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Introduction

In his monograph On Numbers and Games, J. H. Conway introduced a
real-closed field of surreal numbers embracing the reals and the
ordinals as well as a great many less familiar numbers including

−ω, ω/2, 1/ω,
√
ω, lnω, eω and sin(1/ω)

to name only a few, where ω is the least infinite ordinal. This particular
real-closed field, which Conway calls No, is so remarkably inclusive
that, subject to the proviso that numbers—construed here as members
of ordered fields—be individually definable in terms of sets of von
Neumann-Bernays-Gödel set theory with global choice (NBG), it may
be said to contain “All Numbers Great and Small.” In this regard, No
bears much the same relation to ordered fields that the ordered field R
of real numbers bears to Archimedean ordered fields.
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In addition to its inclusive structure as an ordered field, No has a rich
simplicity hierarchical or s-hierarchical structure, that depends upon its
structure as a lexicographically ordered full binary tree and arises from
the fact that Conway’s recursive definitions of the sums and products
of members of No ensure that:

the sums and products of any two members of No are the simplest
possible members of No consistent with No’s structure as an ordered
group and an ordered field, respectively,

it being understood that x is simpler than y (written x <s y ) just in case
x is a predecessor of y in the surreal number tree.
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Among the most significant substructures A of No (or of its reducts and
relational expansions) are those that are initial, i.e. those such that for
each x ∈ A,

{y ∈ A : y <s x} = {y ∈ No : y <s x}.

Unlike arbitrary substructures, the initial substructures inherit many the
recursively generated canonical features of No, including canonical
copies of subfields of the reals, value groups, integer parts and
systems of ordinals to name only a few.
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One the striking s–hierarchical features of No is that every surreal
number can be assigned a canonical “proper name” (or normal form)
that is a reflection of its characteristic s–hierarchical properties. These
normal forms are formal sums of the form∑

α<β

ωyα .rα

where β is an ordinal, (yα)α<β is a strictly decreasing sequence of
surreals, and (rα)α<β is a sequence of nonzero real numbers; every
such sum is the normal form of a surreal, the normal form of an ordinal
being just its Cantor normal form.

In the normal form of a surreal number, the rα’s are members of No’s
canonical copy R of the reals, i.e. the unique Dedekind complete initial
subfield of No; and the ωyα ’s are leaders of No, a leader being the
simplest member of the positive cone of an Archimedean subclass of
No.
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Every nonzero surreal is the sum of three components, each of which
can be succinctly characterized in terms of its normal form:

the purely infinite component, whose terms solely have positive
exponents;

the real component, whose sole term (if it is not the empty sum) has
exponent 0;

the infinitesimal component, whose terms solely have negative
exponents.

Making use of normal forms of surreal numbers, the following figure
offers a glimpse of the some of the early stages of the recursive
unfolding of No.
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Figure: Early stages of the recursive unfolding of No
fig:first
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If L and R are subsets of No for which every member of L precedes
every member of R, there is simplest member of No lying between the
members of L and the members of R, denoted

{L |R}.

In fact, every surreal x may be written in the canonical form

{Ls(x) |Rs(x)},

where
Ls(x) = {a ∈ No : a <s x and a < x}

and
Rs(x) = {a ∈ No : a <s x and x < a}.
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The Exponential Ordered Field of Surreal Numbers

Employing the canonical representation of a surreal x , and inspired by
Conway’s definitions of sums and products, the Kruskal-Gonshor
surreal exponential function exp may be defined by recursion as
follows.

Definition 1

exp(x) ={
0, (exp xL)[x − xL]n, (exp xR)[x − xR]2n+1

∣∣∣ exp xL

[xL − x ]2n+1
,

exp xR

[xR − x ]n

}
,

where xL and xR range over Ls(x) and Rs(x) respectively, n ranges over

N, [y ]n := 1 + y + y2

2! + ...+ yn

n! for all surreal y, and (for consistency
sake) [y ]2n+1 is restricted to positive values.
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While the definition of exp is quite complicated for the general case, it
reduces to more revealing and manageable forms for the three
theoretically significant cases.

Proposition 1 (Gonshor 1986)
(i) exp(x) = ex for all x ∈ R;
(ii) exp(x) =

∑∞
n=0 xn/n! for all infinitesimal x;

(iii) if x is purely infinite, then

exp(x) =
{

0, (exp xL)(x − xL)n
∣∣∣ exp xR

(xR − x)n

}
,

where xL and xR range over all the purely infinite predecessors of
x with xL < x < xR.
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Berarducci and Montova (2018) simplified Gonshor’s characterization
of exp for the purely infinite case by essentially establishing:

Proposition 2
For a purely infinite surreal

∑
α<β

ωyα .rα,

exp(
∑
α<β

ωyα .rα) =

{
0, exp(

∑
α<ν

ωyα .rα + ωyν .qνL)
∣∣ exp(∑

α<ν

ωyα .rα + ωyν .qνR )
}

where ν ranges over the ordinals < β, and for each such ν, qνL and
qνR range over the rational numbers for which qνL < rν < qνR .
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The significance of cases (i)–(iii) accrues from the fact that for an
arbitrary surreal number x ,

exp(x) = exp(xP) · exp(xR) · exp(xI)

where xP , xR and xI are the purely infinite, real and infinitesimal
components of x , respectively. It is already clear from (i) and (ii) what
exp(x) is for real and infinitesimal values of x . The following additional
result sheds further light on exp(x) when x is purely infinite.

Proposition 3 (Gonshor 1986)
The restriction of exp to the class of purely infinite surreal numbers is
an isomorphism of ordered groups onto No’s class of leaders, i.e.
{ωx : x ∈ No}.
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By van den Dries, Macintyre and Marker’s (1994), the elementary
theory of the expansion of Ran by its exponential function ex is
axiomatized by Tan together with the “Ressayre" axioms which express
the fact that the exponential function is an order preserving
isomorphism from the additive group of the underlying ordered field
onto its positive multiplicative group such that

(1) the exponential of any x > n2 is greater than xn for (n = 1,2, ...);

(2) the exponential of any x with −1 ≤ x ≤ 1 equals E(x) where E is
the function symbol of Lan corresponding to the power series∑

(1/n!)X n ∈ R[[X ]].

Philip Ehrlich Exponentiation on the Surreals: An Overview with an Introduction to Surreal IntegrationFebruary 29, 2024 13 / 42



Appealing to the above, van den Dries and Ehrlich (2001) showed:

Proposition 4
The field of surreal numbers equipped with restricted analytic functions
(defined via Taylor series expansion) and with exp is an elementary
extension of the field of real numbers with restricted analytic functions
and real exponentiation.

Corollary 1
The ordered exponential field of surreal numbers is an elementary
extension of the ordered exponential field of real numbers.
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Some Distinguished Initial Ordered Exponential
Subfields of No

In our (2021), Elliot Kaplan and I provide necessary and sufficient
conditions for an ordered exponential field to be isomorphic to an initial
ordered exponential subfield of No. This will be the subject of Elliot’s
talk. In this and the next slide attention is simply drawn to some
distinguished examples.

Definition 2
For each ordinal α, let No(α) := {x ∈ No : the tree-rank of x < α}.

Proposition 5 (van den Dries and Ehrlich (2001))
Let α be an ε-number (which includes all uncountable cardinals). Then
No(α) equipped with restricted analytic functions and exponentiation
induced by No is an elementary substructure of (Noan, exp) and an
elementary extension of (Ran,ex).
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Proposition 6 (Aschenbrenner, van den Dries and van der
Hoeven (2019))
There is a canonical elementary embedding i of the ordered
exponential field T of transseries into No that sends x to ω.

In their (2019), Berarducci and Mantova introduced the ordered
exponential subfield

R((ω))LE

of (No, exp) and proved that it is the image of the embedding i . Using
the revealing nature of their surprisingly simple construction, it was
found that:

Proposition 7 (Ehrlich and Kaplan (2021))

R((ω))LE is initial.
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Trigonometric-Exponential Ordered Subfields of No

Let
Ttrig,exp

be the theory of the real field expanded by sin �[0,2π], the total
exponential function exp, and a constant symbol for each real number.
Elliot Kaplan and I call a model of Ttrig,exp a

trigonometric − exponential ordered field .

Let K be such a field. Then K is real closed, so there is an integer part
Z of K . Using this integer part, together with the fact that cos �[0,2π] is
0-definable in K , we may extend sine and cosine to all of K by setting

sin(a + 2πd) := sin a, cos(a + 2πd) := cosa

where a ∈ [0,2π) and where d ∈ Z . Since K may have many integer
parts, the extension of sin and cos to K is not necessarily unique.
However, if K is an initial subfield of No, K has a canonical integer
part, namely Oz ∩ K , where Oz is No’s canonical integer part of
Omnific Integers. Oz ∩ K is the unique initial integer part of K .
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Proposition 8 (Ehrlich and Kaplan (2021))
No is a trigonometric-exponential ordered field. Moreover, if K is an
initial trigonometric-exponential ordered subfield of No, including
No itself, then K admits canonical sine and cosine functions arising
from its unique initial integer part.

Making use of this result, the initial trigonometric-exponential natures
of the K ’s in question, and the corresponding map

a + ib 7→ (expa)(cosb + i sinb) : K [i]→ K [i]×,

one further obtains:

Proposition 9 (Ehrlich and Kaplan (2021))
The exponential functions on initial trigonometric-exponential subfields
of No extend to canonical exponential functions on their surcomplex
counterparts. So, for example, No[i], No(α)[i], for each epsilon number
α, and R((ω))LE [i] admit canonical exponential functions extending exp
or their corresponding restrictions thereof.

Philip Ehrlich Exponentiation on the Surreals: An Overview with an Introduction to Surreal IntegrationFebruary 29, 2024 18 / 42



Maximal Hardy Fields, etc.

In their (2018), Berarducci and Montova construct a “surreal
derivation" ∂ on No in which exp plays a central role. Using the
restriction ∂ω1 of ∂ to No(ω1), Aschenbrenner, van den Dries and van
der Hoeven (2023) proved:

Proposition 10
Assuming CH, every maximal Hardy field is isomorphic to
(No(ω1), ∂ω1).
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We draw this part of the talk to a close, by noting that in their ICM
(2018) talk, Aschenbrenner, van den Dries and van der Hoeven outline
the program they (along with Berarducci, Mantova, Bagayoko and
Kaplan) are engaged in for developing an ambitious theory of
asymptotic differential algebra for all of No, a theory in which exp would
again play a critical role. Such a program, however, would require a
derivation on No having compositional properties not enjoyed by ∂. If
successful, such a program would provide the most dramatic advance
towards interpreting growth rates as numbers since the pioneering
work of Paul du Bois-Reymond, G. H. Hardy and Felix Hausdorff on
“orders of infinity" in the decades bracketing the turn of the 20th
century.

..............

In the second part of our talk we turn to a subject in which a derviation
on surreal functions rather than on surreal numbers plays an important
role.
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Announcement/Advertisement

The remaining material is based on :

Integration on the Surreals

forthcoming

Ovidiu Costin and Philip Ehrlich

which, in turn, is a substantially revised and substantially expanded
version of portions of the matharXiv (2015) paper

Integration on the Surreals :

A Conjecture of Conway , Kruskal and Norton.

Ovidiu Costin, Philip Ehrlich, and Harvey Freidman
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There has been a longstanding program, initiated by Conway, Kruskal
and Norton, to develop analysis on No, starting with a recursive
definition of integration. The initial attempts at defining integration, in
particular the recursive definition proposed by Norton, turned out, as
Kruskal discovered, to have fundamental flaws. Despite this
disappointment, the search for a theory of surreal integration has
continued (Fornasiero 2004, Rubinstein-Salzedo and Swaminathan
2014), but remains largely open.
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Observation
Making real progress towards developing a satisfactory theory of
integration on the surreals, and more generally in interpreting
divergent expansions by means of surreal analysis, requires finding a
property-preserving operator that extends the members of a wide body
of important classical functions from R to No. The existence of such an
extension operator would then in principle provide a theoretically
satisfying and widely applicable definition of integration: in particular,
the integral of an extension from R to No of a function on the reals
would be defined to be the extension of its integral from R to No.
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Any such theory would have to keep in mind that functions whose
behavior can be described in terms of exponentials and logarithms are
remarkably ubiquitous. Indeed, as G. H. Hardy noted in 1910:

No function has presented itself in analysis the laws of whose
increase, in so far as they can be stated at all, cannot be
stated, so to say, in logarithmic-exponential terms.

Accordingly, developing a satisfactory theory of integration on the
surreals would require building on (No, exp).
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In the aforementioned paper, it is shown that an extension operator
as described above, and thereby extensions of integrals from R to
No, exist for a large subclass FR of Écalle’s system of resurgent
functions.

Among other things, FR contains all real functions that at∞ are
semi-algebraic, semi-analytic, analytic, and functions with divergent
but Borel summable series, as well as solutions of nonresonant linear
or nonlinear meromorphic systems of ODEs or of difference equations.
As such, most classical special functions, such as Airy, Bessel, Ei, erf,
Gamma, and Painlevé transcendents, are covered by our analysis.

We work in NBG less the Axiom of Choice (for both sets and
proper classes), with the result that the extensions of functions and
integrals that concern us here have a “constructive” nature in this
sense.

Philip Ehrlich Exponentiation on the Surreals: An Overview with an Introduction to Surreal IntegrationFebruary 29, 2024 25 / 42



Building on the structural similarity that exists between surreal
numbers written in normal form and Écalle’s transseries, which is
typified by the aforementioned canonical embedding of

i : T→ No which sends x to ω,

there are two critical components that play roles in the theory.
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The first is Écalle’s theory of resurgent transseries, resurgent
functions, and Écalle-Borel summation which relates the two.

Transseries

Resurgent functions Surreal functions

τ

E=τ◦Tr

Tr:=(L◦mon◦B)−1

The extension operator E for the positive infinite case is the
composition of two intermediate isomorphisms: transseriation (i.e.
Tr := (L ◦mon ◦ B)−1) from a subspace of resurgent functions to a
subspace of transseries, where L ◦mon ◦ B is Écalle-Borel
summation, and a map τ from transseries to surreal functions.
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Écalle-Borel summation

In Écalle-Borel summation

L ◦mon ◦ B,

L is the Laplace transform, mon is a well-behaved uniformizing
average in Écalle’s sense, and B is the Borel transform.

Écalle introduced Écalle-Borel summation for the resummation of a
large class of divergent series which do not fall in the scope of
classical Borel summation

L ◦ B.
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The second component is the fact the surreals are closed under
absolute convergence in the sense of Conway (or of B. H. Neumann
1949). That is:

Proposition (Conway 1976)
For each formal power series f in n > 0 variables with coefficients in R,
f (a1, ...,an) is absolutely convergent in No for every choice of
infinitesimals a1, ...,an in No.

In fact:

Observation
A sufficient condition for developing our theory in an ordered
exponential subfield of No is that the exponential subfield be closed
under absolute convergence in the sense of Conway.

So, for example:

In addition to applying to No, our theory carries over to No(α), for each
epsilon number α, and to R((ω))LE .
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Extension Operator E

Combining the two just-said components, here is the definition of our
Extension Operator E.

Definition
Let f ∈ FR, and let c ∈ R be such that f is real-analytic on (c,∞).
(Such a c always exists.) We extend f to (c,On) as follows.

1 For positive infinite x ∈ No we define (Ef )(x) = (τ ◦ Tr f )(x).
2 For finite x ∈ No, where x0 is the real part of x and ζ is the

infinitesimal part of x, we define (Ef )(x) by

f (x0 + ζ) = f (x0) +
∑
k>1

(k !)−1f (k)(x0)ζ
k ,

the infinite sum being absolutely convergent in the sense of
Conway.
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Antidifferentiation Operator and Integral Operator

Making use of the extension operator E and an antidifferentiation
operator A likewise defined on FR, an antidifferentiation operator ANo
on E(FR) and a corresponding integral operator are defined as follows:

ANo := EAE−1.

∫ y

x
f := ANo(f )(y)− ANo(f )(x).

The following result demonstrates that
∫ y

x f so-defined is worthy of the
appellation “integral operator”.
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In the following proposition, α, β,a,b,a1,a2,a3 ∈ No, and
f ,g, fg, f ◦ g, f ′,g′ are understood to be elements of E(FR) on [a,b],
[a1,a2], [a2,a3] or [a1,a3] where applicable.

Proposition 11 (
∫ y

x f is an Integral Operator)∫ y
x f as defined above is an integral operator on E(FR), meaning a function

of three variables, x , y ∈ No and f ∈ E(FR), with the properties:

(a)

(∫ x

a
f
)′

= f ;

(b)

∫ b

a
(αf + βg) = α

∫ b

a
f + β

∫ b

a
g;

(c)

∫ b

a
f ′ = f (b)− f (a);
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Proposition (Continued)

(d)
∫ a2

a1

f +
∫ a3

a2

f =
∫ a3

a1

f ;

(e)
∫ b

a
f ′g = fg|ba −

∫ b

a
fg′ if f and g are differentiable on (a,b);

(f)
∫ x

a
(f ◦ g)g′ =

∫ g(x)

g(a)
f whenever g ∈ E(FR) is differentiable on (a, x).

(g) If f is a positive function and b > a, then
∫ b

a
f > 0.
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Simple Example

The most trivial example is ex , where ANo(ex) = ex . By then applying
the definition of

∫ y
x f to ex , we obtain, for example,∫ ω

0
exdx = eω − 1,

as expected. This stands in contrast to Simon Norton’s earlier
proposed definition of integration which was shown by Kruskal to
integrate ex over the range [0, ω] to the wrong value eω.
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Extension, Antidifferentiation and Integral Operators

Above we made use of the notions of extension and antidifferentiation
operators without stating precisely what we mean by these notions. In
some of the remaining time, we lend precision to these concepts. For
this purpose, we require a generalization of the idea of a derivative of a
function at a point.

Definition (Derivative)
Let K be an ordered field. A function f defined on an interval around a is
differentiable at a if there is an f ′(a) ∈ K such that
(∀ε > 0 ∈ K )(∃δ > 0 ∈ K ) such that

(∀x ∈ K )(|x − a| < δ ⇒
∣∣∣∣ f (x)− f (a)

x − a
− f ′(a)

∣∣∣∣ < ε).

As usual, f ′(a) is said to be the derivative of f at a and f is said to be
differentiable if the derivative of f exists at each point of its domain.
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Definition (Extension Operators)
Let I be an interval (i.e. a convex subclass) of R and J be an interval of No
that contains I. Also, let F be a set of real-valued functions defined on
intervals of R.

By an extension operator E on F we mean a map that associates to each
function f : I → R in F a function E f : J → No in such a manner that

i. for all f ∈ F , E f is an extension of f ;
ii. (Linearity) for all g,h ∈ F and C ∈ R, E(Cg) = CE g and

E(g + h) = E g + E h;
iii. if β, λ ∈ R, n ∈ N ∪ {0}, g(x) = xβeλx and h(x) = xn log(x) for all

x ∈ I, then (E g)(x) = xβeλx and (E h)(x) = xn log(x) for all x ∈ J .
iv. E f ′ = (E f )′.
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Definition (Real and Surreal Antidifferentiation Operators)
Let F be a set of real-valued (surreal-valued) functions whose domains are
intervals of R (No). An antidifferentiation operator on F1 ⊆ F is a function
A : F1 → F such that for all f ,g ∈ F1:

one i. A f is differentiable and (A f )′ = f ;

two ii. For any λ ∈ R (λ ∈ No), A(λf ) = λA f , A(f + g) = A f + A g;

iii. iii. If y > x and f > 0, then (A f )(y)− (A f )(x) > 0.

four iv. ∀n ∈ N,A (xn) = 1
n+1xn+1 (the right side being the monomial in F).

five v. A (exp) equals the real (surreal) exponential.

six vi. If F ∈ F1 and F ′ = f ∈ F1, then there is a C ∈ R (C ∈ No) such that
A f exists and equals F + C.
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Definition (Integral Operators)
Let A be an antidifferentiation operator on F1 ⊆ F , and let f ∈ F1 and
x , y ∈ No. Define ∫ y

x
f := A(f )(y)− A(f )(x).

Integral operators thus defined have all of the aforementioned
properties enjoyed by the surreal integral operator.
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How Much Further Can the Theory be Developed?

Transseries are formal series built up from R and a variable x > R
using powers, exponentiation, logarithms and infinite sums. Écalle’s
classical construction of the ordered differential field of transseries is
inductive, beginning with log-free transseries. Transseries have
(exponential) heights and (logarithmic) depths (for n < ω) that emerge
from their inductive construction, but in our theory of surreal integration
thus far developed we are only concerned with log-free, height one,
and height one, depth one transseries.

The theory of resurgent functions for the class of transseries we are
concerned with has long been worked out in detail. However, in a far
ranging recent work–The Natural Growth Scale (2020)–Écalle has
provided what he describes as an “exploratory rather than systematic"
presentation of an extension of his theory, including Écalle-Borel
summability, to transseries having arbitrary heights and depths. This
naturally suggests:
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Question 1. Based on a rigorous theory of arbitrary height and depth
transseries, is it possible to generalize our “constructive” treatment of
extension and antidifferentiation operators to all resurgent functions?

A related and perhaps deeper question is:

Question 2. Do well-behaved extension and antidifferentiation
operators exist for broad classes of functions that cannot be obtained
by the inductive construction yielding transseries?

While these questions are wide open, we have shown:

There is a foundational obstruction to constructively extending many
important larger families of functions (including, for example, the full
class of smooth functions) to No and to defining integration thereon.
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The definitions of the extension, antidifferentiation and integral
operators E, ANo and

∫ y
x f mentioned above are not recursive. As such:

Question 3. Can the just-said operators be given
simplicity-hierarchical formulations in the recursive sense that
Conway’s field operations and the Kruskal-Gonshor definition of
exponentiation are?

Ovidiu and I do in fact know how to provide a simplicity-hierarchical
account for much of the theory in terms of Conway’s {L|R} notation.
However, the definitions in terms of Conway’s {L|R} notation employed
in the account are not recursive.
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Concluding Thoughts

In virtue of our combined positive and negative results one can say
that whereas the Conway-Kruskal-Norton surreal integration program
succeeds in most practical cases, and may very well be extended a
good deal further, its success is limited in the full abstract generality
that some, such as Kruskal, had originally hoped for. On the other
hand, I suspect that what has been, and very well may be,
accomplished in this direction goes beyond the expectations of some
including Conway himself.

Thanks for Listening.
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