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Abstract

We investigate valued fields which admit a valuation basis. Given
a countable ordered abelian group G and a real closed or algebraically
closed field F with subfield K, we give a sufficient condition for a
valued subfield of the field of generalized power series F ((G)) to admit
a K-valuation basis. We show that the field of rational functions F (G)
and the field F (G)∼ of power series in F ((G)) algebraic over F (G)
satisfy this condition. It follows that for archimedean F and divisible
G the real closed field F (G)∼ admits a restricted exponential function.

1 Introduction

Before describing the motivation for this research, and stating the main re-
sults obtained, we need to briefly remind the reader of some terminology and
background on valued and ordered fields (see [KS1] for more details).

Definition 1. Let K be a field and V be a K-vector space. Let Γ be a totally
ordered set, and ∞ be an element larger than any element of Γ. A surjective
map v : V → Γ ∪ {∞} is a valuation on V if for all x, y ∈ V and r ∈ K, the
following holds: (i) v(x) = ∞ if and only if x = 0, (ii) v(rx) = v(x) if r 6= 0,
(iii) v(x− y) ≥ min{v(x), v(y)}.
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An important example arises from any ordered abelian group G. Set
|g| := max{g,−g} for g ∈ G; for non-zero g1, g2 ∈ G, say g1 is archimedean
equivalent to g2 if there exists an integer r such that r |g1| ≥ |g2| and r |g2| ≥
|g1|. Denote by [g] the equivalence class of g 6= 0, and by v the natural
valuation on G, that is, v(g) := [g] for g 6= 0, and v(0) := ∞. If G is
divisible, then G is a valued Q-vector space.

Definition 2. We say that {bi : i ∈ I} ⊆ V is K-valuation independent if
whenever ri ∈ K such that ri 6= 0 for only finitely many i ∈ I,

v

(∑
i∈I

ribi

)
= min

{i∈I : ri 6=0}
v(bi) .

A K-valuation basis is a K-basis which is K-valuation independent.

We now recall some facts about valued fields (see [Ri] for more details).

Definition 3. Let K be a field, G an ordered abelian group and ∞ an
element greater than every element of G.

A surjective map w : K → G ∪ {∞} is a valuation on K if for all a, b ∈ K
(i) w(a) = ∞ if and only if a = 0, (ii) w(ab) = w(a) + w(b), (iii)
w(a− b) ≥ min{w(a), w(b)}.
We say that (K,w) is a valued field. The value group of (K, w) is wK := G.
The valuation ring of w is OK := {a : a ∈ K and w(a) ≥ 0} and the
valuation ideal is I(K ) := {a : a ∈ K and w(a) > 0}. We denote by U(K )
the multiplicative group 1 + I(K ) (the group of 1-units); it is a subgroup of
the group of units (invertible elements) of OK . If U(K ) is divisible, that is,
closed under n-th roots for all integers n > 1, it is a valued Q-vector space
under the valuation wU defined by wU(a) = w(1− a).

We denote by P the place associated to a valuation w; we denote the
residue field by KP = OK/I(K ). (We shall omit the K from the above
notations whenever it is clear from the context.) For b ∈ OK , bP or bw is
its image under the residue map. For a subfield E of K, we say that P is
E-rational if P restricts to the identity on E and KP = E.

A valued field (K,w) is henselian if given a polynomial p(x) ∈ O[x], and
a ∈ Kw a simple root of the reduced polynomial p(x)w ∈ Kw[x], we can
find a root b ∈ K of p(x) such that bw = a.
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There are important examples of valued fields. If (K, +,×, 0, 1, <) is an
ordered field, we denote by v its natural valuation, that is, the natural valu-
ation v on the ordered abelian group (K, +, 0, <). (The set of archimedean
classes becomes an ordered abelian group by setting [x] + [y] := [xy].) Note
that the residue field in this case is an archimedean ordered field, and that v
is compatible with the order, that is, has a convex valuation ring.

Given an ordered abelian group G and a field F , denote by F ((G)) the
(generalized) power series field with coefficients in F and exponents in G;
elements of F ((G)) take the form f =

∑
g∈G agt

g with ag ∈ F and well-
ordered support {g ∈ G : ag 6= 0}. We define g(f) = ag (the coefficient of
f corresponding to the exponent g), coeffs(f) = {ag : g ∈ G}, expons(f) =
{g ∈ G : ag 6= 0}, and the minimal support valuation to be vmin(f) =
min support(f). By convention, vmin(0) = ∞.

Definition 4. Let E be a field and G an ordered abelian group. Given P a
place on E, we define the ring homomorphism:

ϕP : OE((G)) → (EP )((G));
∑

g

agt
g 7→

∑
g

(agP ) tg .

1.1 Motivation

Brown in [B] proved that a valued vector space of countable dimension ad-
mits a valuation basis. This result was applied in [KS1] to show that every
countable ordered field K, henselian with respect to its natural valuation,
admits a restricted exponential function, that is, an order preserving isomor-
phism from the ideal of infinitesimals (I(K ), +, 0) onto the group of 1-units
(U(K ),×, 1). We address the following question: does every ordered field
K, which is henselian with respect to its natural valuation, admit a restricted
exponential function? Let us consider the following illustrative example.

Example 5. Puiseux series fields: Let F be a real closed field. Then the
function field F (t) becomes an ordered field when we set 0 < t < a for all
a ∈ F . Define the real closed field of (generalized) Puiseux series over F to
be

PSF(F ) =
⋃

n∈N
F ((t

1
n )) ,

and let F (t)∼ denote the real closure of F (t). We then have the following
containments of ordered fields:

F (t) ⊂ F (t)∼ ⊂ PSF(F ) ⊂ F ((Q)) .
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(Note that throughout this paper, when we write “⊂”, we mean “(”.) Now,
since F has characteristic 0, the power series field K = F ((Q)) admits a
restricted exponential exp with inverse log. These are defined by

exp(ε) =
∞∑
i=0

εi

i!
and log(1 + ε) =

∞∑
i=1

(−1)i+1 εi

i
where ε ∈ I(K ) .

(See [A].) The same argument shows that each term F ((t
1
n )) in PSF(F )

admits a restricted exponential. Therefore, so does PSF(F ) itself. We now
turn to the question of whether F (t)∼ admits a restricted exponential. Note
that one could not just take the restriction of the exponential map exp defined
above to the subfield F (t)∼ ⊆ F ((Q)). Indeed, it can be shown that the
map exp sends algebraic power series to transcendental power series, so the
restriction of the exponential map exp to F (t)∼ is not even a well-defined
map.

Following the strategy outlined at the beginning of this section, we shall
instead investigate whether the multiplicative group of 1-units and the valu-
ation ideal of F (t)∼ admit valuation bases.

It turns out that this question is interesting to ask for any valued field
(not only for ordered valued fields):

Definition 6. Given a valued field (L,w), define a w-restricted exponential
exp to be an isomorphism from (I(K ), +, 0) onto (U(K ),×, 1) which is w-
compatible, that is,

wa = w(1− exp(a)) .

Since U(K ) is endowed with the valuation wU given by wU(b) = w(1 − b),
this means that exp is valuation preserving.

Note that the same definitions as above render a vmin-restricted exponen-
tial exp with inverse log on every power series field F ((G)), for all fields F
of characteristic 0 and all ordered abelian groups G.

The main results are Theorem 2.1 and Theorem 2.2 (see Section 2). We
consider valued subfields L of a field of power series F ((G)), where F is
algebraically (or real) closed, and G is a countable ordered abelian group,
which satisfy the transcendence degree reduction property (TDRP) over a
countable ground field K (see Definitions 7 and 9; Section 2). We prove that
the additive group of L admits a valuation basis as a K-valued vector space.
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In particular, the valuation ideal of L admits a valuation basis as a K-valued
vector space. If the group of 1-units of L is divisible, we show that it admits a
valuation basis over the rationals. We exhibit some interesting intermediate
fields F (G) ⊆ L ⊆ F ((G)) satisfying the TDRP over K. For instance,
the field of rational functions F (G) and the field F (G)∼ of power series in
F ((G)) algebraic over F (G) satisfy it (see Theorem 3.12 and Theorem 3.13).
We show that the class of fields satisfying the TDRP over K is closed under
adjunction of countably many elements of K((G)) — if L satisfies the TDRP
over K, then so does L(f1, f2, . . .) (see Theorem 3.15).

In particular, if F is an archimedean ordered real closed field, and G is a
countable divisible ordered abelian group, then the real closed field F (G)∼

admits a restricted exponential function. This gives a partial answer to the
original question posed.

It is interesting to note that similar arguments are used in Section 11, p. 35
of [A-D] to show that certain ordered fields admit a derivation function.

The paper is organized as follows. In Section 2, we give a detailed statement
of the main results. In Section 3, we work out several technical valuation
theoretic results, needed for the proofs of the main results. In Section 3.2,
we develop interesting tests to decide whether a generalized power series is
rational, or algebraic over the field of rational functions. In Section 3.3, we
discuss the TDRP in detail and prove Theorems 3.12, 3.13 and 3.15. Section 4
is devoted to the proofs of Theorems 2.1 and 2.2. Finally, in Section 5, we
apply the results to ordered fields and to the complements of their valuation
rings, and we provide counterexamples (see Remark 16) to a theorem of
Banaschewski ([BAN], Satz, p. 435).

It turns out that by assuming |F | ≤ ℵ1, one can provide elementary proofs
of Theorems 2.1 and 2.2 not requiring the technical machinery developed in
Sections 3 and 4. We provide details in Appendix A (Theorems A.1 and
A.2).

2 Main Results

In this paper, we will be particularly interested in subfields of F ((G)) sat-
isfying a certain closure property. We first provide a definition in the case
where F is algebraically closed.
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Definition 7 (TDRP — algebraic). Let F be an algebraically closed field, K
a countably infinite subfield of F and G a countable ordered abelian group.
We say that an intermediate field L, for

F (G) ⊆ L ⊆ F ((G)) ,

satisfies the transcendence degree reduction property (or TDRP) over K if:

1. whenever the intermediate field E, for K ⊆ E ⊆ F , is countable, then
E((G))∩L is countable; moreover, L is the union of the fields E((G))∩L
taken over such E;

2. whenever K ⊆ E ⊂ E ′ ⊆ F for algebraically closed intermediate fields
E, E ′ and E ′/E is a field extension of transcendence degree 1, then for
finitely many power series s1, . . . , sn in E ′((G))∩L, there exists an E-
rational place P of E ′ such that si ∈ OP ((G)) and ϕP (si) ∈ E((G))∩L
for all i;

3. for E, E ′, P as above, if {α} is a fixed transcendence basis of E ′/E, we
may assume that P sends α, α−1 to K.

Remark 8. The key point of the third axiom is that if P restricts to the
identity on some intermediate field K ⊆ K ′ ⊆ E ′ and is finite on some
element c algebraic over K ′(α), then cP is algebraic over K ′. Indeed, if c
is algebraic over K ′(α), then [K ′(α, c) : K ′(α)] < ∞ and hence [K ′(α, c)P :
K ′(α)P ] < ∞, which shows that cP is algebraic over K ′(α)P = K ′(αP ) =
K ′.

It turns out that many results for the real closed case are implied by those
for the algebraically closed case; hence, we make the following analogous
definition.

Definition 9 (TDRP — real algebraic). Let F be a real closed field, K a
countably infinite subfield of F , and G a countable ordered abelian group.
We say that an intermediate field L, for

F (G) ⊆ L ⊆ F ((G))

satisfies the transcendence degree reduction property over K if the interme-
diate field

F a(G) ⊆ L(
√−1) ⊆ F a((G))

does, where F a = F (
√−1) denotes the algebraic closure of F .
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Note that F a(G) = F (G)(
√−1) by part b) of Lemma 3.1 below.

Consider an algebraically or real closed field F and a countable ordered
abelian group G. We will exhibit later some interesting intermediate fields
F (G) ⊆ L ⊆ F ((G)) satisfying the TDRP over K. For instance, the field
of rational functions F (G) and the field F (G)∼ of power series in F ((G))
algebraic over F (G) satisfy it. Moreover, the class of fields satisfying the
TDRP over K is closed under adjunction of countably many elements of
K((G)) — if L satisfies the TDRP over K, then so does L(f1, f2, . . .).

Remark 10. Note that L(f1, f2, . . .) doesn’t necessarily have countable dimen-
sion over L, so we cannot resort to any generalization of Brown’s theorem
([B]) in this situation.

Our primary objective of this paper is to prove the following result.

Theorem 2.1 (Additive). Let F be an algebraically or real closed field, K a
countably infinite subfield of F and G a countable ordered abelian group. If
F (G) ⊆ L ⊆ F ((G)) is an intermediate field satisfying the TDRP over K,
then the valued K-vector spaces (L, +) and (I(L), +) admit valuation bases.

Note that this theorem refers to the valuation vmin. It induces a valuation wU
on the group (U(L),×) given by wU(a) = vmin(1−a). In the case of F being
a real closed field, this group is ordered, and wU coincides (up to equivalence)
with its natural valuation (see [KS1], Corollary 1.13). With respect to this
valuation wU , we also prove the following multiplicative analogue to the last
theorem.

Theorem 2.2 (Multiplicative). Let F be an algebraically or real closed field
of characteristic zero, and G a countable ordered abelian group. If F (G) ⊆
L ⊆ F ((G)) is an intermediate field satisfying the TDRP over Q and the
group (U(L),×) is divisible, then (U(L),×) is a valued Q-vector space and
admits a Q-valuation basis.

Note that these results are trivial whenever F is assumed to be countable;
by the TDRP axioms, L would be countable, and we could apply Brown’s
theorem ([B]). So, suppose F is uncountable. Our strategy then involves ex-
pressing uncountable objects, such as F , as the colimits of countable objects.
In particular, suppose we express F as the colimit of countable subfields, say
Kλ for indices λ in a directed set. (This is always possible; how we do it
will depend whether we may assume trdeg F ≤ ℵ1.) From this, it will follow
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that, in the additive situation, the group I(L) is the colimit of the countable
groups I(Kλ((G)) ∩ L); in the multiplicative situation, the group U(L) is
the colimit of the countable groups U(Kλ((G)) ∩ L).

We now restrict ourselves to the additive case; analogous remarks apply
to the multiplicative case. Since each I(Kλ((G)) ∩ L) is countable, we can
find a valuation basis for it by Brown’s theorem ([B]), say Bλ. If we are
fortunate enough that these valuation bases are consistent in the sense that
Bλ′ extends Bλ whenever λ < λ′, then we may take the colimit of the Bλ,
which will be our desired valuation basis of I(Kλ((G)) ∩ L). How are we to
choose the Bλ consistently? The answer lies in a generalization of Brown’s
theorem (Proposition 2.3 below), which follows from Corollary 3.6 in [KS2].

Definition 11. Let W ⊆ V be an extension of valued k-vector spaces with
valuation w. For a ∈ V , we say that a has an optimal approximation in W
if there exists a′ ∈ W such that for all b ∈ W , w(a′ − a) ≥ w(b− a). We say
that W has the optimal approximation property in V if every a ∈ V has an
optimal approximation in W .

The following proposition follows from Corollary 3.6 in [KS2]. (There,
the term “nice” is used for the optimal approximation property.)

Proposition 2.3. Let W ⊆ V be an extension of valued k-vector spaces. If
W has the optimal approximation property in V and dimk V/W is countable,
then any k-valuation basis of W may be extended to one of V .

We are then left to show that I(Kλ((G)) ∩ L) has the optimal approxi-
mation property in I(Kλ′((G)) ∩ L) whenever λ < λ′; this will occupy the
bulk of our arguments. Once we establish this, we are able to construct our
desired valuation bases inductively.

We conclude with two remarks concerning the two main theorems.

Remark 12. Note that the assumption that char F = 0 is necessary in Theo-
rem 2.2. If char F = p, then for any non-trivial element f ∈ U(L), we have
vmin(1−fp) = p ·vmin(1−f) 6= vmin(1−f). Hence, (U(L),×) does not admit
a valued Q-vector space structure, even if it is divisible.

Remark 13. Note that it can make a difference over which subfield we wish
to take a valuation basis. By the results of this paper, we know that R(t)
and R(t)∼ both admit Q-valuation bases. We claim they do not admit R-
valuation bases. Indeed, since R(t) and R(t)∼ have residue field R, if B is an
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R-valuation independent subset, then the elements of B have pairwise distinct
values. Therefore, |B| ≤ |Q| = ℵ0. On the other hand, the dimension of R(t),
as a vector space over R is uncountable (e.g., the subset {(1 − xt)−1}x∈R is
R-linearly independent).

Concerning the choice of the ground field, we also record the following obser-
vation (which is of independent interest). The proof is straightforward, and
we omit it.

Proposition 2.4. Let V be a valued K-vector space and k be a subfield of
K. If B denotes a K-valuation basis of V and B′ denotes a k-vector space
basis of K, then BB′ = {bb′ : b ∈ B, b′ ∈ B′} is a k-valuation basis of V .

3 Technical results and key examples

We isolate here some results common to the proofs of our main theorems;
note that the proofs of these results hold in every characteristic unless noted
otherwise. As an application, we then give examples of fields satisfying the
TDRP.

We start with a useful lemma. Its easy proof is similar to the well known
special case of rational function fields, so we leave it to the reader.

Lemma 3.1. Take an ordered abelian group G and an algebraic field exten-
sion L|K.
a) Suppose that L|K is normal. To every automorphism σ ∈ Gal(L|K)
define an automorphism σG of L(G)|K(G) by letting σ act on the coefficients
of the polynomials in L[G]. Then L(G)|K(G) is a normal algebraic extension,
and σ 7→ σG induces an isomorphism Gal(L|K) → Gal(L(G)|K(G)).
b) Suppose that L|K is finite. Then also L(G)|K(G) is finite, [L(G) :
K(G)] = [L : K], and every basis of L|K is also a basis of L(G)|K(G).

Corresponding statements hold for L((G))|K((G)), provided that L|K is fi-
nite.

3.1 Constructing places

A basic tool in this paper will be the existence of certain places; these will
often be used to decrease transcendence degrees.
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Proposition 3.2. Consider a tower of fields

K ⊆ E ⊆ E ′

where K is infinite and E ′/E is an extension of algebraically closed fields
with transcendence basis {α}. Suppose R is a subring of E ′ that is finitely
generated over E. Then there exists an E-rational place P of E ′ such that
the elements α and α−1 are sent to K and the place P is finite on R.

Proof. We assume without loss of generality that α, α−1 ∈ R; if not, sim-
ply adjoin them. We first exhibit a place of Quot R satisfying the stated
conditions.

There are infinitely many E-rational places P of Quot R sending α and
α−1 to K. Indeed, for each q ∈ K, we obtain the (α − q)-adic place Pq on
E[α] and therefore on Quot R by Chevalley’s place extension theorem. Note
that for q 6= q′, we necessarily have Pq 6= Pq′ .

Moreover, we may select some q such that Pq is finite on R. For suppose
R = E[c1, . . . , cn]. Since the Pq are trivial on E, they are necessarily finite on
any ci algebraic over E. On the other hand, for any ci transcendental over E,
the (1/ci)-adic place on E(ci) is the only one not finite on ci; by extension,
there are at most [Quot(R) : E(ci)] < ∞ places on Quot(R) not finite on
ci. Since of the infinitely many places Pq only finitely many map ci to ∞ for
some i, we may fix a q such that Pq is finite on all ci and thus finite on R.

Henceforth, write P to denote this place. By Chevalley’s place extension
theorem again, P extends from Quot R to a place on E ′ having the desired
properties.

Intuitively, the place P given by Proposition 3.2 is used to replace a field
subextension of K in F of transcendence degree d by one of transcendence
d − 1. We may also make use of this tool for power series via the induced
ring homomorphism ϕP . We now present a finiteness condition that enables
us to apply this previous result. For its proof we will need a lemma and two
definitions.

Lemma 3.3. Let (M, v) be a henselian valued field with divisible value group
and algebraically closed residue field.
a) If char(Mv) = 0, then M is algebraically closed.
b) If char(M) = p > 0, M is perfect and closed under Artin-Schreier exten-
sions (i.e., every polynomial Xp−X − a with a ∈ M has a root in M), then
M is algebraically closed.
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Proof. Take any henselian valued field (M, v) with divisible value group and
algebraically closed residue field and satisfying a) or b). Extend v to the
algebraic closure Ma and denote this extension again by v. If char(Mv) = 0,
then char(M) = 0, so under all of our assumptions, M is perfect. We consider
the ramification theory of the normal extension Ma|M ; for the basic facts of
general ramification theory, we refer the reader to [E]. We denote by M r the
ramification field of the extension Ma|M with respect to the chosen extension
of v. Suppose that M r 6= M and choose a non-trivial finite subextension
M ′|M of M r|M . By (22.2) of [E], the Fundamental Equality

[M ′ : M ] = (vM ′ : vM)[M ′v : Mv] (1)

holds. But by our assumptions on value group and residue field, (vM ′ :
vM)[M ′v : Mv] = 1, that is, M ′|M must be trivial. This contradiction
shows that M r = M .

If char(Mv) = 0, then M r = Ma by Theorem (20.18) of [E], showing
that M is algebraically closed. Now assume that b) holds. As M = M r

and M is assumed to be perfect, it follows from Theorem (20.18) of [E] that
Ma|M is a p-extension. Suppose it is not trivial, and pick a non-trivial
finite normal subextension M ′|M . It follows from the general theory of p-
groups (cf. [H], Chapter III, §7, Satz 7.2 and the following remark) via Galois
correspondence that M ′|M is a tower of Galois extensions of degree p. But
every Galois extension of degree p of a field of characteristic p is an Artin-
Schreier extension (cf. Theorem 6.4 of [L]). But by assumption, M does not
have such extensions. Hence, M ′ = M , and this contradiction shows that
M = Ma, i.e., M is algebraically closed.

Definition 14. Let (M, v) be a valued field. A contraction Φ on a subset S
of M is a map S → S such that

v(Φa− Φb) > v(a− b) for all a, b ∈ S such that a 6= b .

By a finitely generated ring we mean a ring that is a finitely generated ring
extension of its prime ring.

Theorem 3.4. Take an algebraically closed field K and a divisible ordered
abelian group H. Set

M =
⋃
{R((∆)) : R a finitely generated subring of K

and ∆ a finitely generated subgroup of H}
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if char(K) = 0; for char(K) = p > 0, we replace R((∆)) by R1/p∞(( 1
p∞∆)),

where R1/p∞ denotes the closure of R under p-th roots, and 1
p∞∆ denotes the

p-divisible hull of ∆. Then M is an algebraically closed subfield of K((H)).

Proof. Let v denote the minimal support valuation vmin on K((H)), as well
as its restriction to M . We first establish that (M, v) is a henselian subfield.
It is easily verified that M is in fact a field. Denote by A the prime ring of
K. If the coefficients of r, r′ ∈ M are contained in finitely generated subrings
R,R′ ⊂ K, respectively, and the exponents of r, r′ are contained in finitely
generated subgroups ∆, ∆′ ⊂ H, respectively, then the coefficients of r − r′

belong to the finitely generated ring A[R,R′] ⊂ K, and the exponents of
r− r′ belong to the finitely generated group ∆ + ∆′ ⊂ H. If r′ 6= 0, then the
coefficients of r/r′ belong to the finitely generated ring A[R,R′, 1/c], where c
is the leading coefficient of r′, and the exponents of r/r′ belong to the finitely
generated group ∆ + ∆′ ⊂ H.

Being the union of power series rings, M is henselian. For the convenience
of the reader, we include a short proof. Take a monic polynomial Q ∈ OM [t]
and an element r ∈ OM such that vQ(r) > 0 and vQ′(r) = 0. Write Q(t) =
a0 + a1t + · · ·+ antn, and let c be the leading coefficient of Q′(r). We claim
that r can be refined to a root f with coefficients in the ring S generated by
1/c and the coefficients of the ai and of r. By the Newton Approximation
Method, we obtain a contraction:

Φ : r + I(S((G))) → r + I(S((G)))

x 7→ x−Q(x)/Q′(r) .

Since I(S((G))) is spherically complete, Φ has a fixed point, which is a root
of Q in r + I(S((G))). Thus, M is henselian.

The value group vM = H is divisible and the residue field Mv = K is alge-
braically closed. Hence if char(K) = 0, then M is algebraically closed by part
a) of Lemma 3.3. Now assume that char(K) = p > 0. Since R1/p∞(( 1

p∞∆))
is closed under p-th roots for any subring R of K and any subgroup ∆ of
H, we find that M is perfect. Take an element in any power series ring
R1/p∞(( 1

p∞∆)), where R is a finitely generated subring of K and ∆ a finitely
generated subgroup of H. Write it as a + r + b where a is a power series
with only negative exponents, r is an element of R1/p∞ , and b is a power
series with only positive exponents. Since vb > 0, Xp −X − b has a root β
in the henselian field M . Further, take ρ to be a root of Xp −X − r in the
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algebraically closed field K; since R is a finitely generated subring of K, so
is R[ρ], and thus ρ ∈ M . Finally, the sum

α =
∞∑
i=1

a1/pi

is again an element of R1/p∞(( 1
p∞∆)), and it is a root of Xp −X − a. So we

have that α+ρ+β ∈ M , and (α+ρ+β)p−(α+ρ+β) = αp−α+ρp−ρ+βp−β =
a+r+ b. This proves that M is closed under Artin-Schreier extensions. Now
it follows from part b) of Lemma 3.3 that M is algebraically closed.

In order to obtain our desired auxiliary result from this theorem, we need
another lemma.

Lemma 3.5. Take an algebraic field extension K|K and a finitely generated
ring R ⊆ K such that K(R)|K is separable. Then there exists a finitely
generated ring R ⊆ K which contains R∩K.

Proof. By our assumptions, K(R)|K is a finite separable extension. Hence
there is a primitive element a such that K(R) = K(a). Choose a finitely
generated subring R of K such that the generators of R and the coefficients
of the minimal polynomial of a over K are contained in R. Then R ⊆ R[a].
Every element in R[a] can be written in a unique way as a polynomial in a
with coefficients in R and degree less than [K(a) : K]. It is an element of K
only if it is a constant polynomial in a, i.e., equal to an element in R. This
proves that R∩K ⊆ R[a] ∩K = R.

Corollary 3.6. For K a field and G an ordered abelian group, let f ∈ K((G))
be algebraic over K(G). Then there exists a finitely generated subring R ⊆
K and a finitely generated subgroup ∆ ⊆ G such that coeffs f ⊆ R and
expons f ⊆ ∆ if char(K) = 0, and coeffs f ⊆ R1/p∞ and expons f ⊆ 1

p∞∆ if

char(K) = p > 0.

Proof. Let K be the algebraic closure of K and H be the divisible hull of
G. Since f is algebraic over K(G), it is also algebraic over K(H). Hence
by Theorem 3.4, there is a finitely generated subring R ⊆ K and a finitely
generated subgroup Γ ⊆ H such that f ∈ R((Γ)) if char(K) = 0, or f ∈
R1/p∞(( 1

p∞Γ)) if char(K) = p > 0. If char(K) = p > 0 then we can find some

integer µ ≥ 0 such that K(Rpµ
)|K is separable; then we set R1 = Rpµ

, and
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R1 = R if char(K) = 0. By the foregoing lemma there is a finitely generated
subring R ⊆ K such that R1∩K ⊆ R. As a subgroup of a finitely generated
abelian group, also ∆ = Γ ∩G is a finitely generated group.

For char(K) = 0 it follows immediately that coeffs f ⊆ R and expons f ⊆
∆. If char(K) = p > 0 and c ∈ coeffs f ⊆ R1/p∞ ∩ K = R1/p∞

1 ∩ K, then
cpν ∈ R1 ∩ K ⊆ R for some integer ν ≥ 0, and thus c ∈ R1/p∞ . It is clear
that expons f ⊆ 1

p∞∆. This proves our assertion.

Note that in positive characteristic, the statement that coeffs f ⊆ R1/p∞

cannot be strengthened to coeffs f ⊆ R. Indeed, let K = Fp(y) and G = Q.
Then the power series

f(t) =
∑
i≥1

y1/pi

t−1/pi

satisfies the relation f p − f − yt−1 and is therefore algebraic over K(Q); on
the other hand, the coefficient set of f(t) is {y1/pi

: i ≥ 1}, which is clearly
not contained in any ring finitely generated over K = Fp(y).

We now apply our previous results to rational and algebraic series.

Proposition 3.7. Let E ′/E be an extension of algebraically closed fields with
transcendence basis {α} and take an infinite subfield K of E.
a) Given finitely many power series s1, . . . , sn ∈ E ′(G) ⊆ E ′((G)), there
exists an E-rational place P of E ′ sending α, α−1 to K such that si ∈ OP ((G))
and ϕP (si) ∈ E(G) ⊆ E((G)) for each i.
b) We have that E((G)) ∩ E ′(G) = E(G).

Proof. a): For each i, take fi, gi ∈ E ′[G] such that si = fi/gi; without loss
of generality, assume that the gi are monic. Observe that coeffs(si, fi, gi) is
contained in the ring R generated by the finitely many coefficients of the fi

and gi. Hence by Proposition 3.2, there exists an E-rational place P of E ′

sending α, α−1 to K that is finite on R. Since each gi is monic, the ϕP (gi)
are non-zero; hence, ϕP (si) = ϕP (fi)/ϕP (gi).

b): The inclusion “⊇” is clear. Now take some s ∈ E((G)) ∩ E ′(G) and
apply part a) to find a place P such that ϕP (s) ∈ E(G). But s ∈ E((G))
and ϕP is trivial on E((G)), hence s = ϕP (s) ∈ E(G).

Proposition 3.8. Let E ′/E be an extension of algebraically closed fields with
transcendence basis {α} and take an infinite subfield K of E.
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a) Given finitely many power series s1, . . . , sn ∈ E ′((G)) that are algebraic
over E ′(G), there exists an E-rational place P of E ′ sending α, α−1 to K
such that for each i, si ∈ OP ((G)) and ϕP (si) lies in the relative algebraic
closure of E(G) in E((G)).
b) We have that E((G))∩E ′(G)∼ = E(G)∼, where E ′(G)∼ denotes relative
algebraic closure in E ′((G)) and E(G)∼ and denotes relative algebraic closure
in E((G)).

Proof. a): By Corollary 3.6, there exists a subring R of E ′, finitely generated
over E, such that coeffs si ⊆ R if char E = 0, and coeffs si ⊆ R1/p∞ if
char E = p, for each i. By Proposition 3.2, we may take an E-rational place
P of E ′ that is finite on R and sends α, α−1 to K.

Take s to be any of the si. As s is algebraic, suppose it is a root of
the non-trivial (not necessarily monic!) polynomial Q ∈ E[α, tg : g ∈ G][y].
Notice that in the polynomial ring E[α], the kernel of P is the prime ideal
(α − αP ). Since E[α] is a unique factorization domain, we may divide out
coefficients of Q if necessary in order to assume that the polynomial ϕP Q
is non-zero. (In a slight abuse of notation, we extend ϕP to the polynomial
ring over OP ((G)).) As ϕP s is a root of ϕP Q 6= 0, it is algebraic over E(G).
Since it also lies in the image E((G)) of ϕP , it lies in the relative algebraic
closure of E(G) in E((G)), as desired.

b): The inclusion “⊇” is clear. Now take some s ∈ E((G)) ∩ E ′(G)∼ and
apply part a) to find a place P such that ϕP (s) ∈ E(G)∼. As in the previous
proposition, we get s = ϕP (s) ∈ E(G)∼.

Let us also prove a consequence of the TDRP similar to the parts b) of
the previous two propositions.

Lemma 3.9. Let the setting be as in the formulation of the TDRP. Take
any h ∈ E((G)). Then E((G)) ∩ (E ′((G)) ∩ L)(h) = (E((G)) ∩ L)(h).

Proof. We show the “⊆” direction; the other is clear. Take s ∈ E((G)) ∩
(E ′((G)) ∩ L)(h) and write

s =
f0 + f1h + · · ·+ fnh

n

g0 + g1h + · · ·+ gmhm

with fi, gi ∈ E ′((G))∩L. If h is algebraic over L, we may assume the denom-
inator above is 1; otherwise, we may assume that g0 = 1. Apply condition 2
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of the TDRP to find a place P such that ϕP (fi), ϕP (gi) ∈ E((G))∩L. Since
s ∈ E((G)) and ϕP is trivial on E((G)), we have that h = ϕP (h) and

s = ϕP (s) =
ϕP (f0) + ϕP (f1)h + · · ·+ ϕP (fn)hn

ϕP (g0) + ϕP (g1)h + · · ·+ ϕP (gm)hm
∈ (E((G)) ∩ L)(h) .

Note that our assumption on the denominator implies that it does not vanish.

3.2 Coefficient tests for rational and algebraic power
series

Using the results developed in the previous section, we can develop a simple
coefficient test; in this section, G will denote an arbitrary ordered abelian
group with no restrictions on its cardinality. For now, we make no assump-
tions about characteristic.

Proposition 3.10. Let E/K be an extension of fields. Then,

K((G)) ∩ E(G) = K(G) .

Proof. The inclusion “⊇” is clear. Now take s ∈ K((G)) ∩ E(G) and write
s = f/g with f, g ∈ E[G]. Replacing E by a subfield generated by the
finitely many coefficients of f, g over K, we may assume that n = trdeg E/K
is finite. Take a filtration

Ka = E0 ⊂ E1 ⊂ · · · ⊂ En = E ,

where trdeg Ei+1/Ei = 1 for all i and Ka denotes the algebraic closure of K.
We apply part b) of Proposition 3.7 n times to see that h ∈ Ka(G).

We now show that h ∈ Ks(G), where Ks denotes the separable closure
of K. We may suppose char K = p. We may take some m ≥ 0 such that
f pm

0 ∈ Ks[G]; then we have s = f0/g0 = f1/g1, where

f1 = f pm

0 and g1 = g · f pm−1
0 .

Since f1 ∈ Ks[G] and s ∈ K((G)), it follows that g1 ∈ Ks((G)) ∩Ka[G] =
Ks[G], as desired.
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Finally, we show that h ∈ K(G). Take a finite Galois extension F/K
such that f1, g1 ∈ F [G]. Similar to before, we have s = f1/g1 = f2/g2, where

f2 =
∏

σ∈Gal(F/K)

σ(f1) ∈ K(G) and g2 = g1 ·
∏

σ 6=id

σ(f1) ,

where we identify Gal(F/K) with Gal(F (G)/K(G)) (see Lemma 3.1). Since
s ∈ K((G)), it follows that g2 ∈ K[G], as desired.

We have an algebraic power series analogue corresponding to Proposi-
tion 3.10.

Proposition 3.11. Let E/K be an extension of fields. If E and K are both
real closed or both algebraically closed, then

K((G)) ∩ E(G)∼ = K(G)∼ ,

where ·∼ denotes relative algebraic closure in E((G)).

Proof. Since K is relatively algebraically closed in E, it follows that K((G))
is relatively algebraically closed in E((G)). This is so because every finite
extension M ′ of the henselian field M = K((G)) satisfies the fundamental
equality (1), hence if it is a proper extension, then it has a value group
larger than G or a residue field larger than K. Thus, K(G)∼ ⊆ K((G)) and
therefore, K(G)∼ ⊆ K((G)) ∩ E(G)∼.

To see the “⊆” inclusion, first assume that E, K are algebraically closed.
Take some s ∈ K((G)) ∩ E(G)∼. Since s satisfies a polynomial relation
in E(G), we may assume that trdeg E/K is finite, after replacing E by a
suitable subfield if necessary. Taking a filtration

K = E0 ⊂ E1 ⊂ · · · ⊂ En = E

where trdeg Ei+1/Ei = 1 for all i, we apply part b) of Proposition 3.8 n times
to see that s ∈ K(G)∼, as desired.

If E, K are real closed, the above procedure shows that s ∈ Ka(G)∼,
the relative algebraic closure of Ka(G) in Ka((G)). Hence s is algebraic
over Ka(G) and therefore also over K(G), since Ka(G)|K(G) is algebraic by
Lemma 3.1. As s ∈ K((G)), it follows that s lies in K(G)∼, the relative
algebraic closure of K(G) in K((G)).
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3.3 TDRP for rational and algebraic power series

Fix an algebraically or real closed field F , a countably infinite subfield K
and a countable ordered abelian group G. In this section, we exhibit some
intermediate fields F (G) ⊆ L ⊆ F ((G)) satisfying the TDRP over K.

Theorem 3.12. The field F (G) satisfies the TDRP over K.

Proof. Suppose that F is real closed. Since F (G)(
√−1) = F (

√−1)(G) =
F a(G), the TDRP in this case will follow if we can show it in the case of F
algebraically closed. In the latter case, the first condition of the TDRP is
obvious: if E ⊆ F is a field extension of K and E is countable, then E((G))∩
F (G) = E(G) (with equality from Proposition 3.10) is countable. The second
and third conditions are simply the statement of Proposition 3.7.

Theorem 3.13. The relative algebraic closure F (G)∼ of F (G) in F ((G))
satisfies the TDRP over K.

Proof. As above, we may assume that F is algebraically closed after verify-
ing that F (G)∼(

√−1) = F a(G)∼, where F (G)∼ denotes relative algebraic
closure in F ((G)) and F a(G)∼ denotes relative algebraic closure in F a((G)).
The inclusion “⊆” is clear. The converse follows from the well known facts
that F a((G)) = F (

√−1)((G)) = F ((G))(
√−1) and that a + b

√−1 is al-
gebraic over F (

√−1)(G) = F (G)(
√−1) only if a and b are algebraic over

F (G).
If E ⊆ F is a field extension of K and E is countable, then by Proposi-

tion 3.11, Ea((G))∩F a(G)∼ = Ea(G), which is countable. Hence, Ea((G))∩
F a(G)∼ ⊆ Ea((G))∩F a(G)∼ = Ea(G) is also countable. For the second and
third conditions of the TDRP, use Proposition 3.8 instead of 3.7.

We now show that the class of fields satisfying the TDRP over K is closed
under the adjunction of countably many power series in K((G)).

Lemma 3.14. Suppose that the intermediate field F (G) ⊆ L ⊆ F ((G))
satisfies the TDRP over K, where F is algebraically closed. Consider an
algebraically closed and countable subextension K ⊆ E ⊆ F . Then, for any
power series h ∈ K((G)), we have

E((G)) ∩ L(h) = (E((G)) ∩ L)(h) .
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Proof. We show the “⊆” direction; the other is clear. Suppose that s ∈
E((G)) ∩ L(h). Write s as a rational function in h and choose a countable
algebraically closed field E ′ that contains E and the necessary coefficients
from L. Thus, s ∈ E((G)) ∩ (E ′((G)) ∩ L)(h). Then take a chain E =
E0 ⊂ E1 ⊂ · · · ⊂ En = E ′ of algebraically closed intermediate fields Ei such
that each Ei+1/Ei is an extension of transcendence degree 1. By applying
Lemma 3.9 n times, we obtain that s ∈ (E((G)) ∩ L)(h).

Theorem 3.15. Suppose that the intermediate field F (G) ⊆ L ⊆ F ((G))
satisfies the TDRP over K. Then if {hi}i≥1 are power series in K((G)), the
field L(hi : i ≥ 1) also satisfies the TDRP over K.

Proof. As usual, it suffices to prove the result when F is algebraically closed,
because L(hi : i ≥ 1)(

√−1) = L(
√−1)(hi : i ≥ 1).

Henceforth, suppose F is algebraically closed. It suffices to verify the
second condition of the TDRP, the rest being trivial. Furthermore, it suffices
to show that if L satisfies the TDRP over K, then so does L(h): given finitely
many power series s1, . . . , sn in

E((G)) ∩ L(hi : i ≥ 1) = (E((G)) ∩ L)(hi : i ≥ 1)

(with equality from a repeated application of Lemma 3.14), we may select
finitely many h1, . . . , hm such that s1, . . . , sn ∈ L(h1, . . . , hm) and proceed by
induction.

Let E, E ′ be algebraically closed fields and E ′/E an extension of tran-
scendence degree 1. Given s1, . . . , sn in E ′((G))∩L(h), Lemma 3.14 allows us
to write si = Si(h)/Qi(h) with polynomials Si(x), Qi(x) in L[x]. Moreover,
if h is algebraic, we may assume that each Qi is constant; otherwise, we may
assume that each Qi is monic.

Using that L satisfies the TDRP over K, we pick an E-rational place P of
E ′ such that coeffs(Si, Qi) ⊆ OP ((G)) and ϕP (coeffs(Si, Qi)) ⊆ E((G)) ∩ L.
Since h ∈ K((G)), ϕP h = h and consequently, ϕP (Si(h)) = ϕP (Si)(h) and
ϕP (Qi(h)) = ϕP (Qi)(h), where ϕP (Si)(x), ϕP (Qi)(x) are the polynomials in
(E((G)) ∩ L)[x] obtained from Si(x), Qi(x) through an application of ϕP to
their coefficients. By our assumptions on the denominators, all ϕP (Qi)(h)
are non-zero and therefore, ϕP (si) ∈ (E((G)) ∩ L)(h) = E((G)) ∩ L(h) for
all i, as desired.

Remark 15. The hypothesis and assertion of Theorem 3.15 can be simulta-
neously weakened. Indeed, if the power series hi are only assumed to be in
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F ((G)) (instead of in K((G))), one cannot immediately apply Theorem 3.15.
However, the countability of G permits one to take a countable extension
field K ′ of K containing coeffs(hi). Since L satisfies the TDRP over K, it
does so over K ′; applying Theorem 3.15 with K ′ in place of K, one concludes
that L(hi : i ≥ 1) satisfies the TDRP over K ′.

4 Constructing valuation bases via TDRP

In this section, we seek out to prove Theorems 2.1 and 2.2. In what follows,
F denotes an algebraically or real closed field, and we consider a countable
subfield K ⊆ F .

Our strategy is to express F as the union of countable subfields of fi-
nite transcendence degree over K. More precisely, fix a transcendence basis
{αλ}λ∈I of F over K. Notice that the family of finite subsets of I forms a
directed set under inclusion — for each such finite subset X ⊆ I, define the
subfield

KX = K(αλ : λ ∈ X)∼ ⊆ F ,

where ·∼ denotes relative algebraic closure in F . Observe that just as lim−→X =
I, lim−→KX = F . Moreover, by the first TDRP axiom,

lim−→KX((G)) ∩ L = L ,

lim−→I(KX((G)) ∩ L) = I(L) and

lim−→U(KX((G)) ∩ L) = U(L) .

Given any finite subset X of I, we will need the optimal approximation
property for the valued vector space extensions

〈I(KY ((G)) ∩ L) : Y ⊂ X〉 ⊆ I(KX((G)) ∩ L) .

Consequently, we will fix X throughout this section. For notational conve-
nience, label the elements of X to be x1, x2, . . . , xN , so that

X = {x1, x2, . . . , xN} .

For 1 ≤ i ≤ N , set Yi = X \ {xi} and Yi,j = X \ {xi, xj}.
Our desired results in the case that F is real closed will follow from the

corresponding results when F is algebraically closed. Hence, we will assume
that F is algebraically closed for now.
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4.1 Complements of valuation rings in characteristic 0

The results of this subsection will not be needed later in this paper; they
are provided for the sake of independent interest and perspective. Instead,
we will need the weaker Lemma 4.3 that will be established in the next
subsection. Throughout this section, we need to assume that char F = 0.

Suppose that we have a KYN
-rational place P of KX sending αxN

, α−1
xN

to
K. Consider a sum

a = a1 + a2 + · · ·+ aN with ai ∈ KYi
.

We would like to show that whenever aP is finite, we may assume that we
also have a representation of the form

a = b1 + b2 + · · ·+ bN with bi ∈ KYi
,

where each biP is finite.
Note that since we consider F to be algebraically closed, we have that the

residue field KX of KX under P is equal to KYN
. Because of our assumption

that P sends αxN
, α−1

xN
to K, we have that KYi

= KYi,N
. We consider OKX

,
the valuation ring of P on KX , as a KYN

-vector space. There exists a KYN
-

vector space complement C of OKX
in KX ; that is, KX = C⊕OKX

. Observe
that for 1 ≤ i ≤ k,

(KYi
∩ C)⊕ (KYi

∩ OKX
) ⊆ KYi

.

Assuming equality held in the equation above, we could uniquely write ai =
bi + ci for bi ∈ OKYi

and ci ∈ C — note that OKYi
= OKX

∩ KYi
. Our

immediate aim is therefore to construct such a complement C where equality
in fact holds.

Lemma 4.1. Suppose that F is algebraically closed and P is a KYN
-rational

place of KX sending αxN
, α−1

xN
to K. Then there exists a KYN

-vector space
complement C of OKX

in KX such that for 1 ≤ i ≤ N , C ∩KYi
is a KYi,N

-
vector space complement of OKYi

= OKX
∩KYi

in KYi
, that is,

KYi
= (KYi

∩ C)⊕ (KYi
∩ OKX

) . (2)

Proof. Let PSF(KX) denote the field of Puiseux series over KX ; that is,

PSF(KX) =
∞⋃

n=1

KX((t1/n)) .
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We consider PSF(KX) to be a valued field with the minimal support valuation
vmin. Since the residue field KX is algebraically closed and of characteristic
0, it is well-known that PSF(KX) is algebraically closed.

As αxN
P, α−1

xN
P ∈ K by construction, we see that the element β = αxN

−
αxN

P ∈ K{xN} is transcendental over KYN
; note that βP = 0. We thus define

the embedding
ι : KYN

(β) → PSF(KX)

such that ι restricts to the identity on KYN
and sends β to t. Since βP = 0,

we have that ι preserves the valuation vP on KYN
[β]; it follows that it does

so on KYN
(β) as well.

Since PSF(KX) is algebraically closed and KX is an algebraic field exten-
sion of KYN

(β), ι extends to an embedding:

ι : KX → PSF(KX) .

Note that this induces a valuation w = vmin ◦ ι on KX . We may assume
without loss of generality that w = vP ; for KX is algebraic over KYN

(β), and
therefore there exists σ ∈ Gal(KX/KYN

(β)) such that w ◦ σ = vP . Thus,
if we consider instead the embedding ι′ = ι ◦ σ, we have that ι′ preserves
valuations; that is, vP = vmin ◦ ι′.

Moreover, for each 1 ≤ i ≤ N , we have that

ι(KYi
) ⊆ PSF(KYi

) .

Note that this is immediate for i = N , as ι restricts to the identity on
KYN

. For i 6= N , notice that KYi
is algebraic over KYi,N

(αxN
); moreover, ι

restricted to KYi,N
⊂ KYN

is the identity. Consequently, ι(KYi
) is algebraic

over KYi,N
(ι(αxN

)). Since αxN
= β + αxN

P , we have ι(αxN
) = t + αxN

P ;
this implies that ι(KYi,N

(αxN
)) and, by algebraicity, ι(KYi

) are contained in

PSF(KYi,N
) = PSF(KYi

).
We are ready to construct our complement of C with the stated proper-

ties. Note first that

CP = {
∑
q∈S

cqt
q : cq ∈ KX and S a finite negative subset of Q}

is a complement to the valuation ring of PSF(KX). Moreover, since it is
contained in the image of ι and ι preserves the valuation, we deduce that
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ι−1(CP ) is a complement of OKX
. That is, if

C = ι−1(CP ) = {
∑
q∈S

cqβ
q : cq ∈ KX and S a finite negative subset of Q} ,

then
KX = C ⊕OKX

.

It remains to verify that “⊆” holds in (2). Note that for i = N , this follows
immediately, as KYN

⊆ OKX
. For other i, the fact that ι(KYi

) ⊆ PSF(KYi
),

together with OKYi
= KYi,N

, shows that

ι(KYi
) ∩ CP = {

∑
q∈S

cqt
q : cq ∈ KYi

and S a finite negative subset of Q} ,

which is a complement of the valuation ring Oι(KYi
) in ι(KYi

). Pulling back
by the valuation-preserving embedding ι, it follows that

KYi
∩ C = ι−1(ι(KYi

) ∩ CP )

= {
∑
q∈S

cqβ
q : cq ∈ KYi,N

and S a finite negative subset of Q}

is a complement to OKYi
in KYi

; that is,

KYi
= (KYi

∩ C)⊕OKYi
= (KYi

∩ C)⊕ (KYi
∩ OKX

) .

It is still possible to prove the previous result in the case that F is real
closed; however, significantly more work is needed to eliminate negative parts
of the power series given by ι in the proof above. We do not provide details
here, as it suffices to consider the case that F is algebraically closed for now.

We can now construct complements as suggested at the beginning of this
section.

Lemma 4.2. Let 〈KY : Y ⊂ X〉 denote the additive subgroup of KX gener-
ated by the subgroups KY and suppose that P is a KYN

-rational place of KX

sending αxN
, α−1

xN
to K. Then, with respect to the place P ,

OKX
∩ 〈KY : Y ⊂ X〉 = 〈OKY

: Y ⊂ X〉 .

More precisely,

OKX
∩ 〈KY : N ∈ Y ⊂ X〉 = 〈OKY

: Y ⊂ X〉 .
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Proof. It suffices to show the “⊆” direction; the other is immediate. Take
a ∈ OKX

∩〈KY : Y ⊂ X〉. We may write a = a1+a2+ · · ·+aN with ai ∈ KYi
.

By Lemma 4.1, we may take a decomposition KX = C ⊕OKX
such that

(2) holds for 1 ≤ i ≤ N . Accordingly, we write ai = ci + di with ci ∈ C and
di ∈ OKYi

= OKX
∩ KYi

. Since a =
∑

ci +
∑

di is in OKX
, it follows that∑

ci = 0; that is, a = d1 + d2 + · · ·+ dN . Since P is trivial on KYN
, we have

cN = 0 and therefore aN = dN . Both claims now follow.

Note that in positive characteristic, we can no longer assume that there
exist complements as given in Lemma 4.1; the proof fails as we can no longer
assume that the negative part of the support of an algebraic power series,
and particularly of an element in the image of ι, is finite. (For example, see
the remarks following Corollary 3.6.) In the next section we will prove a
weakened version of Lemma 4.2 that holds independently of char F . In the
case of char F = 0, it follows as an immediate corollary from the proof of the
previous lemma.

4.2 A weaker result for arbitrary characteristic

Our later combinatorial arguments will depend on a cancellation property of
a ring homomorphism ϕP implied by the result here.

Lemma 4.3. Let P be a KYN
-rational place of KX sending αxN

, α−1
xN

to K.
Suppose that a ∈ OKX

∩ 〈KY : Y ⊂ X〉; that is, a = a1 + a2 + · · ·+ aN with
ai ∈ KYi

. Then aP = b1 + b2 + · · ·+ bN ∈ 〈KY : Y ⊂ X〉 with bi ∈ KYi,N
for

1 ≤ i ≤ N − 1 and bN = aN . Further, we may assume that bi = 0 if ai = 0.

Proof. Since in positive characteristic, the Puiseux series field is not alge-
braically closed, we replace the embedding ι used in the proof of Lemma 4.1
by an embedding in KX((Q)). Now we have that ι(KYi

) ⊆ KYi,N
((Q)) for

1 ≤ i ≤ N−1, and ι is the identity on KYN
. Define bi = 0(ι(ai)), the constant

term of ι(ai). Then aP = 0(ι(a)) = 0(ι(a1)) + · · ·+ 0(ι(aN)) = b1 + · · ·+ bN ,
and the bi have all of the required properties.

4.3 The optimal approximation property

Consider an intermediate field F (G) ⊆ L ⊆ F ((G)) satisfying the TDRP
over K. We give a combinatorial formula for an optimal approximation h
from a particular subspace to a given power series f ∈ L in terms of ring
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homomorphisms ϕP as in the second axiom of the TDRP. Since it will follow
that h ∈ L as well, this conceptually means that the field L is “closed under
taking optimal approximations.”

Theorem 4.4. Suppose F (G) ⊆ L ⊆ F ((G)) is an intermediate field satis-
fying the TDRP over K and F is algebraically closed. Take 〈·〉 in the context
of additive groups. If f ∈ KX((G))∩L, then there exists for each 1 ≤ i ≤ N
a KYi

-rational place Pi of KX such that

h = f − (id− ϕP1) ◦ · · · ◦ (id− ϕPN
)f

is an element of 〈KY ((G)) ∩ L : Y ⊂ X〉 and an optimal approximation to f
in 〈KY ((G)) : Y ⊂ X〉. The respective statement also holds for I(KX((G))),
I(KY ((G))) in the place of KX((G)), KY ((G)).

Proof. It suffices to prove the first statement, the second being an easy con-
sequence.

We define the places Pk by decreasing induction on k from N to 1. For
notational ease, whenever the places Pi have been defined for all k < i ≤ N ,
we define

fk = (id− ϕPk+1
) ◦ · · · ◦ (id− ϕPN

) f ;

moreover, for any tuple σ = (ek, ek+1, . . . , eN) of elements in {0, 1} we define

fσ = ψσ(f) , where ψσ = (−ϕPk
)ek ◦ · · · ◦ (−ϕPN

)eN .

(For any function ϕ, we let ϕ1 = ϕ and ϕ0 = id.)
Suppose that for some k, Pi has been defined for all k < i ≤ N and that

fk is a power series in KX((G)) ∩ L. Then by the second TDRP axiom, we
may take a KYk

-rational place Pk of KX such that for all (N − k + 1)-tuples
σ of elements in {0, 1}, P is finite on coeffs(fk, fσ) and ϕP (fk), ϕP (fσ) are
power series in KYk

((G)) ∩ L. Note that we then have fk−1 ∈ KX((G)) ∩ L,
as desired.

Having defined our places, we check that they have the desired properties.
Let σ = (e1, . . . , eN) denote a non-zero tuple. If i denotes the least index
such that ei = 1, then fσ ∈ KYi

((G)) ∩ L. Since

−h =
∑

fσ ,

the sum over non-zero N -tuples σ, we see that h ∈ 〈KY ((G)) ∩ L : Y ⊂ X〉,
as desired.
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To see that h is an optimal approximation to f in 〈KY ((G)) : Y ⊂ X〉, it
suffices to show that if g(f) ∈ 〈KY : Y ⊂ X〉 for some exponent g ∈ G, then
g(h) = g(f). Indeed, for such a g, write

g(f) = a1 + a2 + · · ·+ aN where ai ∈ KYi
.

By decreasing induction on k, we show that

g(fk) = b1 + b2 + · · ·+ bk where bi ∈ KYi

for 0 ≤ k ≤ N . This holds for k = N with bi = ai, as fN = f . If it holds
for k > 0, then g(fk−1) = g((id − ϕPk+1

)(fk)) = g(fk) − g(ϕPk+1
(fk)). By

Lemma 4.3, where we replace N by k, the latter is of the form b1 + · · ·+ bk−
(b′1+· · ·+b′k) with b′i ∈ KYi

and bk = b′k. So g(fk−1) = b1−b′1+· · ·+bk−1−b′k−1

with bi − b′i ∈ KYi
. Hence, g(f0) = 0 and g(h) = g(f − f0) = g(f), as

desired.

We have a multiplicative analogue.

Theorem 4.5. Suppose F (G) ⊆ L ⊆ F ((G)) is an intermediate field satis-
fying the TDRP over K and F is algebraically closed and of characteristic
0. Take 〈·〉 in the context of multiplicative groups. If f ∈ U(KX((G)) ∩ L),
then there exists for each 1 ≤ i ≤ k a KYi

-rational place Pi of KX such that

h = f / (id /ϕP1) ◦ · · · ◦ (id /ϕPk
) f

is an element of 〈U(KY ((G)) ∩ L) : Y ⊂ X〉 and an optimal approximation
to f in 〈U(KY ((G))) : Y ⊂ X〉.
Proof. The construction of the places Pk proceeds as in Theorem 4.4. Ver-
ification of the stated properties is a straightforward modification from be-
fore, after recalling that the map exp introduced by the formulas in Exam-
ple 5 is a valuation preserving group isomorphism from (I(F ((G))), +) onto
(U(F ((G))),×) with inverse log. Moreover, note that the maps exp and log
commute with the ring homomorphism ϕP . Thus, if we denote by fa

σ the
elements fσ introduced in the previous proof for the additive case, and by
fm

σ their multiplicative counterparts, we have that

exp(log(f)a
σ) = fm

σ .
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This shows that each fσ, for σ a non-zero tuple, is contained in some KY ((G)),
and that

hm = 1/
∏

fm
σ

is an optimal approximation to f in 〈U(KY ((G))) : Y ⊂ X〉 because ha =
−∑

log(f)a
σ is an optimal one to log(f) in 〈I(KY ((G))) : Y ⊂ X〉, and

exp(ha) = hm.

Our optimal approximation results that we will use to extend valuation
bases now follow immediately. We also consider the case when F is real
closed.

Theorem 4.6. Suppose F (G) ⊆ L ⊆ F ((G)) is an intermediate field satis-
fying the TDRP over K and F is a real closed or algebraically closed field.
Take 〈·〉 in the context of additive groups. Then,

〈I(KY ((G)) ∩ L) : Y ⊂ X〉

has the optimal approximation property in I(KX((G)) ∩ L).

Proof. If F is algebraically closed, then this is deduced immediately from
Theorem 4.4. Otherwise, if F is real closed, we reduce to the algebraically
closed case. In particular, given an element f ∈ I(KX((G)) ∩ L), we may
regard f as an element of Ka

X((G))∩L(
√−1). As L(

√−1) is a subfield of the
algebraically closed field F a and satisfies the TDRP over K, we can apply
the statement of our theorem for the algebraically closed case. We obtain an
optimal approximation h to f in

〈
Ka

Y ((G)) ∩ L(
√−1) : Y ⊂ X

〉
.

Take σ to be the conjugation of F (
√−1)|F and extend it to F a(G) =

F (
√−1)((G)) as described in Lemma 3.1. Then we can define the real

part of h as (h + σ(h))/2. It is easy to see that because h is an opti-
mal approximation to f , the real part of h is an optimal approximation
in 〈KY ((G)) ∩ L : Y ⊂ X〉 to the real part of f , which is f itself. (This is
because {1,√−1} is a valuation basis of F (

√−1)((G))|F ((G)).)

The following theorem is proved analogously, again using the valuation
preserving isomorphism exp as in the proof of Theorem 4.5.
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Theorem 4.7. Suppose F (G) ⊆ L ⊆ F ((G)) is an intermediate field satis-
fying the TDRP over K and F is a real closed or algebraically closed field of
characteristic 0. Take 〈·〉 in the context of multiplicative groups. Then,

〈U(KY ((G)) ∩ L) : Y ⊂ X〉
has the optimal approximation property in U(KX((G)) ∩ L).

4.4 Extending valuation bases

Using our optimal approximation results, we can now exhibit valuation bases
for I(L, +) and U(L,×). (Note that when char K > 0, only the additive
case applies.) Recall that we have chosen a transcendence basis {αλ}λ∈I of
F over K, and for each finite subset X of I, we set KX = K(αλ : λ ∈ X)∼.

For each X, let VX denote the valued K-vector space I(KX((G)) ∩ L).
If U(KX((G)) ∩ L) is a divisible group, let WX denote the valued Q-vector
space U(KX((G)) ∩ L).

For successively larger n, our aim is to define a valuation basis BX for each
valued vector space VX (or WX in the multiplicative case) where |X| = n,
extending the valuation bases BX for |X| < n. We first give a lemma assuring
that the valuation bases BX for |X| = n can be chosen arbitrarily, as long as
they extend the valuation bases BY for Y ⊂ X.

Lemma 4.8. Suppose F (G) ⊆ L ⊆ F ((G)) is an intermediate field satisfying
the TDRP over K and F is a real closed or algebraically closed field. Let 〈·〉
denote K-vector space span. For a finite subset X ⊆ I,

KX ∩ 〈KZ : Z finite and X * Z〉 = 〈KY : Y ⊂ X〉 .

Proof. We first assume that F is algebraically closed. It suffices to show the
inclusion “⊆”, the other direction being clear. Let Z1, . . . , Zk be finite subsets
of the index set I not containing the subset X, take any yj ∈ KZj

, 1 ≤ j ≤ k,
and suppose that y = y1 + · · ·+ yk ∈ KX . We show that y ∈ 〈KY : Y ⊂ X〉.

Writing Z = X ∪ Z1 ∪ · · · ∪ Zk, we see that KZ has finite transcendence
degree over KX . Labelling the elements of Z \X as α1, . . . , αn, we may take
a chain of algebraically closed fields

KX = E0 ⊂ E1 ⊂ · · · ⊂ En = KZ

where each field extension Ei/Ei−1 has transcendence basis {αi}. By repeated
application of Proposition 3.2, for decreasing values of i from n to 1, we can
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take an Ei−1-rational place Pi of Ei that is finite on the yjPi+1Pi+2 · · ·Pn and
sends the transcendence basis {αi} of Ei over Ei−1 to K. Observe that by
Remark 8, we must have that

yjPiPi+1 · · ·Pn ∈ KZj\{αi,αi+1,...,αn} .

In particular, yjP ∈ KX∩Zj
for all 1 ≤ j ≤ k, where we write P to denote

the composition of places P0P1 · · ·Pn−1. Since X ∩ Zj is a proper subset of
X, we have

y = yP = y1P + · · ·+ ykP ∈ 〈KX∩Z1 , . . . , KX∩Zk
〉 ⊆ 〈KY : Y ⊂ X〉 .

Now if F is real closed, then taking algebraic closures and applying the
result in the algebraically closed case, we see that

Ka
X ∩ 〈Ka

Z : Z finite and X * Z〉 = 〈Ka
Y : Y ⊂ X〉 ,

from which the desired result follows by considering the real parts of the
involved elements.

Theorem 4.9. Suppose F (G) ⊆ L ⊆ F ((G)) is an intermediate field satis-
fying the TDRP over K and F is a real closed or algebraically closed field.
Let n ≥ 0, and suppose that for each subset X of I of cardinality at most n,
we have a valuation basis BX of the K-vector space

VX = I(KX((G)) ∩ L) .

Suppose that

Bn =
⋃
{BX : X ⊆ I, |X| ≤ n}

is valuation independent. Then, for each subset X of I of cardinality n + 1,
we may define a valuation basis BX of VX such that

Bn+1 =
⋃
{BX : X ⊆ I, |X| ≤ n + 1}

is valuation independent.

Proof. Observe that since Bn is valuation independent, the mapping X 7→ BX

must be inclusion-preserving. Indeed, suppose X ′ ⊆ X of cardinality at
most n. By assumption, BX′ ∪ BX is valuation independent and therefore
a valuation basis of VX . Since BX is a valuation basis of VX and therefore
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maximally valuation independent, we must have BX′ ∪BX = BX and BX′ ⊆
BX .

We now define a valuation basis BX of VX for each subset X of I of cardi-
nality n+1. For such a subset X, observe that

⋃{BY : Y ⊂ X} is a valuation
basis of 〈VY : Y ⊂ X〉. By Theorem 4.6, the subspace 〈VY : Y ⊂ X〉 has the
optimal approximation property in VX ; moreover, since VX is countable, it
has countable dimension over 〈VY : Y ⊂ X〉. Therefore, Proposition 2.3 al-
lows us to extend

⋃{BY : Y ⊂ X} to a valuation basis BX of VX .
It remains to show that Bn+1 is valuation independent. Consider a finite

sum
a = c1b1 + c2b2 + · · ·+ ckbk

for non-zero scalars ci ∈ K and distinct elements bi ∈ Bn+1 such that q =
vmin(b1) = vmin(b2) = · · · = vmin(bk). Since we know that Bn is valuation
independent, we may assume that bi /∈ Bn for some i. So there exists some
subset X ⊆ I of cardinality n+1 and (after reindexing if necessary) an index
j such that 1 ≤ j ≤ k and

bi ∈ BX \
⋃
{BY : Y ⊂ X} if and only if i ≤ j .

Since BX is valuation independent, the coefficient q(c1b1 + c2b2 + · · ·+ cjbj)
is in KX \〈KY : Y ⊂ X〉. As the coefficient q(cj+1bj+1 +cj+2bj+2 + · · ·+ckbk)
is clearly in 〈KZ : Z 6= X, |Z| ≤ n + 1〉, Lemma 4.8 implies that q(a) 6= 0.
Hence, vmin(a) = q, and Bn+1 is valuation independent.

In the case char F = 0, we have a multiplicative analogue.

Theorem 4.10. In addition to the assumptions of Theorem 4.9, assume that
char F = 0. Let n ≥ 0, and suppose that for each subset X of I of cardinality
at most n, we have a valuation basis BX of U(KX((G)) ∩ L). Suppose that

Bn =
⋃
{BX : X ⊆ I, |X| ≤ n}

is valuation independent. Then, for each subset X of I of cardinality n + 1,
we may define a valuation basis BX of U(KX((G)) ∩ L) such that

Bn+1 =
⋃
{BX : X ⊆ I, |X| ≤ n + 1}

is valuation independent.
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Proof. As above, using Theorem 4.7 instead of 4.6, and again employing the
valuation preserving isomorphism exp as in the proof of Theorem 4.5. When
checking valuation independence, it is essential to note that for scalars ci ∈ Q
and elements bi ∈ U(F ((G))) such that q = vmin(1 − bi) for all i, then we
have equality

q(bc1
1 · bc2

2 · · · bck
k ) = c1q(b1) + c2q(b2) + · · ·+ ckq(bk) .

We can now prove Theorem 2.1. We first show that (I(L), +) admits a
valuation basis.

Proof. By Theorem 4.9, we may take a valuation basis BX of each valued K-
vector space I(KX((G)) ∩ L) such that whenever X ′ ⊆ X, then BX′ ⊆ BX .
It follows that the union of the BX , taken over all finite subsets X of I, is a
valuation basis for I(L).

The arguments to establish that (L, +) admits a valuation basis are sim-
ilar. Indeed, the statement and proof of Theorem 4.9 remains valid if we
replace VX = I(KX((G)) ∩ L) by VX = KX((G)) ∩ L.

The proof of Theorem 2.2 is analogous, using Theorem 4.10 instead of 4.9.

5 Applications

Now, suppose that F is real closed. Applying Theorems 2.1, 2.2, and 3.13
we immediately obtain:

Corollary 5.1. Assume that F is a real closed field, and G a countable
divisible ordered abelian group. There exist Q-valuation bases of (F (G)∼, +)
with respect to the minimal support valuation vmin, and of (U(F (G)∼ ),×)
with respect to the derived valuation vmin(1− ·).

If F is archimedean, then the vmin valuation coincides with the natural
valuation on F ((G)); we obtain

Corollary 5.2. Let F be an archimedean real closed field, and G a countable
divisible ordered abelian group. Then (F (G)∼, +) and (U(F (G)∼ ),×) admit
Q-valuation bases with respect to their natural valuations.
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We can now obtain a partial answer to the original question posed in the
introduction. Define the skeleton of a valued K-vector space V with value
set Γ to be the ordered system of K-vector spaces S(V ) := [Γ, {B(γ)}γ∈Γ],
where the component B(γ) is the K-vector space

B(γ) = {x ∈ V : v(x) ≥ γ}/{x ∈ V : v(x) > γ} .

Now, given an ordered system of K-vector spaces [Γ, {B(γ)}γ∈Γ], the
Hahn product

∏
γ∈Γ B(γ) is the vmin(s)-valued K-vector space consisting of

sequences with well-ordered support (where support(s) and vmin(s) are de-
fined as for fields of power series.) The Hahn sum

∐
γ∈Γ B(γ) is the subspace

of elements with finite support; its skeleton is precisely the given system
[Γ, {B(γ)}γ∈Γ]. By considering “leading coefficients”, one sees that if V has
skeleton [Γ, {B(γ)}γ∈Γ] and admits a valuation basis, then V ' ∐

γ∈Γ B(γ).

Corollary 5.3. Let F be an archimedean real closed field, and G a countable
divisible ordered abelian group. Then the real closed field F (G)∼ admits a
restricted exponential.

Proof. Since I(F (G)∼ ) and U(F (G)∼ ) both admit valuation bases, they
are both isomorphic as ordered abelian groups to the Hahn sums over their
skeleta, which are themselves isomorphic (as proven in Theorem 1.15 in
[KS1]).

Our final application is to the structure of complements to valuation rings
in fields of algebraic series. Observe that for the field F ((G)), an additive
complement to the valuation ring is given by F ((G<0)), where F ((G<0)) is the
(non-unital) ring of power series with negative support. It follows easily (see
[B-K-K]) that for the subfield L = F (G)∼ of F ((G)), an additive complement
to the valuation ring is given by Neg(L), where Neg(K) := F ((G<0)) ∩ L.
We shall call Neg(L) the canonical complement to the valuation ring of L.
Note that F [G<0] ⊆ Neg(L), where F [G<0] is the semigroup ring consisting
of power series with negative and finite support. Observe that the additive
group of F [G<0] is just the Hahn sum

∐
γ∈Γ B(γ) with Γ = G<0 and B(γ) =

F for each γ. We are interested in understanding under which conditions
F [G<0] = Neg(L). In Proposition 2.4 of [B-K-K], we proved the following

Proposition 5.4. Assume that G is archimedean and divisible, and that F
is a real closed field. Then Neg(L) = F [G<0].
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On the other hand, in Remark 2.5 of [B-K-K], we observed that if G is
not archimedean, then F [G<0] 6= Neg(L). The results of this paper imply
that:

Proposition 5.5. Let L = F (G)∼, where F is a real closed field and G is a
countable divisible ordered abelian group. Then Neg(L) ' F [G<0] as ordered
groups under addition.

Proof. We know that L = Neg(L)⊕OL, and this is a lexicographic decompo-
sition. Now the lexicographic sum of valued vector spaces admits a valuation
basis if and only if each summand admits a valuation basis (see [KS1]). It
follows that Neg(L) admits a valuation basis. Clearly, F [G<0] also admits a
valuation basis, since it is just a Hahn sum. Since Neg(L) and F [G<0] both
have skeleton [G<0, {F}γ∈G<0 ], it follows that they are isomorphic as valued
vector spaces, and in particular, as ordered groups under addition.

Remark 16. This proposition shows that Neg(L) (which contains series of
infinite support if G is not archimedean as shown in Remark 2.5 of [B-K-K])
is nevertheless isomorphic to the Hahn sum F [G<0] as ordered group under
addition. This shows a theorem of Banaschewski ([BAN], Satz, p. 435)
to be false. This theorem characterizes the Hahn sums to be those valued
vector spaces in which every element a admits a convex decomposition (that
is, a = a1 + · · · + an for distinct v(a1), . . . , v(an)) of maximal length. (Note
that Banaschewski uses the name “schwache Hahnsche Summe” for the Hahn
sum and “Hahnsche Summe” for the Hahn product.) It is not true that all
elements in a Hahn sum admit convex decompositions of maximal length.
For if the value set admits a chain v(a) = β1 < β2 < β3 < · · · , take elements
bi such that v(bi) = βi and b1 = a. Then for arbitrary n ∈ N, a convex
decomposition of a of length n is given by (b1 − b2) + (b2 − b3) + · · · + bn.
In his purported proof, Banaschewski erroneously claims (writing “wie man
sofort sieht”) that a tuple of the Hahn product with only one non-zero entry
admits only convex decompositions of length 1.

Most remarkably, Fleischer [FL] cites the false theorem of Banaschewski
in order to disprove a theorem of Hill and Mott ([H-M], Theorem 5.1). Their
theorem states that a countable ordered abelian group G, whose archimedean
components are each isomorphic to Z, can be embedded in the ordered Hahn
sum

∐
γ∈v(G) Z. Fleischer gives an interesting example which, because of Ba-

naschewski’s error, does not show what he wants, but rather lends credibility
to the theorem of Hill and Mott.
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Consider the Hahn product
∏

n∈N Z and its subgroup H of all cofinitely
constant tuples, generated over the Hahn sum

∐
n∈N Z by the constant tuple

(1, 1, 1, . . .). According to Banaschewski’s theorem, H would not be iso-
morphic to the Hahn sum over its skeleton; hence, it would not admit a
Z-valuation basis. As a counterexample, consider the basis consisting of
tuples of the form (0, 0, 0, . . . , 0, 1, 1, 1, . . .).

Acknowledgements: We wish to thank Antongiulio Fornasiero for con-
tributing to many insightful discussions and suggesting a proof of Corol-
lary 3.6.

A Appendix

We prove alternative versions of our main theorems, weakened by the as-
sumption that the residue field of our power series field has transcendence
degree at most ℵ1. That is, we take F to be an algebraically or real closed
field and assume that trdeg F ≤ ℵ1; as in the body of the paper, G denotes
a countable ordered abelian group.

In the body of the paper, we write F as the union of countable subfields of
finite transcendence degree over K; the new assumption trdeg F ≤ ℵ1 enables
us to additionally assume this is a linear colimit over countable fields. The
linearity renders the prior combinatorial arguments (and supporting technical
results) unnecessary, as now we need only verify the optimal approximation
property for valued vector space extensions of the form (in the additive case):

I(Kλ((G)) ∩ L) ⊆ I(Kλ+1((G)) ∩ L) .

In particular, we may fix a transcendence basis {αλ}λ<ℵ1 of F over K.
Notice that the λ < ℵ1 form a directed set. For each λ ≤ ℵ1, define the field

Kλ = K(αγ : γ < λ)∼ ⊆ F

where ·∼ denotes relative algebraic closure in F . Observe that we have the
following colimits of countable objects:

lim−→λ = ℵ1 lim−→Kλ = F .
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Moreover, given an intermediate field F (G) ⊆ L ⊆ F ((G)) satisfying the
TDRP over K, the first axiom implies

lim−→Lλ = L lim−→I(Lλ ) = I(L) lim−→U(Lλ ) = U(L) .

where Lλ = Kλ((G)) ∩ L.

Theorem A.1 (Bounded Additive). Let F be an algebraically or real closed
field such that trdeg F ≤ ℵ1, K a countably infinite subfield of F and G a
countable ordered abelian group. If F (G) ⊆ L ⊆ F ((G)) is an intermediate
field satisfying the TDRP over K, then the valued K-vector spaces (L, +)
and therefore (I(L), +) admit valuation bases.

Proof. For each λ, define the K-vector space Vλ = (Lλ, +). We wish to define
a valuation basis Bλ for each countable vector space Vλ such that Bλ′ extends
Bλ whenever λ < λ′.

First, we verify that Vλ has the optimal approximation property in Vλ+1.
Indeed, suppose that f ∈ Vλ+1\Vλ; by definition of Vλ, there exists a minimal
q ∈ support f such the power series coefficient q(f) lies in Kλ+1 \Kλ. Thus,
if h is any approximation to f in Vλ, we necessarily have vmin(f − h) ≤ q.

Assume that F is algebraically closed. By the second TDRP property, we
may take a Kλ-rational place P of Kλ+1 such that ϕP (f) ∈ Vλ. Then ϕP (f)
is our desired optimal approximation because for each exponent g such that
g(f) ∈ Kλ, one has g(ϕP (f)) = g(f).

If F is real closed, we reduce to the previous case: if f has an optimal
approximation h in Vλ ⊕

√−1Vλ, then as in the proof of Theorem 4.6, the
real part of h is an optimal approximation to f in Vλ.

Having established the optimal approximation property, we are in a po-
sition to define the Bλ via transfinite induction. For λ = 0, simply select
an arbitrary valuation basis B0 of V0. For any successor ordinal λ + 1, note
that Vλ+1 is countable and thus has countable dimension over Vλ; hence, by
Proposition 2.3, the valuation basis Bλ of Vλ extends to one Bλ+1 of Vλ+1.
Now for a limit ordinal λ, we see that Vλ is the colimit of the Vρ for ρ < λ;
hence, we may simply define Bλ to be the colimit of the Bρ for ρ < λ. Then
Bℵ1 is the desired valuation basis for Vℵ1 = L.

The proof of a multiplicative version is analogous — simply define Vλ =
(U(Lλ ),×) and replace the valuation vmin by vmin(1− ·) in the above proof.
We thus have
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Theorem A.2 (Bounded Multiplicative). Let F be an algebraically or real
closed field of characteristic zero such that trdeg F ≤ ℵ1, and G a countable
ordered abelian group. If F (G) ⊆ L ⊆ F ((G)) is an intermediate field satis-
fying the TDRP over Q and the group (U(L),×) is divisible, then (U(L),×)
is a valued Q-vector space and admits a Q-valuation basis.

Remark 17. A subfield L of F ((G)) is truncation closed if for any element
s =

∑
g∈G agt

g in L and any q ∈ G, the restriction s<q =
∑

g<q agt
g of s to

the initial segment G<q of G also belongs to L. For example, the fields F (G)
of rational series and F (G)∼ of algebraic series are both truncation closed
(see [F]).

We note that Theorems A.1 and A.2 remain true if we assume that L is a
truncation closed subfield that satisfies only the first axiom of the TDRP.
Indeed, as in the proof of Theorem A.1 above, we let h := f<q be the trunca-
tion of f at q ∈ G where q is the least exponent for which f(q) /∈ Kλ. Then,
h ∈ Vλ is an optimal approximation to f .
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[Ri] Ribenboim, Paulo: Théorie des valuations, Les Presses de
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