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The surreal numbers

The class No of surreal numbers are generated as follows:

Construction
If L and R are two sets of surreal numbers and no member of L is >
any member of R, then {L | R} is a surreal number.

The simplest surreal number is 0 = { | }. After constructing 0, we can
construct 1 = {0 | } and −1 = { | 0}.

We use {L | R} to denote the simplest number lying between L and R,
so {−1 | 1} = 0 has already been constructed. Using our numbers 0, 1,
and −1, we can construct four new numbers:

−2 := { | − 1}, −1

2
:= {−1 | 0}, 1

2
:= {0 | 1}, 2 := {1 | }.
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The surreal number tree

The surreal numbers are best visualized as a tree:
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Adding and multiplying surreal numbers

Given a surreal number x = {L | R}, we use xL to denote a typical
element of L, and xR to denote a typical element of R. Addition and
multiplication can be defined recursively as follows:

x+ y := {xL + y, x+ yL | xR + y, x+ yR}.

The idea is that xL < x, so xL + y < x+ y, and so on.

xy :=
{
xLy+xyL−xLyL,
xRy+xyR−xRyR

∣∣∣ xLy+xyR−xLyR,
xRy+xyL−xRyL

}
.

Since x− xL, yR − y > 0, we should have

(x− xL)(yR − y) = xLy + xyR − xLyR − xy > 0,

and so xy < xLy + xyR − xLyR.
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Surreal exponentiation

Gonshor defined an exponential function on the surreals, that is, an
ordered group isomorphism exp: No→ No>.

We may define expx recursively by{
0, (expxL)[x−xL]n, (expxR)[x−xR]2n+1

∣∣∣ expxL

[xL − x]2n+1
,

expxR

[xR − x]n

}
,

where [y]n :=
∑

k6n
yk

k! , and [y]2n+1 is only included when it is positive.

Theorem (van den Dries-Ehrlich, 2001)
The surreal ordered exponential field is an elementary extension of the
real ordered exponential field.
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The motivating question

A subclass X ⊆ No is said to be initial if it is downward-closed under
the well-founded partial order <s.

An ordered logarithmic field is an ordered field K with an ordered
group embedding log : K> → K.

If this embedding is surjective, then we call K an ordered exponential
field and denote the inverse of log by exp: K → K>.

In our paper Surreal ordered exponential fields, Philip Ehrlich and I
considered the following question:

Question
Which ordered exponential fields are isomorphic to initial exponential
subfields of No?

Before giving an answer, I’ll briefly discuss the analogous question for
ordered fields, which was answered by Ehrlich in 2001.

Kaplan (McMaster) Surreal ordered exponential fields February 9 6 / 20



Hahn fields

Let Γ be an ordered abelian group (possibly a proper class). The Hahn
field R((tΓ))On consists of all transfinite series

∑
β<α rβt

γβ , where
(γβ)β<α is a decreasing sequence in Γ and each rβ is in R \ {0}.

A truncation of
∑

β<α rβt
γβ ∈ R((tΓ))On is an element of the form∑

β<α0
rβt

γβ for some α0 6 α. The cross-section of R((tΓ))On is the
multiplicative group tΓ.

Theorem (Conway, 1976)
R((tNo))On is isomorphic to No, via a map sending t to ω.

Thus, we may represent each x ∈ No as a series x =
∑

β<α rβω
γβ .

We sometimes write No = R((ωNo))On.
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Initial subfields of No

Let K be a subfield of No. Then K ⊆ R((ωNo))On, so take Γ smallest
with K ⊆ R((ωΓ))On. Suppose K is initial. Then:∑

β<α0
rβω

γβ 6s
∑

β<α rβω
γβ for any α0 6 α, so K is truncation

closed, i.e. any truncation of x ∈ K belongs to K.
Suppose

∑
β<α rβω

γβ ∈ K and let β0 < α. Then
∑

β<β0
rβω

γβ and∑
β06β<α rβω

γβ belong to K. Since ωγβ0 6s
∑

β06β<α rβω
γβ , we

see that ωγβ0 ∈ K. Thus, K is cross-sectional, i.e. ωΓ ⊆ K.
It follows that Γ is an initial subgroup of No.

This turns out to be enough:

Theorem (Ehrlich, 2001)
A subfield K ⊆ No is initial if and only if it is a truncation closed,
cross-sectional subfield of R((ωΓ))On for some initial subgroup
Γ ⊆ No.
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More on initial subfields

Corollary
An ordered field K is isomorphic to an initial subfield of No if and only
if it is isomorphic to a truncation closed, cross-sectional subfield of
R((tΓ))On, where Γ is isomorphic to an initial ordered subgroup of No.

Explicitly, let K ⊆ R((tΓ))On be truncation closed and cross-sectional,
let ι : Γ→ No be an initial ordered group embedding, and let ι∗ be the
map: ∑

β<α

rβt
γβ 7→

∑
β<α

rβω
ι(γβ) : R((tΓ))On → No.

Then ι∗(K) is initial.

Corollary
An initial map ι always exists if Γ is divisible, so any real closed
ordered field initially embeds into No by Mourgues-Ressayre.
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Exponential subfields of No

It follows that the initial exponential subfields of No are exactly the
truncation closed, cross-sectional subfields of R((ωΓ))On, where Γ is
an initial subgroup of No. This is not a very satisfying answer.

Using the identification No ' R((ωNo))On, we can give a nicer
description of exp in terms of its restrictions:

exp maps R((ωNo>))On, the purely infinite elements, onto ωNo.
exp restricts to the real exponential on R ⊆ No.
For ε ∈ No≺, the class of infinitesimal elements, we have

exp ε =

∞∑
k=0

εk

k!
∈ 1 + No≺.

As No = R((ωNo>))On ⊕ R⊕No≺, this determines exp.
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An initial guess

A logarithmic Hahn field is a Hahn field R((tΓ))On equipped with an
ordered group embedding log : R((tΓ))>On → R((tΓ))On where:

log x 6 x− 1 for all x ∈ R((tΓ))>On;

log maps tΓ into R((tΓ
>

))On;
log restricts to the real logarithm on R>;
If ε is infinitesimal, then

log(1 + ε) =

∞∑
k=1

(−1)k−1 ε
k

k
.

We may naively guess that an ordered exponential field is isomorphic
to an initial exponential subfield of No if and only if it is isomorphic to a
truncation closed, cross-sectional exponential subfield of a logarithmic
Hahn field.
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What goes right?

We use the following approach, pioneered by Ressayre (1993) and
van den Dries-Macintyre-Marker (1994).

Let K be a truncation closed, cross-sectional exponential subfield of a
logarithmic Hahn field R((tΓ))On. Let K0 be a truncation closed
logarithmic subfield of K, and assume that∑

β<α

rβt
γβ ∈ K0 =⇒ tγβ ∈ K0 for all β.

Assume we have an initial logarithmic field embedding ι : K0 → No
that preserves monomials and infinite sums.

If x =
∑

β<α rβt
γβ ∈ K, α is a limit ordinal, and every proper

truncation of x is in K0, then ι can be extended to include x.
If x ∈ K> and log x ∈ K0, then ι can be extended to include x.

Kaplan (McMaster) Surreal ordered exponential fields February 9 12 / 20



What’s missing?

Assume K0 is maximal with respect to the previous extensions and let
x = tγ ∈ K \K0. Define (xn)n∈N as follows:

x0 := x, xn+1 := | log xn − an|

where an is the maximal truncation of log xn in K0.

Let y :=
{
ι(K<x

0 ) | ι(K>x
0 )
}

and set

y0 := y, yn+1 := | log yn − ι(an)|.

Fact
Under mild assumptions, yn ∈ ωNo for each n.
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Transseries fields

Definition (Schmeling, 2001)

A transseries field is a logarithmic Hahn field R((tΓ))On such that for
all sequences (γn)n∈N in Γ and (an)n∈N in K, if an is a truncation of
log tγn and log tγn − an = rtγn+1 + · · · , then log tγn − an = ±tγn+1 for n
sufficiently large.

If R((tΓ))On is a transseries field and (xn)n∈N is as above, then xn ∈ tΓ
for n sufficiently large.

Theorem (Ehrlich-K., 2021)
An ordered exponential field K is isomorphic to an initial exponential
subfield of No if and only if it is isomorphic to a truncation closed,
cross-sectional subfield of a transseries field R((tΓ))On.
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Elementary extensions of Ran,exp

Fact (van den Dries-Macintyre-Marker, 1994)
Any Hahn field R((tΓ))On with Γ divisible can be expanded to an
elementary extension of Ran, the real field with restricted analytic
functions. This is done using Taylor expansion.

Theorem (Ehrlich-K., 2021)
Any elementary extension of Ran,exp admits a truncation closed,
cross-sectional exponential field embedding into a transseries field
R((tΓ))On that preserves restricted analytic functions.

Corollary (First shown by Fornasiero, 2013)
Any elementary extension of Ran,exp admits an initial elementary
embedding into the surreals.
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Models of real exponentiation

The same holds when restricted analytic functions are replaced with
any Weierstrass system that includes the restricted exponential.

Open Question
Let K |= Th(Rexp). Does K admit an initial embedding into No?

The obvious approach is to use an embedding result by Ressayre
(1993), which gives a truncation closed, cross-sectional field
embedding ι of any such K into a Hahn field.

The issue is that for ε infinitesimal, it may not happen that

ι(log(1 + ε)) =

∞∑
k=1

(−1)k−1 ι(ε)
k

k
.

This is really the only obstruction.
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Transserial embeddings

In proving the main theorem, we show the following:

Corollary (First shown by Berarducci-Mantova, 2018)
The surreals are a transseries field.

Let R((tΓ))On be a transseries field. An embedding R((tΓ))On → No is
called transserial if it preserves logarithms, infinite sums, products,
and monomials.

Open Question
Which transseries fields admit initial transserial embeddings into No?
Which logarithmic fields are isomorphic to initial logarithmic subfields
of No?
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Partial answers

Looking at the main theorem differently, we see that any transseries
field that has a truncation closed, cross-sectional exponential subfield
admits an initial transserial embedding into No.

Corollary
Any transseries field admits a truncation closed transserial embedding
into No.

Proof.
Schmeling showed that any transseries field R((tΓ))On extends to a
transseries field R((tΓ

∗
))On that is closed under exponentiation. Any

initial transserial embedding R((tΓ
∗
))On → No induces a truncation

closed embedding R((tΓ))On → No.
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Logarithmic-exponential transseries and derivations

Let T be the field of logarithmic-exponential transseries. There is a
canonical embedding T→ No sending x to ω.

This is even an elementary embedding of differential fields, with the
derivation on No as defined by Berarducci-Mantova (2018).

Theorem (Ehrlich-K., 2021)
The image of the canonical embedding T→ No is initial.

Open Question
Which ordered differential fields admit initial embeddings into No?

This question is difficult. There are many possible derivations on No,
and while the theory of No as a differential field is understood thanks
to Aschenbrenner-van den Dries-van der Hoeven (2017 and 2019), it is
still quite complicated.
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Thank You!
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