〉 = 〈g, f 〉.

(iii) 〈 f , f 〉 ≥ 0 for f ∈ Sk(Γ), and 〈 f , f 〉 = 0⇐⇒ f = 0.
In particular, 〈·, ·〉 defines a scalar product on Sk(Γ).

Proof. If f ∈ Sk(Γ) or g ∈ Sk(Γ), then

f g ∈ S2k(Γ),



5.1 Theory of Hecke Operators for SL2(Z) 51

and the function | f (z)g(z)|yk is bounded on H. Since volhyp(Γ\H) < ∞, this yields the
absolute convergence of 〈 f , g〉. The properties (i), (ii), and (iii), now easily follow using
the definition of 〈·, ·〉. �

Remark. To explicitly compute the Petersson scalar product 〈 f , g〉, we usually choose a
fundamental domain F for Γ\H, and we note that the result doesn’t depend on the choice
of F .

We now compute the Petersson scalar product of a cusp form and of the normalized
Eisenstein series Ek of weight k.

Proposition 5.11. Let k ≥ 4 be an even integer. For f ∈ Sk(Γ), we have

〈Ek, f 〉 = 0.

Proof. We start by writing
Ek(z) = ∑

γ∈Γ∞\Γ
1|kγ,

with Γ∞ = {±
(

1 n
0 1

) ∣∣ n ∈ Z}. We then compute (using the absolute convergence)

〈Ek, f 〉 = ∑
γ∈Γ∞\Γ

∫
Γ\H

j(γ, z)−k f (z)Im(z)kµhyp(z)

= ∑
γ∈Γ∞\Γ

∫
Γ\H

f (γz)Im(γz)kµhyp(γz),

where for the second identity we used the Γ-invariance of µhyp(z) and the identities

Im(γz)k = Im(z)k j(γ, z)−k j(γ, z)
−k

,

f (γz) = f (z) · j(γ, z)
k
.

We now consider the standard fundamental domain F of Γ\H. We first substitute w := γz,
and we obtain, applying the so-called unfolding method, the identity

〈Ek, f 〉 = ∑
γ∈Γ∞\Γ

∫
γF

f (w)Im(w)kµhyp(w)

=
∫

Γ∞\H
f (z)Im(z)kµhyp(z).

With z = x + iy and substituting the Fourier expansion

f (z) =
∞

∑
n=0

a(n)qn

of f (with a(0) = 0, since f is a cusp form), we now compute (using the standard
fundamental domain for Γ∞\H)

〈Ek, f 〉 =
∞∫

0

1∫
0

f (z)dx
dy

y2−k = a(0)
∞∫

0

dy
y2−k = 0,

as asserted. �
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Remark. The above result shows that the decomposition

Mk(Γ) = CEk ⊕ Sk(Γ)

is orthogonal with respect to the Petersson scalar product 〈·, ·〉.

Before coming back to Hecke operators, we will find generators of Sk(Γ).

Definition 5.12. Let k ≥ 4 be an even integer. For m ∈N≥1, we define the m-th Poincaré
series (of weight k) by

Pm,k(z) = ∑
γ∈Γ∞\Γ

e2πimz|kγ

Remark. Note that in case m = 0 this definition would lead to

P0,k(z) = ∑
γ∈Γ∞\Γ

1|kγ = Ek(z).

That’s why we assume m ∈N≥1.

Proposition 5.13. Let k ≥ 4 be an even integer and let m ∈N≥1. Then, we have

Pm,k(z) ∈ Sk(Γ),

and, for any cusp form f ∈ Sk(Γ) with Fourier expansion

f (z) =
∞

∑
n=1

a(n)qn,

we have

〈 f , Pm,k〉 =
(k− 2)!
(4πm)k−1 a(m).

Further, the Poincaré series Pm,k with m ∈N≥1 span the vector space Sk(Γ).

Proof. The absolute and locally uniform convergence of Pm,k can be proven analogously
as for Ek. Hence, Pm,k transforms like a modular form of weight k for Γ, by construction.
Furthermore, we have

lim
y→∞
|Pm,k(z)| ≤

1
2 ∑

(c,d)∈Z2

(c,d)=1

lim
y→∞

exp
(
−2πmy/|cz + d|2

)
|cz + d|−k = 0.

Hence, we get

Pm,k(z) ∈ Sk(Γ),

as claimed. Now, let f ∈ Sk(Γ) be a cusp form with Fourier expansion

f (z) =
∞

∑
n=1

a(n)qn.
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Using the unfolding method, we get

〈 f , Pm,k〉 =
∞∫

0

1∫
0

f (z)e−2πimxdx e−2πmy dy
y2−k = a(m)

∞∫
0

e−4πmy dy
y2−k

= a(m)
Γ(k− 1)
(4πm)k−1 = a(m)

(k− 2)!
(4πm)k−1 ,

as asserted.
Finally, let P be the subspace of Sk(Γ) spanned by the Poincaré series Pm,k with m ∈N≥1,
and let P ′ ⊆ Sk(Γ) denote its orthogonal complement. Let f ∈ P ′. Then, the Fourier
coefficients a(m) of f , satisfy identity

a(m) =
(4πm)k−1

(k− 2)!
〈 f , Pm,k〉 = 0,

for all m ∈N≥1, and trivially we have a(0) = 0. Hence f = 0. This proves P = Sk(Γ), as
claimed. �

Now, we study so-called Hecke eigen forms.

Definition 5.14. A modular form 0 6= f ∈ Mk(Γ) is called Hecke eigenform (or eigenform
with respect toH), if f is an eigenfunction for all T(n), i.e. for any n ∈N≥1 there exists
an eigenvalue λ(n) ∈ C such that

f |T(n) = λ(n) f .

Proposition 5.15. Let 0 6= f ∈ Mk(Γ) be a Hecke eigenform with Fourier expansion
f (z) = ∑∞

m=0 a(m)e2πimz, then
a(n) = λ(n)a(1)

for all n ∈N≥1.

Proof. Let 0 6= f ∈ Mk(Γ) be a Hecke eigenform with Fourier expansion f (z) =

∑∞
m=0 a(m)e2πimz. On the one hand (see Remark 5.1), we then have

f |T(n) =
∞

∑
m=0

a′(m)e2πimz,

where
a′(1) = a(n).

On the other hand, we have

f |T(n) = λ(n) f =
∞

∑
m=0

λ(n)a(m)e2πimz.

All in all, this yields
λ(n)a(1) = a′(1) = a(n),

as asserted. �
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Remark. Let 0 6= f ∈ Sk(Γ) be a Hecke eigenform. By the previous Proposition, we then
have

a(1) 6= 0,

since otherwise f = 0. Furthermore, f is uniquely determined by the eigenvalues
λ(1), λ(2), . . . .
Similarly, for a non-constant Hecke eigenform 0 6= f ∈ Mk(Γ), we have

a(1) 6= 0,

since otherwise f would be a constant.

Definition 5.16. A Hecke eigenform f is called normalized Hecke eigenform, if a(1) = 1.
We then have a(n) = λ(n) for all n ∈ N≥1, thus the Hecke eigenvalues λ(n) are
precisely the coefficients an in the q-expansion of f .

Proposition 5.17. Let f ∈ Mk(Γ) be a non-constant modular form, with Fourier expan-
sion f (z) = ∑∞

m=0 a(m)qm. Then, f is a normalized Hecke eigenform if and only if the
Fourier coefficients a(m) of f satisfy

a(m)a(n) = ∑
d | (m,n)

dk−1a
(mn

d2

)
, (5.3)

for all m ∈N and n ∈N≥1.

Proof. Let f ∈ Mk(Γ) be a non-constant modular form, with Fourier expansion

f (z) =
∞

∑
m=0

a(m)qm. (5.4)

Recall that, for n ∈N≥1, by Remark 5.1 we have

f |T(n)(z) =
∞

∑
m=0

a′(m)qm (5.5)

with

a′(m) := ∑
d | (m,n)

dk−1a
(mn

d2

)
.

In particular, we have

a′(0) = σk−1(n)a(0) and a′(1) = a(n).

Now, assume that f is a normalized Hecke eigenform, with f |T(n) = λ(n) f for all
n ∈N≥1. We have a(n) = λ(n) for all n ∈N≥1. Thus, comparing (5.4) with (5.5), we get

a(0)a(n) = a(0)λ(n) = a′(0) = σk−1(n)a(0) = ∑
d | n

dk−1a(0),

for all n ∈ N≥1, which proves (5.3) for m = 0. Next, by Corollary 5.8, the eigenvalues
satisfy

λ(m)λ(n) = ∑
d | (m,n)

dk−1λ
(mn

d2

)
,
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for m, n ∈ N≥1. Since a(n) = λ(n) for all n ∈ N≥1, this yields the claimed relation (5.3)
for m, n ∈N≥1.
Now, assume that the Fourier coefficients of f satisfy (5.3), i.e.

a(m)a(n) = ∑
d | (m,n)

dk−1a
(mn

d2

)
,

for all m ∈N and n ∈N≥1. For n = 1, this yields

a(m)a(1) = a(m),

for all m ∈ N≥1. Since f is non-constant, not all of the a(m)’s vanish, hence we get
a(1) = 1. Furthermore, for all m ∈N and n ∈N≥1, we get

a′(m) = ∑
d | (m,n)

dk−1a
(mn

d2

)
= a(m)a(n),

hence
f |T(n) = a(n) f ,

for all n ∈N≥1. This completes the proof. �

� Example 5.18. The following examples can be proven as exercise:
(a) ∆(z) ∈ S12(Γ) is a normalized Hecke eigenform.
(b) Ek(z) ∈ Mk(Γ) is a Hecke eigenform.

�

We now finally prove the self-adjointness of the Hecke operators with respect to the
Petersson scalar product.

Proposition 5.19. Let n ∈N≥1. For all f , g ∈ Sk(Γ), we have

〈 f |T(n), g 〉 = 〈 f , g|T(n) 〉,

i.e. the Hecke operator T(n) is selfadjoint with respect to the Petersson scalar product.

Proof. Without loss of generality we may assume k ≥ 12. Let f ∈ Sk(Γ) and let a(m)
(m ∈ N≥1 denote the Fourier coefficients of f . Then, also f |T(n) ∈ Sk(Γ); let a′(m)
(m ∈N≥1 denote the Fourier coefficients of f |T(n).
By Proposition 5.13, it suffices to prove the assertion for g being equal to the Poincaré
series Pm,k with m ∈N≥1. We compute

〈 f |T(n), Pm,k 〉 =
(k− 2)!
(4πm)k−1 a′(m)

=
(k− 2)!
(4πm)k−1 ∑

d | (m,n)
dk−1a

(mn
d2

)
=

(k− 2)!
(4πm)k−1 ∑

d | (m,n)
dk−1 (4π mn

d2 )
k−1

(k− 2)!
〈 f , Pmn

d2 ,k 〉

= 〈 f , ∑
d | (m,n)

nk−1

dk−1 Pmn
d2 ,k〉.
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Here, for the first equality we used Proposition 5.13, for the second equality we used
(5.2), and for the third equality we used again Proposition 5.13. The proof is complete by
showing that

Pm,k|T(n) = ∑
d | (m,n)

nk−1

dk−1 Pmn
d2 ,k,

for m, n ∈N≥1. This can be shown similarly as for the Eisenstein series Ek, and is left as
exercise for the reader. �

Proposition 5.20. The vector space Sk(Γ) has a basis consisting of Hecke eigenforms.

Proof. The existence of a basis of Sk(Γ) of Hecke eigenforms follows by known facts from
linear algebra (spectral theory), sinceH is a commutative algebra, consisting of self-adjoint
operators. �

More precicely: we may decompose Sk(Γ) as a direct sum of eigenspaces Vj for the Hecke
operators T(n). Let f = ∑ a(n)qn ∈ Vj, f 6= 0. For the first Fourier coefficient a′(1) of
f | T(n), we have

a′(1) = a(n).

Also f | T(n) = λn f for some eigenvalue λn of T(n) which is determined by Vj, so

a(n) = λna(1).

This implies a(1) 6= 0, since otherwise f = 0, and if we normalize f so that a1 = 1. We
then have

a(n) = λna(1).

and f is completely determined by the sequence of Hecke eigenvalues λn for Vj. It follows
that every element of Vj is a multiple of f , so dim(Vj) = 1 and the eigenforms in Sk(Γ)
form a basis.

Theorem 5.21 The vector space Sk(Γ) can be written as a direct sum of one-dimensional
eigenspaces for the Hecke operators T(n) and has a unique basis of eigenforms f , where
each a(n) is the eigenvalue of T(n) on the 1-dimensional subspace generated by f .

5.2 Hecke Operators forMk(Γ0(N))

In the previous section, we have studied Hecke operators for SL2(Z) = Γ0(1). In this
section, we mention some results for Γ0(N) with N ≥ 1.

From the previous section, we recall (see in particular Corollary 5.5) that

Proposition 5.22. (i) Let f ∈ Sk(Γ0(1)) and p be a prime. Then, the m-th Fourier coeffi-
cient a′(m) of f | T(p) (m ∈N) satisfies the identity

a′(m) = a(mp) + pk−1a
(

m
p

)
,

where we have set a(m
p ) := 0, if m

p 6∈ Z.
(ii) Let f ∈ Sk(Γ0(1)) and let m, n ∈ N be relatively prime. Then, the m-th Fourier
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coefficient a′(m) of f | T(n) satisfies the identity

a′(m) = a(mn).

In particular
a′(1) = a(n).

Remark. All these results also hold f ∈ Sk(Γ0(N)), if we restrict to Hecke operators T(n)
with (n, N) = 1, which is all that we require, and the key result

a′(1) = a(n).

holds in general.

Remark. For p | N, the definition of T(p) (and T(n) for p | n) needs to change and the
formulas in Proposition 5.22 must be modified. The definition of the Hecke operators is
more complicated (in particular, it depends on the level N), but some of the formulas are
actually simpler (for example, for p | N we have T(pr) = T(p)r).

Also, we have seen

Theorem 5.23 The vector space Sk(Γ) can be written as a direct sum of one-dimensional
eigenspaces for the Hecke operators T(n) and has a unique basis of eigenforms f , where
each a(n) is the eigenvalue of T(n) on the 1-dimensional subspace generated by f .

An analoge of Theorem 5.23 doesn’t hold for Sk(Γ0(N)). We need to restrict our attention
to the Hecke operators T(n) with (n, N) = 1 (when n and N have a common factor T(n)
is not necessarily a Hermitian operator with respect to the Petersson inner product).
We can then proceed as above to decompose Sk(Γ0(N)) into subspaces whose elements
are simultaneous eigenvectors for all the T(n) with (n, N) = 1, but these subspaces need
not be one-dimensional.
In order to ensure this, we restrict our attention to a particular subspace of Sk(Γ0(N)). We
recall that a cusp form f ∈ Sk(Γ0(N)) is an oldform if it also lies in Sk(Γ0(M)) for some
M|N, which is a subspace of Sk(Γ0(N)). The oldforms in Sk(Γ0(N)) generate a subspace

Sold
k (Γ0(N)).

Definition 5.24. Let f , g ∈ Mk(Γ0(N)), where at least one of them is a cusp form. Then,
the Petersson scalar product of f and g is defined by

〈 f , g〉 :=
∫

Γ0(N)\H

f (z)g(z)Im(z)kµhyp(z),

where z = x + iy and µhyp(z) = dxdy/y2.

Definition 5.25. We define Snew
k (Γ0(N)) to be the orthogonal complement of Sold

k (Γ0(N))
with respect to the Petersson inner product, so that

Sk(Γ0(N)) = Sold
k (Γ0(N))⊕ Snew

k (Γ0(N)).

The eigenforms in Snew
k (Γ0(N)) are called newforms.
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Remark. One can show that the Hecke operators T(n) with (n, N) = 1 preserve both
Sold

k (Γ0(N)) and Snew
k (Γ0(N)). If we then decompose Snew

k (Γ0(N)) into eigenspaces with
respect to these operators, the resulting eigenspaces are all one-dimensional, moreover,
each is actually generated by an eigenform (a simultaneous eigenvector for all the T(n),
not just those with (n, N) = 1 that we used to obtain the decomposition); this is a famous
result of Atkin and Lehner. Thus Theorem 5.23 remains true if we simply replace Sk(Γ0(1))
by Snew

k (Γ0(N)).

At the end of this section, let us collect some facts for k = 2 und S2(Γ0(N)). The Petersson
scalar product of f , g ∈ S2(Γ0(N)) is given by

〈 f , g〉 :=
∫

Γ0(N)\H

f (z)g(z)dxdy,

where z = x + iy.

For n ∈ Z, the Hecke operators T(n) are defined as follows:

Definition 5.26. Let p be a prime. If p - N, we set

f |T(p)(z) :=
1
p

p−1

∑
j=0

f
(

z + j
p

)
+ p f (pz).

If p | N, we set

f |T(p)(z) :=
1
p

p−1

∑
j=0

f
(

z + j
p

)
.

These operators act linearly on S2(Γ0(N)) and we have

Proposition 5.27. If p - N, we have

f |T(p)(z) = ∑
p|n

a(n)qn/p + p ∑
n≥1

a(n)qpn.

If p | N, we have
f |T(p)(z) = ∑

p|n
a(n)qn/p.

Definition 5.28. Let p be a prime. For n > 0, we set

T(pn+1)(z) := T(p)(z)T(pn)(z)− pT(pn−1)(z)

If n = ∏j p
ej
j is a prime factorization, we set

f |T(n)(z) := ∏
j

T(p
ej
j )(z).

Definition 5.29. We define the Hecke AlgebraH of S2(Γ0(N)) as Z[T(1), T(2), T(3), . . .].

Remark. Let M ∈ N>0 with M | N and let f ∈ S2(Γ0(M)). Let d ∈ N>0 with d | N
M .
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Then, we have seen that f (dz) ∈ S2(Γ0(N)). The map

βd : S2(Γ0(M))→ S2(Γ0(N)), f (z) 7→ f (dz)

called the d-degeneracy map from level M. On Fourier coefficients, we have

βd : S2(Γ0(M))→∈ S2(Γ0(N)),
∞

∑
n=1

a(n)qn 7→
∞

∑
n=1

a(n)qdn.

Remark. The old subspace Sold
2 (Γ0(N)) is then the subspace of cusp forms that are images

of degeneracy maps from all levels M | N.

Theorem 5.30 — (Atkin–Lehner). We have

S2(Γ0(N)) = Sold
2 (Γ0(N))⊕λ C fλ,

where the sum is taken over all algebra homomorphisms λ : H → C, corresponding to
eigenforms in Snew

2 (Γ0(N)), and

fλ =
∞

∑
n=1

λ(T(n))qn.

Remark. The simultaneous eigenvector fλ is sometimes simply called newform of level N.





6. Appendix: Eisenstein series

Definition 6.1. Let k ≥ 4 be an even integer. Then the series

Gk(z) = ∑
(m,n)∈Z2

(m,n) 6=(0,0)

1
(mz + n)k =: ∑′

(m,n)∈Z2

1
(mz + n)k

is called Eisenstein series of weight k.

Lemma 6.2. The series

∑′

(m,n)∈Z2

1
(m2 + n2)s

converges for real s > 1.

Proof. Since all terms are positive, it suffices to prove the convergence of

∞

∑
m=1

m−1

∑
n=1

1
(m2 + n2)s ,

since the m < n terms give the same contribution to the sum as the m > n terms and
m = n leads to

∞

∑
m=1

1
(2m2)s =

1
2s ζ(2s),

where ζ(·) denotes the Riemann zeta function.
So, let m ≥ 1. Then

m−1

∑
n=1

1
(m2 + n2)s ≤

(m− 1)
m2s <

1
m2s−1 .

Therefore
∞

∑
m=1

m−1

∑
n=1

1
(m2 + n2)s <

∞

∑
m=1

1
m2s−1 = ζ(2s− 1).
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Hence, the series under consideration converges absolutely for 2s− 1 > 1 (⇐⇒ s > 1).
This proves the claim. �

Proposition 6.3. Let k ≥ 4 be an even integer. Then, the series Gk(z) converges absolutely
and locally uniformly on H, hence it defines a holomorphic function Gk : H −→ C. For
any γ =

(
a b
c d

)
∈ SL2(Z), we have

Gk(γz) = (cz + d)kGk(z)

and therefore Gk(z) is a weak modular form of weight k for SL2(Z).

Proof. It suffices to show that the series defining Gk(z) converges absolutely and locally
uniformly on

Rδ,C := {z = x + iy ∈H| |x| ≤ C, y > δ}
for all δ > 0, C > 0 (since, for C → ∞ and δ→ 0, the interior of this set fills all of H).
We will show that for all δ > 0, C > 0, there exists ε > 0 such that for all m, n ∈ R and all
z ∈ Rδ,C we have

|mz + n|2 ≥ ε(m2 + n2).

This follows from the following inequality: for δ > 0, C > 0 there exists ε > 0 such that
for all m, n ∈ R with m2 + n2 = 1 and all z ∈ Rδ,C:

|mz + n|2 ≥ ε

(just divide m and n by
√

m2 + n2). For m = n = 0, the inequality is trivial.
For z = x + iy ∈ Rδ,C we get

|mz + n|2 = (mx + n)2 + (my)2 > (mx + n)2 + m2δ2 > 0.

Since the set {(m, n, x) ∈ R3|m2 + n2 = 1, |x| ≤ C} is compact, the continuous function
(mx + n)2 + m2δ2 attains its minimum. We choose ε to be this minimum.
Therefore, we have the bound

∑′

(m,n)∈Z2

∣∣∣ 1
(mz + n)k

∣∣∣ ≤ 1
εk/2 ∑′

(m,n)∈Z2

1
(m2 + n2)k/2 < ∞

for all z ∈ Rδ,C, using Lemma 6.2 and recalling that k/2 > 1. This proves the convergence
claim.

Now, for γ =
(

a b
c d

)
∈ SL2(Z), we compute (by reordering in the 4th step)

Gk(γz)(cz + d)−k = ∑′

(m,n)∈Z2

1
(m az+b

cz+d + n)k
(cz + d)−k

= ∑′

(m,n)∈Z2

1
(m(az + b) + n(cz + d))k

= ∑′

(m,n)∈Z2

1
((ma + nc)z + (mb + nd))k

= ∑′

(m′,n′)∈Z2

1
(m′z + n′)k

= Gk(z).

This finishes the proof. �
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Remark. The series Gk(z) is a modular form for SL2(Z), since in this case being "holo-
morphic at the cusps of SL2(Z)" means that the q-series of Gk(z) is of the form

Gk(z) =
∞

∑
n=0

anqn.

We will now compute the q-series of Gk(z). To do this, we will use the following facts.
Remark. Let k ≥ 4 be an even integer. Due to the absolute convergence, we can write

Gk(z) = 2ζ(k) + 2
∞

∑
m=1

∞

∑
n=−∞

1
(mz + n)k ,

where ζ(·) denotes the Riemann zeta function, and we have the identities (for a proof, see
Proposition 6.8)

ζ(2) =
π2

6
, ζ(4) =

π2

90
, ζ(6) =

π6

945
.

Lemma 6.4. Let k ≥ 2 be an integer. Define, for n ∈N, the powers-of-divisor-sum

σk−1(n) := ∑
d|n

1≤d≤n

dk−1. (6.1)

Then, the series
∞

∑
n=1

σk−1(n)qn (q = e2πiz)

defines a holomorphic function on H and equals

∞

∑
n=1

∞

∑
m=1

nk−1qmn.

Proof. We have σk−1(n) ≤ nnk−1 ≤ nk. To prove the first claim, it suffices to prove that
∑∞

n=1 nkqn defines a holomorphic function on H. This is easily verified by using the ratio
test. The second claim follows by reordering and collecting all the terms with the same
mn. �

Lemma 6.5. Let k ≥ 2 be an integer. Then, the following identity of absolutely and
uniformly converging series holds:

(−1)k
∞

∑
n=−∞

1
(z + n)k =

1
(k− 1)!

(2πi)k
∞

∑
n=1

nk−1qn.

Proof. First let k = 2. We have to show that

∞

∑
n=−∞

1
(z + n)2 = (2πi)2

∞

∑
n=1

nqn. (6.2)

We first recall that, for z ∈ C \Z, we have

π cot(πz) =
1
z
+

∞

∑
n=1

(
1

z + n
+

1
z− n

)
(6.3)
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and the series converges absolutely and locally uniformly. Using the series expansion
(6.3), we then compute

d
dz

(π cot(πz)) = − 1
z2 −

∞

∑
n=1

(
1

(z + n)2 +
1

(z− n)2

)
= −

∞

∑
n=−∞

1
(z + n)2 .

Further, we have

π cot(πz) = π
cos(πz)
sin(πz)

= πi
eπiz + e−πiz

eπiz − e−πiz

= πi
q + 1
q− 1

= πi− 2πi
1

1− q

= πi− 2πi
∞

∑
n=0

qn.

Hence
d
dz

π cot(πz) = −2πi
∞

∑
n=1

nqn−12πi q = −(2πi)2
∞

∑
n=1

nqn.

This proves (6.2).

The case k ≥ 4 is obtained by differentiating the identity in (6.2) k− 2 times. �

Collecting the above facts, we can prove the following proposition, yielding in particular
the Fourier expansion of Gk(z) for k ≥ 4.

Proposition 6.6. Let k ≥ 2 be an even integer. We have the following identity of holo-
morphic functions on H:

2ζ(k) + 2
∞

∑
m=1

(
∞

∑
n=−∞

1
(mz + n)k

)
= 2ζ(k) + 2

(2πi)k

(k− 1)!

∞

∑
n=1

σk−1(n)qn.

If k ≥ 4, this function equals Gk(z). If k = 2, this function will be denoted by P(z) and
is called Ramanujan P-function.
In particular, we have

P(z) = −8π2

(
− 1

24
+

∞

∑
n=1

σ1(n)qn

)

G4(z) =
16
3

π4

(
1

240
+

∞

∑
n=1

σ3(n)qn

)

G6(z) = −
16
15

π6

(
− 1

504
+

∞

∑
n=1

σ5(n)qn

)
,

recalling that ζ(2) = π2

6 , ζ(4) = π4

90 and ζ(6) = π6

945 (cf. Proposition 6.8).

Proof. We consider the left hand side and apply the result of Lemma 6.5 with z = mz (and
observe that for even k the factor (−1)k can be omitted), namely the following identity of
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absolutely and uniformly converging series

∞

∑
n=−∞

1
(mz + n)k =

(2πi)k

(k− 1)!

∞

∑
n=1

nk−1e2πin(mz)

=
(2πi)k

(k− 1)!

∞

∑
n=1

nk−1qmn.

We get

2ζ(k) + 2
∞

∑
m=1

∞

∑
n=−∞

1
(mz + n)k = 2ζ(k) + 2

(2πi)k(−1)k

(k− 1)!

∞

∑
m=1

∞

∑
n=1

nk−1qmn

= 2ζ(k) + 2
(2πi)k(−1)k

(k− 1)!

∞

∑
n=1

∞

∑
m=1

nk−1qmn,

where for the last equality we used that the series is absolutely converging. Applying
Lemma 6.4, namely the identity

∞

∑
n=1

∞

∑
m=1

nk−1qmn =
∞

∑
n=1

σk−1(n)qn.

yields the claim. �

Remark. If k = 2, we are not allowed to reorder the series on the left hand side in Propo-
sition 6.6.

Finally, we recall the definition of the Bernoulli numbers.

Definition 6.7. We consider the function

z
ez − 1

=
z

∑∞
n=1

zn

n!
=

1
∑∞

n=0
zn

(n+1)!

which is thus holomorphic at 0. We write its Taylor series of z/(ez − 1) at z = 0 in the
following form

z
ez − 1

=
∞

∑
k=0

Bk

n!
zn.

The coefficients Bk (k ∈N) arising in this expansion are called Bernoulli numbers.

Remark. One easily proves the relation(
n + 1

1

)
Bn +

(
n + 1

2

)
Bn−1 + . . . +

(
n + 1

n

)
B1 +

(
n + 1
n + 1

)
B0 = 0.

Hence
B0 = 1, B1 = −1

2
, B2 =

1
6

, B3 = 0, B4 = − 1
30

, B6 =
1
42

and Bk = 0 for all odd k ≥ 3.

Proposition 6.8. — Euler. For k ∈N, k > 0, we have

ζ(2k) =
(−1)k+1(2π)2k

2(2k)!
B2k. (6.4)
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In particular, we have

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
.

Proof. The idea of proof consists in comparing two different series representations of the
function πz cot(πz). We start with the identity given in (6.3) (multiplied with z), namely

πz cot(πz) = 1 +
∞

∑
n=1

(
z

z + n
+

z
z− n

)
,

for z ∈ C \Z. The above series is absolutely and locally uniformly convergent on C \Z.
Hence, we get

πz cot(πz) = 1 + 2z2
∞

∑
n=1

1
z2 − n2 .

Using the geometric series, for z in a neighbourhood of 0, we can write

1
z2 − n2 = − 1

n2
1

1− (z2/n2)
= − 1

n2

∞

∑
k=0

(
z2

n2

)k

and we obtain

πz cot(πz) = 1 + 2z2
∞

∑
n=1

(
− 1

n2

∞

∑
k=0

(
z2

n2

)k)
.

This series converges locally absolutely in a neighbourhood of 0, since for positive z 6∈ Z all
terms are positive. Therefore we can interchange the sums and we get the first expression

πz cot(πz) = 1− 2
∞

∑
k=0

(
∞

∑
n=1

1
n2k+2

)
z2k+2

= 1− 2
∞

∑
k=1

(
∞

∑
n=1

1
n2k

)
z2k

= 1− 2
∞

∑
k=1

ζ(2k)z2k.

A second expression for πz cot(πz) is obtained by writing

cot(πz) = i
eπiz + e−πiz

eπiz − e−πiz = i
e2πiz + 1
e2πiz − 1

= i +
2i

e2πiz − 1
,

whence
πz cot(πz) = πiz +

2πiz
e2πiz − 1

.

The last term can now be written in terms of the Bernoulli numbers, namely, we have

πz cot(πz) = πiz +
∞

∑
k=0

Bk

k!
(2πiz)k

= 1 +
∞

∑
k=1

B2k

(2k)!
(2πiz)2k

= 1 +
∞

∑
k=1

B2k

(2k)!
22kπ2k(−1)kz2k,

where we used that B0 = 1, B1 = − 1
2 and Bk = 0 for odd k ≥ 3. Comparing the coefficients

now yields the assertion. �
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