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Abstract

We consider the valued fieldK := R((Γ)) of generalised series (with real coeffi-
cients and monomials in a totally ordered multiplicative group Γ ). We investigate
how to endow K with a series derivation, that is a derivation that satisfies some
natural properties such as commuting with infinite sums (strong linearity) and (an
infinite version of) Leibniz rule. We characterize when such a derivation is of
Hardy type, that is, when it behaves like differentiation of germs of real valued
functions in a Hardy field. We provide a necessary and sufficent condition for a
series derivation of Hardy type to be surjective.

1 Introduction
In his seminal paper, I. Kaplansky established [11, Corollary, p. 318] that if a valued
field (K, v) has the same characteristic as its residue field, then (K, v) is analytically
isomorphic to a subfield of a suitable field of generalised series (for definitions and
∗Current address : IMB, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence cedex
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terminology, see Section 2). Fields of generalised series are thus universal domains
for valued fields. In particular, real closed fields of generalised series provide suitable
domains for the study of real algebra.

The work presented in the first part of this paper is motivated by the following
query: are fields of generalised series suitable domains for the study of real differential
algebra? We investigate in Section 3 how to endow a field of generalised series (of
characteristic 0) with a natural derivation d, namely a series derivation (see Definition
3.3). In the finite rank case (see Definition 2.2), the construction of such derivations
presents no difficulty, as is already noticed in [15]. For arbitrary rank, but under an
additional assumption (*) on the monomial group, examples of such series derivations
are given in [1]. See Remark 3.6 for details on these questions. In this paper, we treat
the general case.

Our investigation is based on the notion of fundamental monomials, which are in
fact representatives of the various comparability classes of series (see Definition 2.9).
We start with a map d from these fundamental monomials to the field of series. The
central object of investigation is to extend d first to the group of monomials (via a
strong version of Leibniz rule) and then from the group of monomials to the field of
series (via an infinite version of linearity) so that we obtain a series derivation. The
main challenge in doing so is to keep control of the resulting supports and coefficients
of the resulting series. The criterion that we obtain in Theorem 3.7 is rather abstract,
but we derive from it more explicit results (Corollaries 3.13, 3.12 and 3.16). These
results are applied in Section 5 to obtain concrete examples.

Hardy fields, i.e. fields of germs of differentiable real functions at infinity, were intro-
duced by G. H. Hardy (the field of Log-Exp functions:[9],[8]) as the natural domain for
the study of asymptotic analysis. They represent prime examples of valued differential
fields. In a series of papers, M. Rosenlicht studied the valuation theoretic properties of
these derivations. This algebraic approach has been resumed and enhanced by M. As-
chenbrenner and L. van den Dries in the formal axiomatic setting of H-fields [1]. The
motivation for the second part of our paper is to understand the possible connection
between generalised series fields and Hardy fields as differential valued fields. Con-
tinuing our investigations in Section 4, we study derivations (on fields of generalised
series) that satisfy the valuative properties discovered by Rosenlicht for Hardy fields,
namely Hardy type derivations (Definition 4.1). This terminology comes from the no-
tion of Hardy type asymptotic couple in [17]. We obtain in Theorem 4.3 a necessary
and sufficient condition on a series derivation to be of Hardy type. In the last sec-
tion, we derive a criterion, Corollary 6.4, for a series derivation of Hardy type to be
surjective.

A derivation on the Logarithmic-Exponential series field [3] and on the field of
transseries [10] have been introduced and studied. Furthermore, it is explained in [21]
how to lift a given (strongly linear and compatible with the logarithm) derivation on a
field of transseries to its exponential extensions. In [14], we extend our investigations
to study Hardy type derivations on Exponential-Logarithmic series fields. In a forth-
coming paper, we plan to endow the field of surreal numbers [4, 6] with a derivation of
Hardy type.

2



2 Preliminary definitions
In this section, we introduce the required terminology and notations. For ordered set
theory, we refer to [20]. In particular, we will repeatedly use the following easy corol-
lary of Ramsey’s theorem [20, ex. 7.5 p. 112]:

Lemma 2.1 Let Γ be a totally ordered set. Every sequence (γn)n∈N ⊂ Γ has an infinite
subsequence which is either constant, or strictly increasing, or strictly decreasing.

Definition 2.2 Let (Φ,4) be a totally ordered set, that we call the set of fundamental
monomials. We consider the set H(Φ) of formal products γ of the form

γ =
∏
φ∈Φ

φγφ

where γφ ∈ R, and the support of γ

supp γ := {φ ∈ Φ | γφ , 0}

is an anti-well-ordered subset of Φ.

Multiplication of formal products is defined pointwise: for α, β ∈ H(Φ)

αβ =
∏
φ∈Φ

φ αφ+βφ

With this multiplication, H(Φ) is an abelian group with identity 1 (the product with
empty support). We endow H(Φ) with the anti lexicographic ordering 4 which extends
4 of Φ:

γ � 1 if and only if γφ > 0 for φ := max(supp γ) .

With this definition, we see that φ � 1 for all φ ∈ Φ. Thus, H(Φ) is a totally ordered
abelian group [7], that we call the Hahn group over Φ.
Hahn’s embedding theorem [7] states that an ordered abelian group Γ embedds into
H(Φ) where Φ is the order type of its isolated subgroups. From now on, we consider
some totally ordered set (Φ,4) and we fix Γ subgroup of H(Φ) with Φ ⊂ Γ. The set Φ

is also called the rank of Γ.
For any γ , 1, we will refer to γφ as the exponent of φ, and the additive group (R,+)
as the group of exponents of the fundamental monomials.

Definition 2.3 We define the leading fundamental monomial of γ ∈ Γ \ {1} by
LF (γ) := max(supp γ) . We set by convention LF (1) := 1. This map verifies the

ultrametric triangular inequality:

∀α, β ∈ Γ, LF (αβ) 4 max{ LF (α), LF (β)}

and
LF (αβ) = max{ LF (α), LF (β)} if LF (α) , LF (β) .

We define the leading exponent of 1 , γ ∈ Γ to be the exponent of LF (γ), and
we denote it by LE (γ). For α ∈ Γ we set |α| := max(α, 1/α); and define sign(α)
accordingly.
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In the following lemma, we summarize further properties of the maps LF and
LE , that we will use implicitly throughout the paper.

Lemma 2.4

1) For any α, β ∈ Γ , α ≺ β⇔ LE
(
β

α

)
> 0 .

2) For any 1 , α ∈ Γ we have LF (|α|) = LF (α) and LE (|α|) = | LE (α)| .

3) We define on Γ a scalar exponentiation: γr = (
∏

φ∈Φ φ
γφ )r :=

∏
φ∈Φ φ

rγφ for r ∈ R.
We have LF (γr ) = LF (γ) and LE (γr ) = r LE (γ) , for r , 0.

4) For β , 1 , α ∈ Γ we have

LF (α) = LF (β)⇔ there exists n ∈ N such that |β| 4 |α|n and |α| 4 |β|n .

5) For α, β ∈ Γ with 1 ≺ |α| ≺ |β|, we have LF (α) 4 LF (β).

6) For α, β ∈ Γ with sign(α) = sign(β), we have LF (αβ) = max{ LF (α), LF (β)}.

7) For any α, β ∈ Γ, if LF (
β

α
) ≺ LF (β) then LF (α) = LF (β) and LE (α) = LE (β).

In particular sign(α) = sign(β).

Definition 2.5 Throughout this paper, K = R ((Γ)) will denote the generalised series
field with coefficients in R, and monomials in Γ. It is the set of maps

a : Γ → R
α 7→ aα

such that Supp a := {α ∈ Γ | aα , 0} is anti-well-ordered in Γ. As usual, we write these
maps a =

∑
α∈Supp a

aαα, and denote by 0 the series with empty support.

By [7], this set provided with component-wise sum and the following convolution prod-
uct

(
∑

α∈Supp a

aαα ) (
∑

β∈Supp b

bββ ) =
∑
γ∈Γ

(
∑
αβ=γ

aαbβ) γ

is a field.

Remark 2.6 The results in this paper hold for the generalised series field with coeffi-
cients in an arbitrary ordered field C containing R (instead of R).

For any series 0 , a, we define its leading monomial: LM (a) := max
(
Supp a

)
∈ Γ

with the usual convention that LM (0) := 0 ≺ γ , for all γ ∈ Γ. The map

LM : K \ {0} → Γ

is a (multiplicatively written) field valuation; it verifies the following properties :

∀a, b ∈ K : LM (a.b) = LM (a). LM (b)

and the ultrametric triangular inequality

LM (a + b) 4 max{ LM (a), LM (b)}
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with LM (a + b) = max{ LM (a), LM (b)} if LM (a) , LM (b) .

We define the leading coefficient of a series to be LC (a) := a LM (a) ∈ R (with the
convention that LC (0) = 0) and use it to define a total ordering on K as follows:

∀a ∈ K, a ≤ 0⇔ LC (a) ≤ 0

For nonzero a ∈ K, the term LC (a) LM (a) is called the leading term of a, that we
denote LT(a).

We use the leading monomial to extend the ordering 4 on Γ to a dominance relation
on K in the sense of G.H. Hardy (see [9, Introduction p. 3-4] and the Definition 2.7
below), also denoted by 4:

∀a, b ∈ K, a 4 b⇔ LM (a) 4 LM (b)

Definition 2.7 Let (K,≤) be an ordered field. A dominance relation on K is a binary
relation 4 on K such that for all a, b, c ∈ K:

(DR1) 0 ≺ 1
(DR2) a 4 a
(DR3) a 4 b and b 4 c ⇒ a 4 c
(DR4) a 4 b or b 4 a
(DR5) a 4 b ⇒ ac 4 bc
(DR6) a 4 c and b 4 c ⇒ a − b 4 c
(DR7) 0 ≤ a ≤ b ⇒ a 4 b

Given a and b non zero elements of K, we define the corresponding equivalence rela-
tions thus :

a and b are asymptotic ⇔ a � b ⇔ LM (a) = LM (b)
a and b are equivalent ⇔ a ∼ b ⇔ LT (a) = LT (b)

Definition 2.8 We denote by K41 := R((Γ41)) = {a ∈ K | a 4 1} the valuation ring of
K. Similarly, we denote by K≺1 := R((Γ≺1)) = {a ∈ K | a ≺ 1} the maximal ideal of
K41. We have K41 = R ⊕K≺1. Thus R is isomorphic to the residue field K41/K≺1 of
K. We denote by K�1 := R

((
Γ�1

))
, the subring of purely infinite series. This is an

additive complement group of K41 in K, i.e. K = K41 ⊕K�1.

Finally, we extend the notion of leading fundamental monomial to K\{0}:

LF : K \ {0} → Φ ∪ {1}
a 7→ LF (a) := LF ( LM (a)) .

We use it to define the notion of comparability of two series:

Definition 2.9 Let a � 1, b � 1 be two elements ofK. a and b are comparable if and
only if LF (a) = LF (b).

It is straightforward to verify that comparability is an equivalence relation on K.
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3 Defining derivations on generalised series fields
The following definition as in [5, Part II, Ch.8, Sect.5] will be needed to deal with
infinite sums of series.

Definition 3.1 Let I be an infinite index set and F = (ai)i∈I be a family of series inK.
Then F is said to be summable if the two following properties hold:

(SF1) the support of the family Supp F :=
⋃
i∈I

Supp ai is anti-well-ordered in Γ;

(SF2) for any α ∈ Supp F , the set S α := {i ∈ I | α ∈ Supp ai} ⊆ I is finite.

Write ai =
∑
α∈Γ

ai,αα, and assume that F = (ai)i∈I is summable. Then

∑
i∈I

ai :=
∑

α∈Supp F

(
∑
i∈S α

ai,α )α ∈ K

is a well defined element of K that we call the sum of F .

We will use subsequently the following characterisation of summability.

Lemma 3.2 Given an infinite index set I and a family F = (ai)i∈I of series in K, then
F is summable if and only if the two following properties hold:

(i) for any sequence of monomials (αn)n∈N ⊂ Supp F , ∃N ∈ N such that αN < αN+1;

(ii) for any sequence of pairwise distinct indices (in)n∈N ⊂ I,
⋂
n∈N

Supp ain = ∅.

Proof. Given a family F = (ai)i∈I , the statement (i) is classically equivalent to the
“anti-well-orderedness” of Supp F , which is (SF1) (see e.g. [20, Proposition 3.3]).

Now suppose that (SF2) holds. Consider a sequence of pairwise distinct indices
(in)n∈N ⊂ I and the corresponding sequence of series (ain )n∈N in F . If there was some
monomial α ∈

⋂
n∈N

Supp ain , the corresponding set S α would contain all the in’s and

therefore would be infinite. This contradicts (SF2).
Suppose that (ii) holds, and that (SF2) fails, i.e. that there exists a monomial α ∈

Supp F such that the set S α is infinite. Then we can choose in this set an infinite
sequence of pairwise distinct indices (in)n∈N. Therefore, α ∈ Supp ain for all n, which
means that α ∈

⋂
n∈N

Supp ain . This contradicts (ii). �

Given a family F = (ai)i∈I of series with I infinite, we call subfamily of F any
family F ′ = (ai)i∈J for some index set J ⊂ I. By the preceding lemma, we note that
the family F is summable if and only if every countably infinite subfamily (i.e. with J
infinite countable) is summable.
We introduce in the following definition the precise notion of “good” derivation for
generalised series.
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Definition 3.3 Given the generalised series field K, consider the following axioms:

(D0) 1′ = 0;

(D1) Strong Leibniz rule: ∀α =
∏

φ∈supp α

φαφ ∈ Γ, α′ = α
∑

φ∈supp α

αφ
φ′

φ
;

(D2) Strong linearity: ∀a =
∑

α∈Supp a

aαα ∈ K, a′ =
∑

α∈Supp a

aαα′.

A map d : Γ→ K, α 7→ α′, verifying (D0) and (D1) is called a series derivation on Γ.
A map d : K → K, a 7→ a′, verifying these three axioms is called a series derivation
on K.

Remark 3.4 A series derivation is a derivation in the usual sense, i. e.:

1. d is linear : ∀a, b ∈ K, ∀K, L ∈ R, (K.a + L.b)′ = K.a′ + L.b′.

2. d verifies the Leibniz rule : ∀a, b ∈ K, (ab)′ = a′b + ab′.

The problem arising from the preceding definition, which is the main purpose of this
section, is to clarify when the axioms (D1) and (D2) make sense. More precisely, we
want to characterise the existence of such series derivations by some specific properties
of their restriction to fundamental monomials.

Definition 3.5 Let

dΦ : Φ → K\{0}
φ 7→ φ′

be a map.
1) We say that dΦ extends to a series derivation on Γ if the following property holds:

(SD1) for any α ∈ Γ, the family
(
φ′

φ

)
φ∈supp α

is summable.

Then the series derivation dΓ on Γ (extending dΦ) is defined to be the map

dΓ : Γ→ K

obtained through the axioms (D0) and (D1) (which clearly makes sense by (SD1)).

2) We say that a series derivation dΓ on Γ extends to a series derivation on K if the
following property holds:

(SD2) for any a ∈ K, the family (α′)α∈Supp a is summable.

Then the series derivation d onK (extending dΓ) is defined to be the map

d : K→ K

obtained through the axiom (D2) (which clearly makes sense by (SD2)).
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Remark 3.6 1. As is already noticed in [15, Definition 2.2], when the fundamental
chain Φ is finite, say Φ = {φ1, . . . , φr} for some r ∈ N∗, then any map dΦ : Φ →

K\{0} extends to a series derivation on Γ and on K. Indeed:

(a) for any monomial α = φα1
1 · · · φ

αr
r ∈ Γ, α′ = α.

(
α1
φ′1
φ1

+ · · · + αr
φ′r
φr

)
is

well-defined ;

(b) for any series a =
∑

α∈Supp a

aαα ∈ K,

a′ =
∑

α∈Supp a

aαα′ =

 ∑
α∈Supp a

aαα1.α

 φ′1φ1
+ · · · +

 ∑
α∈Supp a

aααr.α

 φ′rφr

is well-defined.

2. In [1, Section 11], the authors define a derivation d on K under the assumption
that the monomial group Γ satisfies a condition called (*) (i.e. admits a valuation
basis; see [13]). In this case, Γ ' Hfin(Φ), the subgroup of H(Φ) of monomials
with finite support. So (SD1) is easily verified as in (a) above. We note that
this derivation d is what we call a monomial derivation (see Definition 5.1). In
Section 5 we analyse how to obtain (SD2) in this monomial derivation case (see
Proposition 5.2).

In the next Theorem 3.7, we provide a necessary and sufficient condition on a map
dΦ : Φ → K so that properties (SD1) and (SD2) hold. In the sequel, we drop the
subscripts Φ and Γ of dΦ and dΓ to relax the notation. We isolate the following two
crucial ”bad” hypotheses:

(H1) there exists a strictly decreasing sequence (φn)n∈N ⊂ Φ and an increasing se-

quence (τ(n))n∈N ⊂ Γ such that for any n, τ(n) ∈ Supp
φ′n
φn

;

(H2) there exist strictly increasing sequences (φn)n∈N ⊂ Φ and (τ(n))n∈N ⊂ Γ such that

for any n, τ(n) ∈ Supp
φ′n
φn

and LF
(
τ(n+1)

τ(n)

)
< φn+1.

Theorem 3.7 A map d : Φ → K\{0} extends to a series derivation on K if and only
both hypotheses (H1) and (H2) fail.

The proof of this theorem will be split into the proofs of Lemma 3.9 and Lemma 3.15.

Remark 3.8 Let a series derivation d on Γ be given. We claim that the following
condition (H2’) is a positive version of (H2), i.e. a condition that will be necessary and
sufficient for (SD2) to hold:

(H2’) for any strictly increasing sequences (φn)n∈N ⊂ Φ and (τ(n))n∈N ⊂ Γ such that for

any n, τ(n) ∈ Supp
φ′n
φn

, the set S =

{
n ∈ N | LF

(
τ(n+1)

τ(n)

)
< φn+1

}
is finite.
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Indeed, the Hypothesis (H2’) implies clearly that (H2) does not hold. Conversely,
suppose that there exist strictly increasing sequences (φn)n∈N ⊂ Φ and (τ(n))n∈N ⊂ Γ as
in (H2’), for which S is infinite. Denote S = {ni | i ∈ N} with ni < ni+1 for all i, and

set mi := ni + 1, i ∈ N. We notice that
τ(mi+1)

τ(mi)
=
τ(ni+1+1)

τ(ni+1) =
τ(ni+1+1)

τ(ni+1)

τ(ni+1)

τ(ni+1−1) · · ·
τ(ni+2)

τ(ni+1) .

Moreover we have LF
(
τ(ni+1+1)

τ(ni+1)

)
< φni+1+1 and for any n such that ni < n < ni+1,

LF
(
τ(n+1)

τ(n)

)
≺ φn+1. So applying the ultrametric inequality for LF (see Definition

2.3), we have LF
(
τ(mi+1)

τ(mi)

)
= LF

(
τ(ni+1+1)

τ(ni+1)

)
< φni+1+1 = φmi+1 . Thus the increasing

sequences (φmi )i∈N and (τ(mi))i∈N verify (H2).

To emphasise the role of each hypothesis, we divide the proof of the Theorem 3.7 into
the statement and the proof of the two following lemmas 3.9, 3.15.

Lemma 3.9 A map d : Φ → K\{0} extends to a series derivation on Γ if and only if
(H1) fails.

Proof. Suppose that (H1) holds, i.e. there exist a strictly decreasing sequence (φn)n∈N

and an increasing one (τ(n))n∈N such that for all n, τ(n) ∈ Supp
φ′n
φn

. Applying Lemma

2.1 to the sequence (τ(n))n∈N, we have two possibilities. Either there is an increasing
subsequence, which contradicts the point (i) of Lemma 3.2. Or there is a constant one,

which implies that
⋂
n∈N

Supp
φ′n
φn
, ∅, contradicting the point (ii) of Lemma 3.2. Thus

the family
(
φ′n
φn

)
n∈N

is not summable.

Conversely, suppose that (S D1) does not hold. There exists an infinite anti-well-

ordered subset E := supp α ⊂ Φ such that the family
(
φ′

φ

)
φ∈E

fails to be summable. By

the Lemma 3.2, there are two cases. Contradicting point (ii), there exists a sequence
(φn)n∈N of pairwise distinct fundamental monomials so that there exists a monomial

τ ∈
⋂
n∈N

Supp
φ′n
φn

. Then just define τ(n) := τ for all n. Contradicting point (i), there ex-

ists a strictly increasing sequence of monomials (τ(n))n∈N in
⋃
φ∈E

Supp
φ′

φ
. Subsequently,

for any n ∈ N, choose φn ∈ E so that τ(n) ∈ Supp
φ′n
φn

. Since it is a sequence from E

which is anti-well-ordered, (φn)n∈N cannot contain any strictly increasing subsequence.
Moreover, we claim that, without loss of generality, the φn’s may be assumed to be

pairwise distinct. Indeed, since for any φ ∈ E, Supp (
φ′

φ
) is anti-well-ordered in Γ, the

set {τ(n) | n ∈ N} ∩ Supp (
φ′

φ
) is finite. In other words, the map

9



{τ(n) | n ∈ N} → {φn | n ∈ N}
τ(n) 7→ φn

has infinitely many finite fibres. Choosing a complete set of representatives for the set
of fibres, we may extract a subsequence of (τ(n))n∈N (which is strictly increasing as is
(τ(n))n∈N) and with pairwise distinct corresponding φn’s. We continue to denote such a
subsequence by (τ(n))n∈N below .

Now applying Lemma 2.1 to the sequence (φn)n∈N, we obtain that it must contain
a strictly decreasing subsequence. Such subsequence together with the corresponding
τ(n)’s are the sequences complying the requirements of (H1). �

Now we introduce a new tool that will help us to derive from the preceding lemma
more concrete corollaries and several examples. Given an anti-well-ordered set E, we
denote by ot(E) its order type [20].

Definition 3.10 • Consider µ, ν ∈ Φ such that ot(Supp
µ′

µ
) ≤ ot(Supp

ν′

ν
). There

exists an isomorphism of ordered sets from Supp
µ′

µ
onto a final segment of

Supp
ν′

ν
. In the sequel, we shall denote this isomorphism by Iµ,ν, and its inverse

isomorphism I−1
µ,ν by Iν,µ. Note that Iµ,ν(LM(

µ′

µ
)) = LM(

ν′

ν
).

• Consider φ, ψ ∈ Φ. We shall say that Iµ,ν is a left shift if Iµ,ν(γ) ≺ γ for any γ in
the domain of Iµ,ν.

• We can enumerate the elements of Supp
φ′

φ
in the decreasing direction τ0 � τ1 �

· · · � τλ � · · · where λ is an ordinal number called the position of τλ in Supp
φ′

φ
.

Thus, denoting ON the proper class of all ordinals [20], we define the set of
functions {pφ, φ ∈ Φ} by:

∀φ ∈ Φ, pφ : Supp
φ′

φ
→ ON

which maps any element τλ ∈ Supp
φ′

φ
to its position λ in Supp

φ′

φ
.

Note that, given any φ, ψ ∈ Φ and any τ(φ), τ(ψ) in the domain of Iφ,ψ, respectively
Iψ,φ, we have pφ(τ(φ)) = pψ(τ(ψ)) if and only if Iφ,ψ(τ(φ)) = τ(ψ) (if and only if
Iψ,φ(τ(ψ)) = τ(φ)).

Lemma 3.11 Suppose that (H1) holds (or equivalently that (SD1) does not hold).
The corresponding strictly decreasing sequence (φn)n∈N from Φ and the increasing se-

quence (τ(n))n∈N from Γ with τ(n) ∈ Supp
φ′n
φn

, can be chosen so that for any n ∈ N, τ(n)

is in the domain of Iφn,φn+1 and τ(n) 4 τ(n+1) 4 Iφn,φn+1 (τ(n)). In particular, the sequence
(Iφn,φn+1 )n∈N consists in automorphisms that are not left shifts.
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Proof. Consider from (H1) a strictly decreasing sequence (φn)n∈N ⊂ Φ and an in-

creasing sequence (τ(n))n∈N ⊂ Γ such that for any n, τ(n) ∈ Supp
φ′n
φn

. Consider

S := {pφn (τ(n)), n ∈ N} which is a subset of ON and for any λ ∈ S , consider
S λ := {n ∈ N | pφn (τ(n)) = λ} (see Definition 3.10).

Suppose that there exists λ ∈ S such that S λ is infinite. So it contains a strictly
increasing subsequence (ni)i∈N of natural numbers. Since the sequence τ(n) is increasing
by (H1), for any i ∈ N, we have τ(ni) 4 τ(ni+1) = Iφni ,φni+1

(τ(ni)). The sequences (φni )i∈N

and (τ(ni))i∈N have the required properties. Suppose now that for any λ ∈ S , the set S λ is
finite. This implies that S is infinite. For any m ∈ N, denote S (m) := {pφn (τ(n)), n > m}
and S (m)

λ := {n ∈ N | n > m and pφn (τ(n)) = λ}. We shall define by induction a strictly
increasing sequence (λi)i∈N from S , together with the desired sequence (τ(n j)) j∈N. Set
λ0 := min S . Then denote S λ0 = {n0, . . . , n j0 } with nk+1 > nk for any k. Consider the
corresponding monomials τ(n0) 4 τ(n1) 4 · · · 4 τ(n j0 ). Since for any k, pφnk

(τ(nk)) = λ0,
we have τ(nk) 4 τ(nk+1) = Iφnk ,φnk+1

(τ(nk)) as desired.
Now suppose that we have built a finite sequence τ(n0) 4 τ(n1) 4 · · · 4 τ(n j0 ) 4

· · · 4 τ(n ji ) together with an ordinal λi for some i ≥ 0, with the desired proper-
ties. Then, set λi+1 := min S (n ji ), which implies that λi+1 > λi (all the indices n
corresponding to lower ordinals λl are lower than n ji ). Now consider the set S

(n ji )
λi+1

which is non empty by definition of λi+1. Then we denote it S
(n ji )
λi+1

= {n ji+1, . . . , n ji+1 }

with n ji+k+1 > n ji+k for any k. Then the corresponding monomials are such that
τ(n ji+k) 4 τ(n ji+k+1) = Iφn ji+k ,φn ji+k+1

(τ(n ji+k)) for any k. Moreover, since n ji < n ji+1 and

λi < λi+1, we have τ(n ji ) 4 τ(n ji+1) ≺ Iφn ji
,φn ji+1

(τ(n ji )) as desired. �

We deduce from the preceding lemma a more explicit sufficient condition (but not
necessary: see Example 3.14) such that (SD1) holds.

Corollary 3.12 A map d : Φ → K\{0} extends to a series derivation on Γ if the
following property holds :

(H1’) the set E1 =
{
φ ∈ Φ | ∃ ψ � φ, Iψ,φ is not a left shift

}
is well ordered in Φ.

Proof. For any strictly decreasing sequence S = (φn)n∈N, since E1 ⊂ Φ is well-
ordered, E1 ∩ S is finite. So all but finitely many couples (φn, φn+1) are such that
Iφn,φn+1 is a left shift. It implies that we can not obtain a sequence (τ(n))n∈N as in (H1). �

To visualize (H1’), we illustrate in the following Figure 1, the supports Supp
φ′

φ
for

some φ ∈ Φ. The ordered sets Φ and Γ are represented as linear orderings.

11



Γ

ψ ∈ (Φ\E1)
Iφ,ψ

Φ

φ ∈ (Φ\E1)

φ̃ ∈ E1

Figure 1. Illustration of (H1′)

Under an additional hypothesis, we deduce from Lemma 3.11 a necessary and suf-
ficient condition for a map d on Φ to extend to a series derivation on Γ:

Corollary 3.13 Let a map d : Φ → K\{0} be given. We suppose that there exists

N ∈ N such that, for any φ ∈ Φ, Card
(
Supp

φ′

φ

)
≤ N. Then d extends to a series

derivation on Γ if and only if the following property holds :
(H1”) for any strictly decreasing sequence (φn)n∈N ⊂ Φ, there exists a pair of integers
m < n such that Iφm,φn is a left shift.

Proof. Suppose that (SD1) does not hold. Equivalently, by (H1), there exist a strictly

decreasing sequence (φn)n∈N and an increasing one (τ(n))n∈N with τ(n) ∈ Supp
φ′n
φn

for any

n. We set kn := pφn (τ(n)) ∈ {1, . . . ,N}, n ∈ N (see Definition 3.10). Applying Lemma
2.1 to the sequence (kn)n∈N, there exists an infinite constant subsequence (kni = k)i∈N.
Hence, for any i < j, τ(ni) 4 τ(n j) = Iφni ,φn j

(τ(ni)) (see the final remark in Definition
3.10). The sequence (φni )i∈N is such that the corresponding isomorphisms Iφni ,φn j

for
any i < j fail to be left shifts.

Conversely, suppose that there exists a decreasing sequence (φn)n∈N for which the
Iφm,φn ’s, m < n, are not left shifts. That is, given m, for any n > m, there exists

12



τ(m) ∈ Supp
φ′m
φm

such that τ(m) 4 Iφm,φn (τ(m)). Thus for any n, we set l(m)
n := pφm (τ(m)) ∈

{1, . . . ,N}. By Lemma 2.1, there exists a constant subsequence (l(m)
ni = l(m))i∈N, that

is we have τ(m) 4 Iφm,φni
(τ(m)) for any i ≥ 0. Now, consider the sequence (l(m))m∈N.

Again by Lemma 2.1 and since for any m l(m) ∈ {1, . . . ,N}, there exists a constant
subsequence, say (l(m j) = l) j∈N for some l ∈ {1, . . . ,N}. Hence for any j ∈ N,
τ(m j) 4 Iφm j ,φm j+1

(τ(m j)) = τ(m j+1). The sequence (τ(m j)) j∈N verifies (H1), which means
that (SD1) does not hold for the family {φm j | j ∈ N}. �

Example 3.14 In Corollary 3.13, the assumption that the cardinalities of the sets Supp
φ′

φ
,

φ ∈ Φ, are uniformely bounded is necessary to apply the criterion (H1”). Indeed, if we
drop this assumption, (SD1) may still hold even if (H1”) fails, as illustrated by the
following Figure 2. The dashed lines indicate changes of comparability classes (for
instance, take τ0,k = φ1 ≺ Iφ0,φk (τ0,k) = φ1/k

0 for any k ∈ N∗). The lines connect τk,l and
Iφk ,φl (τk,l) for which the isomorphism Iφk ,φl fails to be a left shift.
We observe that, even if there is an infinite decreasing sequence (φn)n∈N for which the
Iφn,φn+1 ’s are not left shifts, (SD1) holds for the anti-well-ordered subset {φn, n ∈ N} of

Φ. Indeed, by construction, the set
⋃
n∈N

Supp
φ′n
φn

is anti-well-ordered and
⋂
n∈N

Supp
φ′n
φn

=

∅ (see Lemma 3.2).

13



Γ

φ0

φ1

φ2

Figure 2. Counter-example when Card(Supp φ
′

φ )
is not uniformely bounded.

Φ

Now we prove the second lemma that completes the proof of Theorem 3.7.

Lemma 3.15 Let d a series derivation on Γ be given. Then d extends to a series
derivation on K if and only if (H2) fails.

Proof. First, we suppose that (H2) holds. For any n ∈ N, set
τ(n+1)

τ(n) = ψ
ηn+1
n+1γ

(n+1)

where ψn+1 = LF
(
τ(n+1)

τ(n)

)
, ηn+1 = LE

(
τ(n+1)

τ(n)

)
and γ(n+1) ∈ Γ. Then ψn+1 < φn+1,

ηn+1 > 0 (the sequence (τ(n))n is strictly increasing) and LF
(
γ(n+1)

)
≺ ψn+1. Consider

now the sequence (α(n))n∈N where α(0) = φ−ε0
0 for some ε0 > 0, α(n+1) = φ−εn+1

n+1 for some

εn+1 > 0 if ψn+1 � φn+1, and α(n+1) = (φηn+1
n+1γ

(n+1))−1 =
τ(n)

τ(n+1) if ψn+1 = φn+1. This
sequence is decreasing since the sequence (φn)n∈N is increasing. Moreover, setting
β(n) := α(n)τ(n), we have β(n) ∈ Supp (α(n))′ for any n (see (D1): φn ∈ Suppα(n) and

τ(n) ∈ Supp
φ′n
φn

). Then it is routine to prove that
β(n+1)

β(n) =
α(n+1)τ(n+1)

α(n)τ(n) � 1, meaning

the sequence (β(n))n∈N is strictly increasing. It implies that the family ((α(n))′)n∈N is not
summable, witnessing that (SD2) does not hold.
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Conversely, suppose that (SD2) does not hold, i.e. there exists an anti-well-ordered set
of monomials E ⊂ Γ such that the family (α′)α∈E is not summable. By Lemma 3.2,
there are two cases. Either the set

⋃
α∈E

Supp α′ contains a strictly increasing sequence

(β(n))n∈N, or there exists a subsequence (α(n))n∈N of pairwise distinct elements of E such
that β ∈

⋂
n∈N

Supp (α(n))′ for some β ∈ Γ. In the latter case, we denote (as in the former)

by β(n) = β some copy of β in Supp (α(n))′: the sequence (β(n))n∈N is constant.
In the former case, set (α(n))n∈N a corresponding sequence in E such that β(n) ∈

Supp (α(n))′ for any n. We claim that, without loss of generality, the α(n)’s may be
assumed to be pairwise distinct as in the other case. Indeed, since (β(n))n∈N is strictly
decreasing and for any α, Supp α′ is anti-well-ordered in Γ, we have {β(n) | n ∈ N} ∩
Supp α′ is finite for any α. Therefore the set {α(n) | n ∈ N} has to be infinite: it suffices
to restrict to a subsequence of representatives of this set, which we continue to denote
by (α(n))n∈N below.
From now on, we will not distinguish between the two preceding cases, writing that

β(n+1) < β(n) for all n. From (D1), we note that Supp α′ ⊂

α. ⋃
φ∈supp α

Supp
φ′

φ

 for any

α. Hence, for any n, we set β(n) = α(n)τ(n) for some τ(n) ∈ Supp
φ′n
φn

with φn ∈ supp α(n).

We now apply Lemma 2.1 to the sequence S = (α(n))n∈N of pairwise distinct elements
of E. Since E is anti-well-ordered in Γ, S cannot have an infinite strictly increasing
subsequence. So S has a strictly decreasing subsequence which we continue to denote
(α(n))n∈N for convenience.
Since for any k < l ∈ N, β(k) = α(k)τ(k) 4 β(l) = α(l)τ(l), we have :

∀k < l ∈ N, 1 ≺
α(k)

α(l) 4
τ(l)

τ(k) (1)

The sequence (τ(n))n∈N is therefore strictly increasing.

Now consider a corresponding sequence (φn)n∈N (for which τ(n) ∈ Supp
φ′n
φn

and φn ∈

suppα(n) for any n). As for the first case here above, we may assume without loss of
generality that the φn’s are pairwise distinct.
We apply Lemma 2.1 to the sequence S̃ = (φn)n∈N. Suppose that it has an infinite de-
creasing subsequence, say Ŝ = (φni )i∈N. This anti-well-ordered subset Ŝ ⊂ Φ would be
such that the corresponding subsequence (τ(ni))i∈N is increasing, contradicting (S D1).
So S̃ has an infinite increasing subsequence which we continue to denote (φn)n∈N for
convenience.
We shall define by induction strictly increasing subsequences (φni )i∈N of (φn)n∈N and
(τ(ni))i∈N of (τ(n))n∈N as in the statement of (H2). Set n0 = 0 and recall that for any
n, φn ∈ supp α(n). Suppose that we have subsequences φn0 ≺ φn1 ≺ · · · ≺ φni and
τ(n0) ≺ τ(n1) ≺ · · · ≺ τ(ni) for some i ≥ 0. Since the sequence (φn)n∈N is increasing
and supp α(ni) is anti-well-ordered in Φ, there exists a lowest index ni+1 > ni such that
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φni+1 < supp α(ni). But φni+1 ∈ supp α(ni+1). So φni+1 ∈ supp
α(ni)

α(ni+1) and LF
(
α(ni)

α(ni+1)

)
<

φni+1 . Moreover by (1) we have LF
(
τ(ni+1)

τ(ni)

)
< LF

(
α(ni)

α(ni+1)

)
. So LF

(
τ(ni+1)

τ(ni)

)
< φni+1 as

required. �

From Lemma 3.15 and Corollary 3.12 we deduce a more explicit sufficient (but not
necessary) condition such that a map d : Φ→ K\{0} extends to a series derivation on
K:

Corollary 3.16 Consider a map d : Φ→ K\{0}. Then d extends to a series derivation
on K if the following properties hold:

(H1’) E1 :=
{
φ ∈ Φ | ∃ ψ � φ, Iψ,φ is not a left shift

}
is well ordered in Φ.

(H2”) E2 :=
{
ψ ∈ Φ |∃ φ ≺ ψ, ∃τ(φ) ∈ Supp

φ′

φ
, ∃τ(ψ) ∈ Supp

ψ′

ψ
s.t. LF (

τ(φ)

τ(ψ) ) < ψ
}

is anti-well-ordered in Φ.

Proof. By Corollary 3.12, d extends to a series derivation on Γ. From Lemma 3.15,
(SD2) does not hold if and only if there exist infinite increasing sequences (φn)n∈N ⊂ Φ

and (τ(n))n∈N ⊂ Γ such that for any n, τ(n) ∈ Supp
φ′n
φn

and LF
(
τ(n+1)

τ(n)

)
< φn+1. But

from (H2”), for any increasing sequence S = (φn)n∈N, since E2 ⊂ Φ is anti-well-

ordered, E2 ∩ S is finite. So, for all but finitely many n, LF
(
τ(n+1)

τ(n)

)
≺ φn+1 for any

τ(n) ∈ Supp
φ′n
φn

and any τ(n+1) ∈ Supp
φ′n+1

φn+1
. This contradicts (H2). �

Example 3.17 If we omit the assumption that the sequence (τ(n))n∈N is increasing in
(H2) (or (H2’)), the condition is not anymore necessary, even if we restrict to the case

that the supports of
φ′

φ
are finite and uniformly bounded as in Corollary 3.13. Indeed

we have the following example. Given an infinite increasing sequence (φn)n∈N, suppose

that there exists ψ ∈ Φ such that ψ � φn for any n. Then define
φ′0
φ0

= τ(0)
1 +τ(0)

2 = 1+ψ−1

and for any n ∈ N∗,
φ′n
φn

= τ(n)
1 + τ(n)

2 = φn−1 + ψ−1φn−1.

We observe that any infinite increasing sequence of τ’s contains either infinitely

many τ1’s, or infinitely τ2’s. Moreover for any k < l, LF

τ(k)
1

τ(l)
1

 = LF

τ(k)
2

τ(l)
2

 = φl−1 ≺

φl. So (SD2) holds, even if for any n ∈ N, LF

τ(n+1)
2

τ(n)
1

 = LF

τ(n+1)
1

τ(n)
2

 = ψ � φn+1.
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4 Hardy type derivations.
Definition 4.1 Let (K,4,C) be a field endowed with a dominance relation (cf. Defi-
nition 2.7), which contains a sub-field C isomorphic to its residue field K41/K≺1 (so
K41 = C ⊕ K≺1). A derivation d : K → K is a Hardy type derivation if :

(HD1) the sub-field of constants of K is C : ∀a ∈ K, a′ = 0⇔ a ∈ C.

(HD2) d verifies l’Hospital’s rule : ∀a, b ∈ K\{0} with a, b - 1 we have

a 4 b⇔ a′ 4 b′.

(HD3) the logarithmic derivation is compatible with the dominance relation (in the

sense of Hardy fields): ∀a, b ∈ K with |a| � |b| � 1,we have
a′

a
<

b′

b
. Moreover,

a′

a
�

b′

b
if and only if a and b are comparable.

Axioms (HD1) and (HD2) are exactly those which define a differential valuation
([16, Definition p. 303]; see Theorem 1 and Corollary 1 for the various versions of
l’Hospital’s rule that hold in this context). Axiom (HD3) is the version for dominance
relations of the Principle (*) in [17, p. 992]. This principle is itself a generalisation of
properties obtained in [19, Propositions 3 and 4] and [16, Principle (*) p. 314] in the
context of Hardy fields: recall that a Hardy field is, by definition, a field of germs at
∞ of real functions closed under differentiation [2, Chap.V, App.]. E.g., the fields (of
the corresponding germs) of real rational functions R(x), of real meromorphic func-
tions at +∞, of Logarithmic-Exponential functions [9][8]. They are prime examples of
differential valued field, the valuation being the natural one induced by the ordering of
germs [18].

Below we prove the following criterion for a series derivation to be of Hardy type.

Notation 4.2 Let φ ∈ Φ. Set θ(φ) := LM (φ′/φ), i.e.

φ′

φ
= tφθ(φ)(1 + ε)

where tφ ∈ R∗ and ε ∈ K≺1.

Theorem 4.3 A series derivation d on K verifies (HD2) and (HD3) if and only if the
following condition holds:

(H3’) ∀φ ≺ ψ ∈ Φ, θ(φ) ≺ θ(ψ) and LF
(
θ(φ)

θ(ψ)

)
≺ ψ.

Proof. We suppose that (H3’) holds. To prove l’Hospital’s rule on K, it suffices to
prove it for the monomials. Let α =

∏
φ∈supp α

φαφ and β =
∏

φ∈supp β

φβφ be arbitrary mono-

mials. Then α′ = α
∑
φ

αφ
φ′

φ
� αθ(φ0) and β′ = β

∑
φ

βφ
φ′

φ
� βθ(φ1) where φ0 = LF (α)

and φ1 = LF (β).
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If φ0 = φ1, then θ(φ0) = θ(φ1). So
α′

β′
�
α

β
. If φ0 , φ1, for instance φ0 ≺ φ1, then

LF
(
α

β

)
= φ1. But

α′

β′
�
α

β

θ(φ0)

θ(φ1) , and LF
(
θ(φ0)

θ(φ1)

)
≺ φ1. Applying the ultrametric

inequality for LF, we obtain LF
(
α′

β′

)
= φ1 and LE

(
α′

β′

)
= LE

(
α

β

)
. Thus

α′

β′
and

α

β
have same sign.
To prove the compatibility of the logarithmic derivation, take a, b ∈ K with |a| �
|b| � 1 and denote α = LM (a), β = LM (b), φ0 = LF (a) = LF (α) and φ1 =

LF (b) = LF (β). So we have LM
(

a′

a

)
= LM

(
α′

α

)
= LM

(
φ′0
φ0

)
= θ(φ0) and

similarly LM
(

b′

b

)
= θ(φ1) (Lemma 2.4). Since |a| � |b| � 1, we have φ0 < φ1. So

θ(φ0) < θ(φ1) by (H3’). Moreover, a and b are comparable if and only if φ0 = φ1, which
means that θ(φ0) = θ(φ1).

Conversely, for φ, ψ ∈ Φ with φ ≺ ψ we have
φ′

φ
≺
ψ′

ψ
, since the logarithmic derivation

is assumed to be compatible with the dominance relation (recall that φ � 1 for any

φ ∈ Φ by construction). Thus LM (
φ′

φ
) ≺ LM (

ψ′

ψ
), that is θ(φ) ≺ θ(ψ), and 1 ≺

θ(ψ)

θ(φ) .

Now, for any reals r < 0 and s , 0 and any φ, ψ ∈ Φ with φ ≺ ψ, we have ψr ≺ φs.

Differentiating both sides and applying l’Hospital’s rule, we obtain 1 ≺
ψ′/ψ

φ′/φ
≺ φsψ−r .

Now LF (φsψ−r) = ψ and LE (φsψ−r) = −r > 0. Thus LF (
θ(ψ)

θ(φ) ) ≺ ψ . �

Corollary 4.4 A series derivation d onK which verifies (HD2) and (HD3) is a Hardy
type derivation.

Proof. By construction the field of coefficients R is included in the field of constants
(see (D0), (D2)). Conversely, consider a non-constant series a =

∑
α∈Supp a

aαα ∈ K\{0}

such that a′ = 0. By (D1), we have a′ =
∑

α∈Supp a

aαα′. Set α(0) = max((Supp a)\{1}).

By l’Hospital’s rule, we have (α(0))′ � α′ for any α ∈ ((Supp a)\{α(0)}). Thus we
would have (α(0))′ = 0. But, setting φ0 = LF (α(0)), by (D1) and (H3’) we obtain
(α(0))′ � α(0)θ(φ0) which is non zero. Thus (α(0))′ cannot be zero, neither do a′ : this
contradicts the initial assumption. �

Remark 4.5 In [1] is developed the notion of H-field, which generalises the one of
Hardy field. Indeed, by definition, an H-field is an ordered differential field endowed
with a dominance relation (K, d,≤,4) and with sub-field of constants C, such that the
two following properties hold:

(HF1) if f � 1, then
f ′

f
> 0;
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(HF2) if f 4 1, then f − c ≺ 1 for some c ∈ C.

Therefore, in our context of generalised series endowed with a Hardy type derivation,
we note that (HD1) is equivalent to (HF2). Therefore:

K is an H-field if and only if for any φ ∈ Φ,
φ′

φ
> 0, i.e. LC

(
φ′

φ

)
> 0.

Indeed, for any series a � 1, denote LM (a) = α, LF (a) = φ and LC (a) = α0 > 0.
As noticed in the preceding proof, by (D1), (D2) and (H3’), we have:

a′

a
∼
α′

α
∼ α0

φ′

φ
. (2)

So
a′

a
has same sign as

φ′

φ
.

5 Examples.

5.1 The monomial case.
Definition 5.1 A series derivation onK is monomial if its restriction to the fundamen-
tal monomials has its image in the monomials:

d : Φ→ R∗.Γ

i.e. with Notation 4.2, we have

φ′

φ
:= tφθ(φ) for some tφ ∈ R∗.

Proposition 5.2 A map d : Φ → R∗.Γ extends to a series derivation of Hardy type on
K if and only if the Hypothesis (H3’) holds.

Proof. Given a map d : Φ→ R∗.Γ, there exists a series derivation on K (extending it)
if and only if (H1”) with N = 1 and (H2’) hold (see Corollary 3.13 and Remark 3.8).
Then, it suffices to remark that (H3’) is a particular case of (H1”) and (H2’), in which

the only element in Supp
φ′

φ
is θ(φ). Now apply Theorem 4.3. �

Definition 5.3 Given a totally ordered set (Φ,4), we call a left-shift endomorphism
of Φ any order preserving map s : Φ → Φ (i.e. φ1 ≺ φ2 ⇔ s(φ1) ≺ s(φ2)) such that
s(φ) ≺ φ for any φ ∈ Φ. Note that this implies that Φ has no least element. For any
n ∈ N, we denote by sn the nth iterate of s.

1. Let (Φ,4) be a totally ordered set that we suppose endowed with a left-shift
endomorphism s : Φ → Φ. Set θ(φ) := s(φ) for any φ ∈ Φ. We claim that for any
choice of tφ ∈ R∗, the corresponding map

d : Φ → R∗.Γ
φ 7→ tφ.s(φ)φ
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extends to a series derivation of Hardy type. Indeed, by Proposition 5.2, it suffices to
show that Hypothesis (H3’) holds. Indeed, for any φ1 , φ2, we have φ1 ≺ φ2 ⇔ θ(φ1) =

s(φ1) ≺ θ(φ2) = s(φ2). Moreover, LF
(
θ(φ1)

θ(φ2)

)
= LF

(
s(φ1)
s(φ2)

)
= s(φ2) ≺ φ2. That is, we

have (H3’).
Note that we could have set θ(φ) := s(φ)αφ for some αφ > 0 (see Proposition 5.4).
Note also that the preceding example extends to the case where Φ has a least ele-

ment φm and Φ \ {φm} carries a left-shift endomorphism, just by setting θ(φm) := 1 and
θ(φ) := s(φ) for any φ � φm.

2. We generalise the preceding example. For any φ ∈ Φ, fix Nφ ∈ N ∪ {+∞}. One

can set θ(φ) :=
Nφ∏

n=1

sn(φ) for any φ ∈ Φ. As above, Hypothesis (H3’) holds.

Note that we can also set θ(φ) :=
Nφ∏

n=1

sn(φ)αφ,n with αφ,n ∈ R for all n ∈ N and αφ,1 > 0

(see Proposition 5.4).

3. Assume now that Φ is isomorphic to a subset of R with least element φm, writing
f this isomorphism, we can set for any φ ∈ Φ, θ(φ) := φ

f (φ)+β
m where β is some fixed

real.
As an illustration, take the following chain of infinitely increasing real germs at infinity
(applying the usual comparison relations of germs) Φ = {φα = exp(xα) ; α > 0}∪{φ0 =

x} which is isomorphic to R+. With the usual derivation of (germs at infinity of) real
functions, we have φ′α = αxα−1 exp(xα) = αφα−1

0 φα and φ′0 = 1. Thus, θ(φα) = φα−1
0 and

tφα = α.

4. Assume that Φ is anti-well-ordered, with greatest element φM . Consider some
fixed negative reals αψ for ψ ∈ Φ. We can set θ(φ) :=

∏
ψ≺φ

ψαψ,φ
∏

φ<ψ<φM

ψαψ with arbitrary

αψ,φ ∈ R, provided that αψφ,φ > αψφ where ψφ denotes the predecessor of φ in Φ.

As an illustration of examples 2 and 4, take now Φ := {expn(x) ; n ∈ Z} where expn

denotes for positive n, the n’th iteration of the real exponential function, for negative n,
the |n|’s iteration of the logarithmic function, and for n = 0 the identical map. Note that
K contains naturally the field of rational fractions R(expn(x), n ∈ Z) which is a Hardy
field (see the commentaries after Definition 4.1). We have:

(expn(x))′

expn(x)
= θ(n)(x) =

n−1∏
k=1

expk(x) if n ≥ 2

(exp(x))′

exp(x)
= θ(1)(x) = 1

(expn(x))′

expn(x)
= θ(n)(x) =

n∏
k=0

1
expk(x)

if n ≤ 0

So for any integers m < n, we have θ(m) ≺ θ(n) and LF
(
θ(n)

θ(m)

)
= expn−1(x) ≺ expn(x):

(H3’) holds. By Proposition 5.2, the usual derivation of germs expn(x) 7→ (expn(x))′
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extends to a series derivation of Hardy type on K. Moreover, since the leading coeffi-

cients of
(expn(x))′

expn(x)
is always 1 which is positive,K endowed with such a derivation is

an H-field (see Remark 4.5).

5.2 A general example.
To motivate the introduction of the non monomial case, consider the Hardy fieldR(x, exp(x), exp(x2), exp(exp(x2+

x))) (for x near∞). Then, denoting φ = exp(exp(x2 + x)), we have

φ′

φ
= 2x exp(x2) exp(x) + exp(x2) exp(x)

which is not a monomial.
We proceed by generalizing the preceding examples. We suppose that Φ carries a

left-shift endomorphism s : Φ→ Φ. We shall define a family of derivations onK. This
family is defined using the following other field of generalised series.
We consider an ordered set of fundamental monomials (Λ = {λn ; n ∈ N},4) isomor-
phic to (N,≤), the corresponding Hahn group of monomials H(Λ) and field of gener-
alised series L := R((H(Λ))) as in Section 2. We recall that L�1 denotes the subring of
purely infinite series, which is an additive complement group of the valuation ring in
L.

Proposition 5.4 For any purely infinite series l =
∑
δ∈S

lδ
∏
n∈N

λδn
n (where S denotes the

support of l which is in H(Λ)�1), for any γ ∈ Γ, the map:

dl,γ : φ 7→ γφ
∑
δ∈S

lδ
∏
n∈N

[sn+1(φ)]δn

is well-defined with values in K (where sn+1 denotes the (n + 1)th iterate of s), and it
extends to a series derivation of Hardy type on K.

Proof. We prove that conditions (H1’) and (H2”) of Corollary 3.16 and (H3’) of The-
orem 4.3 hold. Note that for any φ ∈ Φ, we have:

φ′

φ
=

∑
δ∈S

lδ.γ
∏
n∈N

[sn+1(φ)]δn .

For any φ � ψ in Φ, the ordered sets Supp
φ′

φ
and Supp

ψ′

ψ
are isomorphic by construc-

tion. Moreover, consider some monomial τ(φ) ∈ Supp
φ′

φ
, say τ(φ) = γ

∏
n∈N

[sn+1(φ)]δn

for some real δn’s, n ∈ N. Then we have Iφ,ψ(τ(φ)) = τ(ψ) where τ(ψ) = γ
∏
n∈N

[sn+1(ψ)]δn .

Moreover,
τ(φ)

τ(ψ) =
∏
n∈N

(
sn+1(φ)

)τn
(
sn+1(ψ)

)−τn
with for all n, sn+1(φ) � sn+1(ψ) (since
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s is an endomorphism). Thus LF
(
τ(φ)

τ(ψ)

)
= sn0+1(φ) for some n0 ∈ N. Moreover

LE
(
τ(φ)

τ(ψ)

)
= δn0 which is positive (since d ∈ L�1). Hence we obtain that

τ(φ)

τ(ψ) � 1,

which means that Iφ,ψ is a decreasing automorphism. The Condition (H1’) holds (the
set E1 is empty).

Consider now any τ(φ) = γ
∏
n∈N

[sn+1(φ)]δn ∈ Supp
φ′

φ
and τ(ψ) = γ

∏
n∈N

[sn+1(ψ)]δ
′
n ∈

Supp
ψ′

ψ
. Then LF

(
τ(φ)

τ(ψ)

)
is equal to some sn0+1(φ) or sn0+1(ψ) which is always less

than φ since s is a decreasing emdomorphism of Φ. The Condition (H2”) holds (the set
E2 is empty).

Finally, note that the same properties hold in particular for the leading monomials

θ(φ) and θ(ψ) of
φ′

φ
and

ψ′

ψ
. The condition (H3’) holds. �

6 Asymptotic integration and integration
Definition 6.1 Let (K, d,4) be a differential field endowed with a dominance relation
4, and let a be one of its elements. We say that a admits an asymptotic integral b if
there exists b ∈ K \ {0} such that b′ − a ≺ a. We say that a admits an integral b if there
exists b ∈ K \ {0} such that b′ = a.

The following main result about asymptotic integration in fields endowed with a Hardy
type derivation is an adaptation of [19, Proposition 2 and Theorem 1].

Theorem 6.2 (Rosenlicht) Let (K,4,C, d) be a field endowed with a Hardy type deriva-
tion d. Let a ∈ K\{0}, then a admits an asymptotic integral if and only if

a - g.l.b.4

{
b′

b
; b ∈ K\{0}, b - 1

}
Moreover, for any such a, there exists u0 ∈ K\{0} with u0 - 1 such that for any
u ∈ K\{0} such that |u0| < |u| � 1, then(

a.
au/u′

(au/u′)′

)′
∼ a

Proof. Our statement is a straightforward combination of Proposition 2 and Theorem
1 in [19]. It suffices to observe that the corresponding proofs in [19] only rely on the
fact that the canonical valuation of a Hardy field is a differential valuation and that the
logarithmic derivation is compatible with the dominance relation [19, Proposition 3].
�

In [19, Lemma 1], Rosenlicht provides a method to compute u0:

• since a - g.l.b.4

{
b′

b
; b ∈ K\{0}, b - 1

}
, we assume w.l.o.g. that

a � g.l.b.4

{
b′

b
; b ∈ K\{0}, b - 1

}
(if not, take a−1 instead of a);
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• take u1 � 1 such that a �
u′1
u1

;

• take any u0 such that u±1
0 � min

{
u1,

a
u′1/u1

}
.

Note that u0 verifies 1 � u±1
0 <

(
a

u′0/u0

)±1

. So, in our context, LF (u0) 4 LF
(

a
u′0/u0

)
.

Our contribution here is to deduce explicit formulas for asymptotic integrals for our
field of generalised seriesK = R((Γ)) endowed with a Hardy type derivation. Note that
this is equivalent (by l’Hospital’s rule) to provide formulas for asymptotic integrals of
monomials. By (2) in Remark 4.5, note that we have:

g.l.b.4

{
b′

b
; b ∈ K\{0}, b - 1

}
= g.l.b.4

{
φ′

φ
; φ ∈ Φ

}
= g.l.b.4

{
θ(φ); φ ∈ Φ

}
.

Recall that for any monomial α ∈ Γ, α - 1, and any ψ ∈ supp α, αψ denotes the
exponent of ψ in α.

Corollary 6.3 Let α ∈ Γ be some monomial such that α - g.l.b.4
{
θ(φ); φ ∈ Φ

}
. If

α - 1, set φ0 := LF (α), so LT
(
α′

α

)
= αφ0 tφ0θ

(φ0) (Remark 4.5 (2)). Then we have:

• if LF (θ(φ0)) 4 φ0 � LF
(
α

θ(φ0)

)
, then

 1

tφ0 (αφ0 − θ
(φ0)
φ0

)
.
α

θ(φ0)

′ ∼ α;

• if LF (θ(φ0)) = φ1 � φ0, then

 1

−tφ1θ
(φ0)
φ1

.
α

θ(φ1)

′ ∼ α (note that θ(φ0)
φ1

= θ
(φ1)
φ1

);

• if LF (θ(φ0)) � φ0 � LF
(
α

θ(φ0)

)
or if α = 1, then

 1

tφ1 (αφ1 − θ
(φ1)
φ1

)
.
α

θ(φ1)

′ ∼ α

where φ1 is the element of Φ such that LF
(
α

θ(φ1)

)
= φ1 ≺ φ0.

Proof. For the first case, it suffices to observe that LF
(
α

θ(φ0)

)
= φ0 with exponent

αφ0 − θ
(φ0)
φ0

. So we have:(
α

θ(φ0)

)′
∼

α

θ(φ0) (αφ0 − θ
(φ0)
φ0

)
φ′0
φ0
∼

α

θ(φ0) (αφ0 − θ
(φ0)
φ0

)tφ0θ
(φ0) = (αφ0 − θ

(φ0)
φ0

)tφ0 .α.

For the second case, since LF (θ(φ1)) = φ1 � φ0, we deduce from (H3) that

LF (θ(φ0)) = φ1 with the same exponent θ(φ0)
φ1

. So LF
(
α

θ(φ1)

)
= φ1 with exponent

−θ
(φ0)
φ1

, and then:(
α

θ(φ1)

)′
∼

α

θ(φ1) (−θ(φ0)
φ1

)
φ′1
φ1
∼

α

θ(φ1) (−θ(φ0)
φ1

tφ1 )θ(φ1) = −θ
(φ0)
φ1

tφ1 .α.
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For the third case, first we show that there exists φ1 as in the statement of the
corollary. We define u0 corresponding to α as in the preceding theorem and we denote

φ̂0 = LF (u0) and φ1 = LF
(

α

u′0/u0

)
. So we have LM

(
u′0
u0

)
= β0θ

(φ̂0). Moreover by

Rosenlicht’s computation of u0, we note that φ̂0 4 φ1. Thus we obtain by (H3) that

LF
θ(φ̂0)

θ(φ1)

 ≺ φ1. and as desired:

φ1 = LF
(
α

θ(φ̂0)

)
= LF

 α

θ(φ̂0)
.
θ(φ̂0)

θ(φ1)

 = LF
(
α

θ(φ1)

)
Now we compute: (

α

θ(φ1)

)′
∼

α

θ(φ1) (αφ1 − θ
(φ1)
φ1

)
φ′1
φ1

∼ (αφ1 − θ
(φ1)
φ1

)
α

θ(φ1) tφ1θ
(φ1)

= tφ1 (αφ1 − θ
(φ1)
φ1

).α

.

�

Concerning integration, we apply to our context [12, Theorem 55] (recall that fields of
generalised series are pseudo-complete (see e.g. [11, Theorem 4, p. 309]).

Corollary 6.4 Assume thatK is endowed with a series derivation of Hardy type d. Set
θ̃ = g.l.b.4

{
θ(φ) ; φ ∈ Φ

}
(if it exists). Then any element a ∈ K with a ≺ θ̃ admits an

integral in K. Moreover K is closed under integration if and only if θ̃ < Γ.

Proof. As was already noticed before the Corollary 6.3:

g.l.b.4

{
b′

b
; b ∈ K\{0}, b - 1

}
= θ̃.

Given a ∈ K with a ≺ θ̃, there exists a monomial γ ∈ Γ which is an asymptotic
integral of a. That is, γ′ � a. Since d verifies l’Hospital’s rule, it implies that for any
γ̃ ∈ Supp γ′, γ̃ ≺ θ̃. So it admits itself an asymptotic integral. The result now follows
from [12, Theorem 55]. �

Examples 2 and 3 in the case where Φ has no least element and the one of Proposition
5.4 are closed under integration.
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der Kaiserlichen Akademie der Wissenschaften, Mathematisch - Naturwis-
senschaftliche Klasse (Wien) 116 (1907) 601–655

[8] G. H. Hardy, Properties of Logarithmico-Exponential functions, Proceedings of
the London Mathematical Society 10 (1911) 54–90

[9] G. H. Hardy, Orders of infinity. The Infinitärcalcül of Paul du Bois-Reymond,
Hafner Publishing Co., New York (1971) Reprint of the 1910 edition, Cambridge
Tracts in Mathematics and Mathematical Physics, No. 12

[10] J. van der Hoeven, Transseries and real differential algebra, volume 1888 of
Lecture Notes in Mathematics, Springer-Verlag, Berlin (2006)

[11] I. Kaplansky, Maximal fields with valuations, Duke Math. Journal, 9 (1942) 303–
321

[12] F.-V. Kuhlmann, Maps on ultrametric spaces, hensels lemma, and differential
equations over valued fields, Comm. Algebra 39 (2011), no. 5, 1730–1776

[13] S. Kuhlmann, Ordered exponential fields, volume 12 of Fields Institute Mono-
graphs, American Mathematical Society, Providence, RI (2000)

[14] S. Kuhlmann, M. Matusinski, Hardy type derivations on fields of exponential
logarithmic series, J. Algebra, 345 (2011) 171–189

[15] M. Matusinski, A differential Puiseux theorem in generalized series fields of fi-
nite rank., Ann. Fac. Sci. Toulouse Math. (6) 20 (2011), no. 2, 247–293

[16] M. Rosenlicht, Differential valuations, Pacific J. Math. 86 (1980) 301–319

[17] M. Rosenlicht, On the value group of a differential valuation. II, Amer. J. Math.
103 (1981) 977–996

[18] M. Rosenlicht, Hardy fields, J. Math. Anal. Appl. 93 (1983) 297–311

[19] M. Rosenlicht, The rank of a Hardy field, Trans. Amer. Math. Soc. 280 (1983)
659–671

25



[20] J. G. Rosenstein, Linear orderings, volume 98 of Pure and Applied Mathematics,
Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1982)
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