Tame pairs of transseries fields

Nigel Pynn-Coates

University of Vienna

Exponential fields Banff International Research Station 8 February 2024

Transseries

Let $\mathbb T$ be the differential field of logarithmic-exponential transseries constructed by van den Dries-Macintyre-Marker. Example series in $\mathbb T$:

$$7e^{e^{x}+e^{x/2}+e^{x/4}+\ldots}-3e^{x^{2}}+5x^{\sqrt{2}}-(\log x)^{\pi}+42+x^{-1}+x^{-2}+\cdots+e^{-x}$$

Remarks:

- ${\mathbb T}$ is a real closed field equipped with a derivation.
- \mathbb{T} is exponentially bounded.

Model completeness for transseries

Let $\mathcal{O}_{\mathbb{T}} \coloneqq \operatorname{conv}_{\mathbb{T}}(\mathbb{R}) = \{ a \in \mathbb{T} : |a| \leqslant r \text{ for some } r \in \mathbb{R}^{>0} \}.$

Theorem (Aschenbrenner-van den Dries-van der Hoeven)

 $(\mathbb{T}, \mathcal{O}_{\mathbb{T}})$ is model complete and completely axiomatized by the theory T_{small}^{nl} of H-fields with small derivation that are newtonian, ω -free, and Liouville closed.

Model completeness for transseries

Let $\mathcal{O}_{\mathbb{T}} \coloneqq \operatorname{conv}_{\mathbb{T}}(\mathbb{R}) = \{ a \in \mathbb{T} : |a| \leqslant r \text{ for some } r \in \mathbb{R}^{>0} \}.$

Theorem (Aschenbrenner-van den Dries-van der Hoeven)

 $(\mathbb{T},\mathcal{O}_{\mathbb{T}})$ is model complete and completely axiomatized by the theory T^{nl}_{small} of H-fields with small derivation that are newtonian, ω -free, and Liouville closed.

Remarks on the language:

- Here, \mathbb{T} is construed as an (ordered) differential field and $(\mathbb{T}, \mathcal{O}_{\mathbb{T}})$ is its expansion to an ordered valued differential field.
- Since $\mathbb{R} = C_{\mathbb{T}} := \{a \in \mathbb{T} : \partial a = 0\}$, $\mathcal{O}_{\mathbb{T}}$ is existentially definable in \mathbb{T} as a differential field. In particular, $T_{\text{small}}^{\text{nl}}$ can be formulated in the language of differential fields.
- But careful! ${\mathbb T}$ is not model complete without the valuation ring.

Beyond transseries: Hyperseries

 $E(x + 1) = \exp E(x)$ has no solution in \mathbb{T} but has a solution that belongs to a Hardy field (Boshernitzan).

Bagayoko–van der Hoeven–Kaplan construct a field $\mathbb{H} \supseteq \mathbb{T}$ (also denoted by $\widetilde{\mathbb{L}}$) of hyperseries that is closed under hyperexponentials \exp_{α} and hyperlogarithms \log_{α} for all ordinals α .

Let $\mathcal{O}_{\mathbb{H}} = \operatorname{conv}_{\mathbb{H}}(\mathbb{R}).$

Theorem (Bagayoko)

 $(\mathbb{H}, \mathcal{O}_{\mathbb{H}}) \succcurlyeq (\mathbb{T}, \mathcal{O}_{\mathbb{T}})$. In particular, $(\mathbb{H}, \mathcal{O}_{\mathbb{H}})$ is model complete.

A second valuation

On \mathbb{H} , we have its natural valuation ring $\mathcal{O}_{\mathbb{H}}$. But $\dot{\mathcal{O}} = \text{conv}_{\mathbb{H}}(\mathbb{T}) \supseteq \mathcal{O}_{\mathbb{H}}$ is another valuation ring.

Comparing the valuations:

•
$$a \prec b \iff |a/b| < r$$
 for every $r \in \mathbb{R}^{>0}$

•
$$a \dot{\prec} b \iff |a/b| < 1/\exp_n(x)$$
 for every n

A second valuation

On \mathbb{H} , we have its natural valuation ring $\mathcal{O}_{\mathbb{H}}$. But $\dot{\mathcal{O}} = \operatorname{conv}_{\mathbb{H}}(\mathbb{T}) \supseteq \mathcal{O}_{\mathbb{H}}$ is another valuation ring.

Comparing the valuations:

•
$$a \prec b \iff |a/b| < r$$
 for every $r \in \mathbb{R}^{>0}$

•
$$a \dot{\prec} b \iff |a/b| < 1/\exp_n(x)$$
 for every n

For example:

- $x \prec \exp(x)$
- $x \not\prec \exp(x)$
- $x \stackrel{\cdot}{\prec} \exp_{\omega}(x)$

So with both $\mathcal{O}_{\mathbb{H}}$ and $\dot{\mathcal{O}}$ we can express more about $\mathbb{H}.$

Model completeness for hyperseries

Recall (B): $(\mathbb{H}, \mathcal{O}_{\mathbb{H}})$ is model complete.

Theorem (PC)

There is $(\mathbb{T}, \mathcal{O}_{\mathbb{T}}) \preccurlyeq (\mathbb{T}^*, \mathcal{O}_{\mathbb{T}^*}) \preccurlyeq (\mathbb{H}, \mathcal{O}_{\mathbb{H}})$ with $\operatorname{conv}_{\mathbb{H}}(\mathbb{T}^*) = \operatorname{conv}_{\mathbb{H}}(\mathbb{T})$ such that $(\mathbb{H}, \operatorname{conv}_{\mathbb{H}}(\mathbb{T}^*), \mathbb{T}^*, \mathcal{O}_{\mathbb{T}^*})$ is model complete.

Model completeness for hyperseries

Recall (B): $(\mathbb{H}, \mathcal{O}_{\mathbb{H}})$ is model complete.

Theorem (PC)

There is $(\mathbb{T}, \mathcal{O}_{\mathbb{T}}) \preccurlyeq (\mathbb{T}^*, \mathcal{O}_{\mathbb{T}^*}) \preccurlyeq (\mathbb{H}, \mathcal{O}_{\mathbb{H}})$ with $\operatorname{conv}_{\mathbb{H}}(\mathbb{T}^*) = \operatorname{conv}_{\mathbb{H}}(\mathbb{T})$ such that $(\mathbb{H}, \operatorname{conv}_{\mathbb{H}}(\mathbb{T}^*), \mathbb{T}^*, \mathcal{O}_{\mathbb{T}^*})$ is model complete.

Question: Can we give an explicit description of such a $\mathbb{T}^*?$

Remark: Similar results hold for **No** or maximal Hardy fields.

Why not (\mathbb{H}, \mathbb{T}) ? The problem is that \mathbb{T} is too small: e.g., $\log_{\alpha}(x)$ for infinite α is exponentially bounded but has no standard part in \mathbb{T} .

Tame pairs of real closed fields

Definition

Let $L \subsetneq K$ be RCFs with $\mathcal{O} = \operatorname{conv}_{K}(L)$ and $\mathcal{O} = \{a \in K : |a| < L^{>0}\}$, the maximal ideal of \mathcal{O} . Then L is **tame in** K if $\mathcal{O} = L + \mathcal{O}$, i.e., every element of \mathcal{O} has a (unique) "standard part" in L.

Tame pairs of real closed fields

Definition

Let $L \subsetneq K$ be RCFs with $\mathcal{O} = \operatorname{conv}_{K}(L)$ and $\mathcal{O} = \{a \in K : |a| < L^{>0}\}$, the maximal ideal of \mathcal{O} . Then L is **tame in** K if $\mathcal{O} = L + \mathcal{O}$, i.e., every element of \mathcal{O} has a (unique) "standard part" in L.

Example
(
$$\mathbb{T}, \mathbb{R}$$
)
($\bigcup_{n>0} \mathbb{R}((t^{1/n})), \mathbb{R}$)

Tame pairs go back to Macintyre and Cherlin–Dickmann; enrichments of these structures by van den Dries–Lewenberg.

Transserial tame pairs

Definition

A transserial tame pair is a pair (K, L) of differential fields such that:

- $K, L \models T_{small}^{nl}$ as differential fields;
- **2** $L \subsetneq K$ is a proper differential subfield of K;
- L is tame in K as real closed fields.

Transserial tame pairs

Definition

A transserial tame pair is a pair (K, L) of differential fields such that:

- $K, L \models T_{small}^{nl}$ as differential fields;
- **2** $L \subsetneq K$ is a proper differential subfield of K;
- L is tame in K as real closed fields.

Although \mathbb{T} is not model complete without the valuation ring:

Lemma

Let (K, L) be a transserial tame pair. Then $C_L = C_K$ and so $(L, \mathcal{O}_L) \preccurlyeq (K, \mathcal{O}_K)$, where $\mathcal{O}_K = \operatorname{conv}_K(C_K)$.

Model completeness for transserial tame pairs

Theorem (PC)

The theory of transserial tame pairs is model complete in the language $\{+, -, \cdot, 0, 1, \leq, \partial, P, \mathcal{O}_P, \dot{\mathcal{O}}\}.$

In a transserial tame pair (K, L), interpret:

- P as L;
- \mathcal{O}_P as conv_L(C_L);
- $\dot{\mathcal{O}}$ as conv_K(L).

Application to ${\mathbb H}$

Proposition

Let $K, L \models T_{\text{small}}^{\text{nl}}$ with $L \subsetneq K$. With $\dot{\mathcal{O}} := \text{conv}_{K}(L)$ and \dot{o} its maximal ideal, $\dot{K} := \dot{\mathcal{O}}/\dot{o}$ is the residue field of $(K, \dot{\mathcal{O}})$ and satisfies $\dot{K} \models T_{\text{small}}^{\text{nl}}$.

Theorem (PC)

There is
$$(\mathbb{T}, \mathcal{O}_{\mathbb{T}}) \preccurlyeq (\mathbb{T}^*, \mathcal{O}_{\mathbb{T}^*}) \preccurlyeq (\mathbb{H}, \mathcal{O}_{\mathbb{H}})$$
 with
conv _{\mathbb{H}} $(\mathbb{T}^*) = \operatorname{conv}_{\mathbb{H}}(\mathbb{T}) = \dot{\mathcal{O}}$ such that $(\mathbb{H}, \dot{\mathcal{O}}, \mathbb{T}^*, \mathcal{O}_{\mathbb{T}^*})$ is model complete.

Application to \mathbb{H}

Proposition

Let $K, L \models T_{\text{small}}^{\text{nl}}$ with $L \subsetneq K$. With $\dot{\mathcal{O}} \coloneqq \text{conv}_K(L)$ and \dot{o} its maximal ideal, $\dot{K} \coloneqq \dot{\mathcal{O}}/\dot{o}$ is the residue field of $(K, \dot{\mathcal{O}})$ and satisfies $\dot{K} \models T_{\text{small}}^{\text{nl}}$.

Theorem (PC)

There is
$$(\mathbb{T}, \mathcal{O}_{\mathbb{T}}) \preccurlyeq (\mathbb{T}^*, \mathcal{O}_{\mathbb{T}^*}) \preccurlyeq (\mathbb{H}, \mathcal{O}_{\mathbb{H}})$$
 with $\operatorname{conv}_{\mathbb{H}}(\mathbb{T}^*) = \operatorname{conv}_{\mathbb{H}}(\mathbb{T}) = \dot{\mathcal{O}}$ such that $(\mathbb{H}, \dot{\mathcal{O}}, \mathbb{T}^*, \mathcal{O}_{\mathbb{T}^*})$ is model complete.

Proof.

As $(\mathbb{H}, \dot{\mathcal{O}})$ is differential-henselian, by ADH we can extend \mathbb{T} to a lift $\mathbb{T}^* \subseteq \dot{\mathcal{O}}$ of $\dot{K} \models T_{\text{small}}^{\text{nl}}$. Then \mathbb{T}^* is tame in \mathbb{H} , so $(\mathbb{H}, \dot{\mathcal{O}}, \mathbb{T}^*, \mathcal{O}_{\mathbb{T}^*})$ is a transserial tame pair and thus model complete.

Differential-Hensel-Liouville closed pre-H-fields

Key step: Develop model theory of structures like (K, \dot{O}) .

Let T^{dhl} be the theory of pre-*H*-fields that are differential-henselian and Liouville closed with nontrivial valuation.

Recall (ADH): \mathbb{T} is completely axiomatized by the theory $T_{\text{small}}^{\text{nl}}$ of *H*-fields with small derivation that are newtonian, ω -free, and Liouville closed.

Differential-Hensel-Liouville closed pre-H-fields

Key step: Develop model theory of structures like (K, \dot{O}) .

Let T^{dhl} be the theory of pre-*H*-fields that are differential-henselian and Liouville closed with nontrivial valuation.

Recall (ADH): \mathbb{T} is completely axiomatized by the theory \mathcal{T}_{small}^{nl} of *H*-fields with small derivation that are newtonian, ω -free, and Liouville closed.

Theorem (PC)

 $(K, \dot{O}) \models T^{dhl}$ and $\dot{K} \models T^{nl}_{small}$ if and only if (K, \dot{K}) is a transserial tame pair (identifying $\dot{K} = \dot{O}/\dot{o}$ with a lift inside \dot{O}).

Idea for \mathbb{H} : Decomposes \mathbb{H} into transexponential part $(\mathbb{H}, \dot{\mathcal{O}})$ and exponentially bounded part \mathbb{T}^* .

Interlude: Hahn fields

Proposition

No model of T^{dhl} is spherically complete (i.e., isomorphic to a Hahn field).

Proof.

Use the logarithmic derivative map and integration to obtain a surjective logarithmic cross-section, which cannot exist on a spherically complete ordered valued field by a theorem of Kuhlmann–Kuhlmann–Shelah.

Relative results

Setup:

- Suppose that $(K, \dot{\mathcal{O}}) \models T^{\mathsf{dhl}}$.
- Identify (K,...) with a lift of the differential residue field of (K, O), possibly expanded with additional structure.
- Expand with a standard part map $\pi \colon \dot{\mathcal{O}} \to \dot{\mathcal{K}}$.

Define K^* likewise.

Theorem (PC)

 $(K, \dot{\mathcal{O}}, \dot{K}, \dots, \pi) \equiv (K^*, \dot{\mathcal{O}}^*, \dot{K}^*, \dots, \pi^*) \iff (\dot{K}, \dots) \equiv (\dot{K}^*, \dots).$ $(If (\dot{K}, \dots) \text{ is model complete, then so is } (K, \dot{\mathcal{O}}, \dot{K}, \dots, \pi).$

Relative results

Setup:

- Suppose that $(K, \dot{\mathcal{O}}) \models T^{\mathsf{dhl}}$.
- Identify (K,...) with a lift of the differential residue field of (K, O), possibly expanded with additional structure.
- Expand with a standard part map $\pi \colon \dot{\mathcal{O}} \to \dot{\mathcal{K}}$.

Define K^* likewise.

Theorem (PC)

•
$$(K, \dot{\mathcal{O}}, \dot{K}, \dots, \pi) \equiv (K^*, \dot{\mathcal{O}}^*, \dot{K}^*, \dots, \pi^*) \iff (\dot{K}, \dots) \equiv (\dot{K}^*, \dots).$$

• If (\dot{K}, \dots) is model complete, then so is $(K, \dot{\mathcal{O}}, \dot{K}, \dots, \pi).$

Questions:

- Relative quantifier elimination?
- What is the structure induced on \dot{K} ?
- Further applications to hyperseries (or No or maximal Hardy fields)?
- What about adding a (trans)exponential function?

Nigel Pynn-Coates (Vienna)

Thank you!

This material is based upon work supported by NSF DMS-2154086. This research was funded in whole or in part by the Austrian Science Fund (FWF) 10.55776/ESP450.

Nigel Pynn-Coates (Vienna)

Tame pairs of transseries fields

8 February 2024