

BY VINCENT BAGAYOKO (IMJ-PRG)

Joint work with L. S. KRAPP, S. KUHLMANN, D. C. PANAZZOLO & M. SERRA

Introduction of non-commutativity

Question:

$$a \cdot b = b \cdot a \qquad ?$$

Introduction of non-commutativity

Question:

$$a \cdot b = b \cdot a$$
 ?

Answer: you are *wrong*.

Let \mathcal{A} be the \mathbb{C} -algebra of entire functions. For $f \in \mathcal{A}$ and $\alpha \in \mathbb{C}$, we have

$$\forall z \in \mathbb{C}, f(z+\alpha) = \sum_{n \in \mathbb{N}} \frac{f^{(n)}(z)}{n!} \alpha^n.$$

Let \mathcal{A} be the \mathbb{C} -algebra of entire functions. For $f \in \mathcal{A}$ and $\alpha \in \mathbb{C}$, we have

$$\forall z \in \mathbb{C}, f(z+\alpha) = \sum_{n \in \mathbb{N}} \frac{f^{(n)}(z)}{n!} \alpha^n.$$

We have an automorphism $\sigma_{\alpha} : g \mapsto g \circ (\mathrm{id} + \alpha)$ of \mathcal{A} and a derivation $\partial_{\alpha} : g \mapsto \alpha g'$ on \mathcal{A} , and

Let \mathcal{A} be the \mathbb{C} -algebra of entire functions. For $f \in \mathcal{A}$ and $\alpha \in \mathbb{C}$, we have

$$\forall z \in \mathbb{C}, f(z+\alpha) = \sum_{n \in \mathbb{N}} \frac{f^{(n)}(z)}{n!} \alpha^n.$$

We have an automorphism $\sigma_{\alpha} : g \mapsto g \circ (\mathrm{id} + \alpha)$ of \mathcal{A} and a derivation $\partial_{\alpha} : g \mapsto \alpha g'$ on \mathcal{A} , and

$$\sigma_{\alpha} = \sum_{n \in \mathbb{N}} \frac{\partial_{\alpha}^{[n]}}{n!} = \exp(\partial_{\alpha}).$$

Let \mathcal{A} be the \mathbb{C} -algebra of entire functions. For $f \in \mathcal{A}$ and $\alpha \in \mathbb{C}$, we have

$$\forall z \in \mathbb{C}, f(z+\alpha) = \sum_{n \in \mathbb{N}} \frac{f^{(n)}(z)}{n!} \alpha^n.$$

We have an automorphism $\sigma_{\alpha} : g \mapsto g \circ (\mathrm{id} + \alpha)$ of \mathcal{A} and a derivation $\partial_{\alpha} : g \mapsto \alpha g'$ on \mathcal{A} , and

$$\sigma_{\alpha} = \sum_{n \in \mathbb{N}} \frac{\partial_{\alpha}^{[n]}}{n!} = \exp(\partial_{\alpha}).$$

Furthermore, we have

$$\forall \alpha, \beta \in \mathbb{C}, \exp(\partial_{\alpha} + \partial_{\beta}) = \exp(\partial_{\alpha+\beta}) = \sigma_{\alpha+\beta} = \sigma_{\alpha} \circ \sigma_{\beta}.$$

Let \mathcal{A} be the \mathbb{C} -algebra of entire functions. For $f \in \mathcal{A}$ and $\alpha \in \mathbb{C}$, we have

$$\forall z \in \mathbb{C}, f(z+\alpha) = \sum_{n \in \mathbb{N}} \frac{f^{(n)}(z)}{n!} \alpha^n.$$

We have an automorphism $\sigma_{\alpha} : g \mapsto g \circ (\mathrm{id} + \alpha)$ of \mathcal{A} and a derivation $\partial_{\alpha} : g \mapsto \alpha g'$ on \mathcal{A} , and

$$\sigma_{\alpha} = \sum_{n \in \mathbb{N}} \frac{\partial_{\alpha}^{[n]}}{n!} = \exp(\partial_{\alpha}).$$

Furthermore, we have

$$\forall \alpha, \beta \in \mathbb{C}, \exp(\partial_{\alpha} + \partial_{\beta}) = \exp(\partial_{\alpha+\beta}) = \sigma_{\alpha+\beta} = \sigma_{\alpha} \circ \sigma_{\beta}.$$

The same applies for the algebra $\mathbb{C}[[x]] \supset \mathcal{A}$ of formal power series.

Exp-Log

Fix a field k with char(k) = 0. Given an algebra A and an endomorphism $\phi: A \longrightarrow A$, we want to make sense of the exponential

$$\exp(\phi) = \sum_{n \ge 0} \frac{1}{n!} \phi^{[n]}$$

and logarithm

$$\log(\mathrm{Id} + \phi) = \sum_{n>0} \frac{(-1)^{n+1}}{n!} \phi^{[n]}.$$

Exp-Log

Fix a field k with char(k) = 0. Given an algebra A and an endomorphism $\phi: A \longrightarrow A$, we want to make sense of the exponential

$$\exp(\phi) = \sum_{n \ge 0} \frac{1}{n!} \phi^{[n]}$$

and logarithm

$$\log(\mathrm{Id} + \phi) = \sum_{n>0} \frac{(-1)^{n+1}}{n!} \phi^{[n]}.$$

 \rightarrow bijective correspondence between derivations and automorphisms?

 \rightarrow interactions with the algebraic structures on derivations and automorphisms?

Exp-Log

Fix a field k with char(k) = 0. Given an algebra A and an endomorphism $\phi: A \longrightarrow A$, we want to make sense of the exponential

$$\exp(\phi) = \sum_{n \ge 0} \frac{1}{n!} \phi^{[n]}$$

and logarithm

$$\log(\mathrm{Id} + \phi) = \sum_{n>0} \frac{(-1)^{n+1}}{n!} \phi^{[n]}.$$

 \rightarrow bijective correspondence between derivations and automorphisms?

 \rightarrow interactions with the algebraic structures on derivations and automorphisms?

Ideas:

- In finite dimensional Lie group theory: notions of convergence, e.g. taking exponentials of matrices.
- On fields of generalised power series (e.g. Hahn series): notions of summability \rightarrow formal axiomatic approach?

Algebras with infinite sums

Ideal context: an algebra \mathcal{A} with a notion of infinite sum such that the formal power series

$$\exp(X) := \sum_{n \ge 0} \frac{1}{n!} X^n$$
 and $\log(1+X) := \sum_{n>0} \frac{(-1)^{n+1}}{n} X^n$

can be evaluated on \mathcal{A} , and satisfy

$$\log(\exp(a)) = a$$
 and $\exp(\log(1+a)) = 1+a$

whenever the expressions are defined.

Algebras with infinite sums

Ideal context: an algebra \mathcal{A} with a notion of infinite sum such that the formal power series

$$\exp(X) := \sum_{n \ge 0} \frac{1}{n!} X^n$$
 and $\log(1+X) := \sum_{n>0} \frac{(-1)^{n+1}}{n} X^n$

can be evaluated on \mathcal{A} , and satisfy

$$\log(\exp(a)) = a$$
 and $\exp(\log(1+a)) = 1+a$

whenever the expressions are defined.

Furthermore \mathcal{A} should be an algebra of linear maps on another algebra A, such that

 $\exp(\mathcal{A} \cap \operatorname{Der}(A)) = \mathcal{A} \cap \operatorname{Aut}(A).$

Finite sums in vector spaces

Fix a vector space V over k. For each set I, we have a vector space V^{I} .

Finite sums in vector spaces

Fix a vector space V over k. For each set I, we have a vector space V^I . For $v \in V^I$, write supp $v := \{i \in I : v(i) \neq 0\}$. We have a subspace

 $V^{(I)} := \{ \boldsymbol{v} \in V : \operatorname{supp} \boldsymbol{v} \text{ is finite} \},\$

Finite sums in vector spaces

Fix a vector space V over k. For each set I, we have a vector space V^I . For $v \in V^I$, write supp $v := \{i \in I : v(i) \neq 0\}$. We have a subspace

 $V^{(I)} := \{ \boldsymbol{v} \in V : \operatorname{supp} \boldsymbol{v} \text{ is finite} \},\$

and a linear summation operator

$$\Sigma_I^{\operatorname{fin}} : V^{(I)} \longrightarrow V$$

 $oldsymbol{v} \longmapsto \sum_{i \in \operatorname{supp} oldsymbol{v}} oldsymbol{v}(i).$

What are the properties of the family $(\Sigma_I^{\text{fin}})_{I \in \text{Set}}$?

Properties of finitely supported summation

Let I, J be sets and let $v \in V^{(I)}$.

Properties of finitely supported summation

Let I, J be sets and let $v \in V^{(I)}$.

Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $v \circ \varphi \in V^{(J)}$ and

 $\Sigma_J^{\text{fin}}(\boldsymbol{v}\circ\varphi) = \Sigma_I^{\text{fin}}\,\boldsymbol{v}.$

Properties of finitely supported summation

Let I, J be sets and let $v \in V^{(I)}$.

Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $v \circ \varphi \in V^{(J)}$ and

 $\Sigma_J^{\mathrm{fin}}(\boldsymbol{v}\circ\varphi) = \Sigma_I^{\mathrm{fin}}\boldsymbol{v}.$

Summation by parts. If $I = \bigsqcup_{j \in J} I_j$, then for each $j \in J$, we have

 $\boldsymbol{v}_j := \boldsymbol{v} \upharpoonright I_j \in V^{(I_j)} \text{ and } (\Sigma_{I_j}^{\operatorname{fin}} \boldsymbol{v}_j)_{j \in J} \in V^{(I)} \text{ and } \Sigma_J^{\operatorname{fin}} (\Sigma_{I_j}^{\operatorname{fin}} \boldsymbol{v}_j)_{j \in J} = \Sigma_I^{\operatorname{fin}} \boldsymbol{v}.$

Let I, J be sets and let $v \in V^{(I)}$.

Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $v \circ \varphi \in V^{(J)}$ and

 $\Sigma_J^{\mathrm{fin}}(\boldsymbol{v}\circ\varphi) = \Sigma_I^{\mathrm{fin}}\,\boldsymbol{v}.$

Summation by parts. If $I = \bigsqcup_{j \in J} I_j$, then for each $j \in J$, we have

$$oldsymbol{v}_j := oldsymbol{v} \mid I_j \in V^{(I_j)} \quad ext{and} \quad (\Sigma^{ ext{fin}}_{I_j} oldsymbol{v}_j)_{j \in J} \in V^{(I)} \quad ext{and} \quad \Sigma^{ ext{fin}}_J (\Sigma^{ ext{fin}}_{I_j} oldsymbol{v}_j)_{j \in J} = \Sigma^{ ext{fin}}_I oldsymbol{v}.$$

Finite pasting. If $I \cap J = \emptyset$ and $w \in V^{(J)}$, then $v \sqcup w \in V^{(I \sqcup J)}$.

Let I, J be sets and let $v \in V^{(I)}$.

Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $v \circ \varphi \in V^{(J)}$ and

 $\Sigma_J^{\mathrm{fin}}(\boldsymbol{v}\circ\varphi) = \Sigma_I^{\mathrm{fin}}\,\boldsymbol{v}.$

Summation by parts. If $I = \bigsqcup_{j \in J} I_j$, then for each $j \in J$, we have

$$v_j := v \upharpoonright I_j \in V^{(I_j)}$$
 and $(\Sigma_{I_j}^{\operatorname{fin}} v_j)_{j \in J} \in V^{(I)}$ and $\Sigma_J^{\operatorname{fin}} (\Sigma_{I_j}^{\operatorname{fin}} v_j)_{j \in J} = \Sigma_I^{\operatorname{fin}} v$.

Finite pasting. If $I \cap J = \emptyset$ and $w \in V^{(J)}$, then $v \sqcup w \in V^{(I \sqcup J)}$.

Ultrafiniteness. If $(f_i)_{i \in I}$ is a family of functions $f_i : \text{dom } f_i \longrightarrow k$ with finite domains dom f_i , then writing

$$I' := \{(i, x) : i \in I \land x \in \text{dom } f_i\},\$$

we have

 $(f_i(x) v(i))_{(i,x) \in I'} \in V^{(I')}.$

Summability structure: family $(\Sigma_I)_{I \in \mathbf{Set}}$ of linear operators $\Sigma_I : \operatorname{dom} \Sigma_I \longrightarrow V$, where $V^{(I)} \subseteq \operatorname{dom} \Sigma_I \subseteq V^I$ is a subspace, Σ_I extends Σ_I^{fin} on $\operatorname{dom} \Sigma_I$, and:

Summability structure: family $(\Sigma_I)_{I \in \mathbf{Set}}$ of linear operators $\Sigma_I : \operatorname{dom} \Sigma_I \longrightarrow V$, where $V^{(I)} \subseteq \operatorname{dom} \Sigma_I \subseteq V^I$ is a subspace, Σ_I extends Σ_I^{fin} on $\operatorname{dom} \Sigma_I$, and:

Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $v \circ \varphi \in \operatorname{dom} \Sigma_J$ and

 $\Sigma_J(\boldsymbol{v}\circ\varphi)=\Sigma_I\boldsymbol{v}.$

Summability structure: family $(\Sigma_I)_{I \in \mathbf{Set}}$ of linear operators $\Sigma_I : \operatorname{dom} \Sigma_I \longrightarrow V$, where $V^{(I)} \subseteq \operatorname{dom} \Sigma_I \subseteq V^I$ is a subspace, Σ_I extends Σ_I^{fin} on $\operatorname{dom} \Sigma_I$, and:

Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $v \circ \varphi \in \operatorname{dom} \Sigma_J$ and

 $\Sigma_J(\boldsymbol{v}\circ\varphi) = \Sigma_I \boldsymbol{v}.$

Summation by parts. If $I = \bigsqcup_{j \in J} I_j$, then for each $j \in J$, we have

 $v_j := v \mid I_j \in \operatorname{dom} \Sigma_{I_j}$ and $(\Sigma_{I_j}^{\operatorname{fin}} v_j)_{j \in J} \in \operatorname{dom} \Sigma_I$ and $\Sigma_J (\Sigma_{I_j} v_j)_{j \in J} = \Sigma_I v$.

Summability structure: family $(\Sigma_I)_{I \in \mathbf{Set}}$ of linear operators $\Sigma_I : \operatorname{dom} \Sigma_I \longrightarrow V$, where $V^{(I)} \subseteq \operatorname{dom} \Sigma_I \subseteq V^I$ is a subspace, Σ_I extends Σ_I^{fin} on $\operatorname{dom} \Sigma_I$, and:

Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $v \circ \varphi \in \operatorname{dom} \Sigma_J$ and

$$\Sigma_J(\boldsymbol{v}\circ\varphi) = \Sigma_I \boldsymbol{v}.$$

Summation by parts. If $I = \bigsqcup_{j \in J} I_j$, then for each $j \in J$, we have

 $v_j := v \upharpoonright I_j \in \operatorname{dom} \Sigma_{I_j}$ and $(\Sigma_{I_j}^{\operatorname{fin}} v_j)_{j \in J} \in \operatorname{dom} \Sigma_I$ and $\Sigma_J (\Sigma_{I_j} v_j)_{j \in J} = \Sigma_I v$.

Finite pasting. If $I \cap J = \emptyset$ and $w \in \operatorname{dom} \Sigma_J$, then $v \sqcup w \in \operatorname{dom} \Sigma_{I \sqcup J}$.

Summability structure: family $(\Sigma_I)_{I \in \mathbf{Set}}$ of linear operators $\Sigma_I : \operatorname{dom} \Sigma_I \longrightarrow V$, where $V^{(I)} \subseteq \operatorname{dom} \Sigma_I \subseteq V^I$ is a subspace, Σ_I extends Σ_I^{fin} on $\operatorname{dom} \Sigma_I$, and:

Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $v \circ \varphi \in \operatorname{dom} \Sigma_J$ and

 $\Sigma_J(\boldsymbol{v}\circ\varphi) = \Sigma_I \boldsymbol{v}.$

Summation by parts. If $I = \bigsqcup_{j \in J} I_j$, then for each $j \in J$, we have

 $v_j := v \upharpoonright I_j \in \operatorname{dom} \Sigma_{I_j}$ and $(\Sigma_{I_j}^{\operatorname{fin}} v_j)_{j \in J} \in \operatorname{dom} \Sigma_I$ and $\Sigma_J (\Sigma_{I_j} v_j)_{j \in J} = \Sigma_I v$.

Finite pasting. If $I \cap J = \emptyset$ and $w \in \operatorname{dom} \Sigma_J$, then $v \sqcup w \in \operatorname{dom} \Sigma_{I \sqcup J}$.

Ultrafiniteness. If $(f_i)_{i \in I}$ is a family of functions $f_i : \text{dom } f_i \longrightarrow k$ with finite domains dom f_i , then writing

$$I' := \{(i, x) : i \in I \land x \in \text{dom } f_i\},\$$

we have

$$(f_i(x) v(i))_{(i,x) \in I'} \in \operatorname{dom} \Sigma_{I'}.$$

Summability structure: family $(\Sigma_I)_{I \in \mathbf{Set}}$ of linear operators $\Sigma_I : \operatorname{dom} \Sigma_I \longrightarrow V$, where $V^{(I)} \subseteq \operatorname{dom} \Sigma_I \subseteq V^I$ is a subspace, Σ_I extends Σ_I^{fin} on $\operatorname{dom} \Sigma_I$, and:

Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $v \circ \varphi \in \operatorname{dom} \Sigma_J$ and

 $\Sigma_J(\boldsymbol{v}\circ\varphi) = \Sigma_I \boldsymbol{v}.$

Summation by parts. If $I = \bigsqcup_{j \in J} I_j$, then for each $j \in J$, we have

 $v_j := v \upharpoonright I_j \in \operatorname{dom} \Sigma_{I_j}$ and $(\Sigma_{I_j}^{\operatorname{fin}} v_j)_{j \in J} \in \operatorname{dom} \Sigma_I$ and $\Sigma_J (\Sigma_{I_j} v_j)_{j \in J} = \Sigma_I v$.

Finite pasting. If $I \cap J = \emptyset$ and $w \in \operatorname{dom} \Sigma_J$, then $v \sqcup w \in \operatorname{dom} \Sigma_{I \sqcup J}$.

Ultrafiniteness. If $(f_i)_{i \in I}$ is a family of functions $f_i : \text{dom } f_i \longrightarrow k$ with finite domains dom f_i , then writing

$$I' := \{(i, x) : i \in I \land x \in \text{dom } f_i\},\$$

we have

$$(f_i(x) v(i))_{(i,x) \in I'} \in \operatorname{dom} \Sigma_{I'}.$$

We call $(V, (\Sigma_I)_{I \in \mathbf{Set}})$ a summability space. For instance (V, Σ^{fin}) is a summability space.

I) (V, Σ) : summability space; Ω : non-empty set; \mathfrak{q} : ideal in the Boolean algebra $\mathcal{P}(\Omega)$ containing all finite subsets. We have a subspace $V[\mathfrak{q}] := \{ \boldsymbol{v} \in V^{\Omega} : \operatorname{supp} \boldsymbol{v} \in \mathfrak{q} \}$ of V^{Ω} .

I) (V, Σ) : summability space; Ω : non-empty set; \mathfrak{q} : ideal in the Boolean algebra $\mathcal{P}(\Omega)$ containing all finite subsets. We have a subspace $V[\mathfrak{q}] := \{ \boldsymbol{v} \in V^{\Omega} : \operatorname{supp} \boldsymbol{v} \in \mathfrak{q} \}$ of V^{Ω} .

We define a summability structure $\Sigma^{\mathfrak{q}}$ on $V[\mathfrak{q}]$ by setting $\boldsymbol{v} \in \operatorname{dom} \Sigma_{I}^{\mathfrak{q}}$ if and only if

$$\forall p \in \Omega, (\boldsymbol{v}(i)(p))_{i \in I} \in \operatorname{dom} \Sigma_I, \quad \text{and} \quad \bigcup_{i \in I} \operatorname{supp} \boldsymbol{v}(i) \in \mathfrak{q}.$$

I) (V, Σ) : summability space; Ω : non-empty set; \mathfrak{q} : ideal in the Boolean algebra $\mathcal{P}(\Omega)$ containing all finite subsets. We have a subspace $V[\mathfrak{q}] := \{ \boldsymbol{v} \in V^{\Omega} : \operatorname{supp} \boldsymbol{v} \in \mathfrak{q} \}$ of V^{Ω} .

We define a summability structure $\Sigma^{\mathfrak{q}}$ on $V[\mathfrak{q}]$ by setting $\boldsymbol{v} \in \operatorname{dom} \Sigma_{I}^{\mathfrak{q}}$ if and only if

$$\forall p \in \Omega, (\boldsymbol{v}(i)(p))_{i \in I} \in \operatorname{dom} \Sigma_I, \quad \text{and} \quad \bigcup_{i \in I} \operatorname{supp} \boldsymbol{v}(i) \in \mathfrak{q}.$$

Then $\forall p \in \Omega, (\Sigma_I^{\mathfrak{q}} \boldsymbol{v})(p) := \Sigma_I (\boldsymbol{v}(i)(p))_{i \in I}.$

I) (V, Σ) : summability space; Ω : non-empty set; \mathfrak{q} : ideal in the Boolean algebra $\mathcal{P}(\Omega)$ containing all finite subsets. We have a subspace $V[\mathfrak{q}] := \{ \boldsymbol{v} \in V^{\Omega} : \operatorname{supp} \boldsymbol{v} \in \mathfrak{q} \}$ of V^{Ω} .

We define a summability structure $\Sigma^{\mathfrak{q}}$ on $V[\mathfrak{q}]$ by setting $\boldsymbol{v} \in \operatorname{dom} \Sigma_{I}^{\mathfrak{q}}$ if and only if

$$\forall p \in \Omega, (\boldsymbol{v}(i)(p))_{i \in I} \in \operatorname{dom} \Sigma_I, \quad \text{and} \quad \bigcup_{i \in I} \operatorname{supp} \boldsymbol{v}(i) \in \mathfrak{q}.$$

Then
$$\forall p \in \Omega, (\Sigma_I^{\mathfrak{q}} \boldsymbol{v})(p) := \Sigma_I (\boldsymbol{v}(i)(p))_{i \in I}.$$

II) Let A be an algebra, $\mathfrak{p} \subset A$ a proper ideal with $\bigcap_{n>0} \mathfrak{p}^n = \{0\}$. Assume that A is complete in the \mathfrak{p} -adic topology. We define a summability structure Σ on A by setting

I) (V, Σ) : summability space; Ω : non-empty set; \mathfrak{q} : ideal in the Boolean algebra $\mathcal{P}(\Omega)$ containing all finite subsets. We have a subspace $V[\mathfrak{q}] := \{ \boldsymbol{v} \in V^{\Omega} : \operatorname{supp} \boldsymbol{v} \in \mathfrak{q} \}$ of V^{Ω} .

We define a summability structure $\Sigma^{\mathfrak{q}}$ on $V[\mathfrak{q}]$ by setting $\boldsymbol{v} \in \operatorname{dom} \Sigma_{I}^{\mathfrak{q}}$ if and only if

$$\forall p \in \Omega, (\boldsymbol{v}(i)(p))_{i \in I} \in \operatorname{dom} \Sigma_I, \quad \text{and} \quad \bigcup_{i \in I} \operatorname{supp} \boldsymbol{v}(i) \in \mathfrak{q}.$$

Then
$$\forall p \in \Omega, (\Sigma_I^{\mathfrak{q}} \boldsymbol{v})(p) := \Sigma_I (\boldsymbol{v}(i)(p))_{i \in I}.$$

II) Let A be an algebra, $\mathfrak{p} \subset A$ a proper ideal with $\bigcap_{n>0} \mathfrak{p}^n = \{0\}$. Assume that A is complete in the \mathfrak{p} -adic topology. We define a summability structure Σ on A by setting

dom
$$\Sigma_I := \{ \boldsymbol{a} \in A^I : \forall n > 0, \{ i \in I : \boldsymbol{a}(i) \notin \boldsymbol{p}^n \}$$
 is finite $\},$

and

$$\Sigma_I \mathbf{a} := \lim \left(\sum_{\mathbf{a}(i) \notin \mathfrak{p}^n} \mathfrak{a}(i) \right)_{n > 0}.$$

I) (V, Σ) : summability space; Ω : non-empty set; \mathfrak{q} : ideal in the Boolean algebra $\mathcal{P}(\Omega)$ containing all finite subsets. We have a subspace $V[\mathfrak{q}] := \{ \boldsymbol{v} \in V^{\Omega} : \operatorname{supp} \boldsymbol{v} \in \mathfrak{q} \}$ of V^{Ω} .

We define a summability structure $\Sigma^{\mathfrak{q}}$ on $V[\mathfrak{q}]$ by setting $\boldsymbol{v} \in \operatorname{dom} \Sigma_{I}^{\mathfrak{q}}$ if and only if

$$\forall p \in \Omega, (\boldsymbol{v}(i)(p))_{i \in I} \in \operatorname{dom} \Sigma_I, \quad \text{and} \quad \bigcup_{i \in I} \operatorname{supp} \boldsymbol{v}(i) \in \mathfrak{q}.$$

Then
$$\forall p \in \Omega, (\Sigma_I^{\mathfrak{q}} \boldsymbol{v})(p) := \Sigma_I (\boldsymbol{v}(i)(p))_{i \in I}.$$

II) Let A be an algebra, $\mathfrak{p} \subset A$ a proper ideal with $\bigcap_{n>0} \mathfrak{p}^n = \{0\}$. Assume that A is complete in the \mathfrak{p} -adic topology. We define a summability structure Σ on A by setting

dom
$$\Sigma_I := \{ \boldsymbol{a} \in A^I : \forall n > 0, \{ i \in I : \boldsymbol{a}(i) \notin \boldsymbol{p}^n \} \text{ is finite} \},\$$

and

$$\Sigma_I \mathbf{a} := \lim \left(\sum_{\mathbf{a}(i) \notin \mathfrak{p}^n} \mathfrak{a}(i) \right)_{n > 0}.$$

III) The category of summability spaces with suitable morphisms is complete and cocomplete.

Strong linearity

Strongly linear maps

Let (V, Σ) be a summability space. A linear map $\phi: V \longrightarrow V$ is said strongly linear if for all sets I and $v \in \operatorname{dom} \Sigma_I$, we have $\phi \circ v \in \operatorname{dom} \Sigma_I$ and

 $\Sigma_I(\phi \circ \boldsymbol{v}) = \phi(\Sigma_I \boldsymbol{v}).$

Strong linearity

Strongly linear maps

Let (V, Σ) be a summability space. A linear map $\phi: V \longrightarrow V$ is said strongly linear if for all sets I and $v \in \operatorname{dom} \Sigma_I$, we have $\phi \circ v \in \operatorname{dom} \Sigma_I$ and

 $\Sigma_I(\phi \circ \boldsymbol{v}) = \phi(\Sigma_I \boldsymbol{v}).$

Example: almost everything*.

Strong linearity

Strongly linear maps

Let (V, Σ) be a summability space. A linear map $\phi: V \longrightarrow V$ is said strongly linear if for all sets I and $v \in \operatorname{dom} \Sigma_I$, we have $\phi \circ v \in \operatorname{dom} \Sigma_I$ and

 $\Sigma_I(\phi \circ \boldsymbol{v}) = \phi(\Sigma_I \boldsymbol{v}).$

Example: almost everything*.

Summability structure Σ^{Lin} on the space $\text{Lin}^+(V)$ of strongly linear maps. Given $I \in \mathbf{Set}$:

Strong linearity

Strongly linear maps

Let (V, Σ) be a summability space. A linear map $\phi: V \longrightarrow V$ is said strongly linear if for all sets I and $v \in \operatorname{dom} \Sigma_I$, we have $\phi \circ v \in \operatorname{dom} \Sigma_I$ and

 $\Sigma_I(\phi \circ \boldsymbol{v}) = \phi(\Sigma_I \boldsymbol{v}).$

Example: almost everything*.

Summability structure Σ^{Lin} on the space $\text{Lin}^+(V)$ of strongly linear maps. Given $I \in \mathbf{Set}$:

• dom Σ_I^{Lin} is the set of families $\phi: I \longrightarrow \text{Lin}(V)$ such that for all $J \in \mathbf{Set}$ and $v \in \text{dom } \Sigma_J$,

 $(\boldsymbol{\phi}(i)(\boldsymbol{v}(j)))_{(i,j)\in I\times J}\in \operatorname{dom}\Sigma_{I\times J}.$

Strong linearity

Strongly linear maps

Let (V, Σ) be a summability space. A linear map $\phi: V \longrightarrow V$ is said strongly linear if for all sets I and $v \in \operatorname{dom} \Sigma_I$, we have $\phi \circ v \in \operatorname{dom} \Sigma_I$ and

 $\Sigma_I(\phi \circ \boldsymbol{v}) = \phi(\Sigma_I \boldsymbol{v}).$

Example: almost everything*.

Summability structure Σ^{Lin} on the space $\text{Lin}^+(V)$ of strongly linear maps. Given $I \in \mathbf{Set}$:

• dom Σ_I^{Lin} is the set of families $\phi: I \longrightarrow \text{Lin}(V)$ such that for all $J \in \mathbf{Set}$ and $v \in \text{dom } \Sigma_J$,

 $(\boldsymbol{\phi}(i)(\boldsymbol{v}(j)))_{(i,j)\in I\times J}\in \operatorname{dom}\Sigma_{I\times J}.$

• For $\phi \in \operatorname{dom} \Sigma_I^{\operatorname{Lin}}$, define

 $\Sigma_I^{\operatorname{Lin}} \phi := v \longmapsto \Sigma_I(\phi(i)(v))_{i \in I}.$

Definition: summability algebra

Let $(A, +, 0, ., \cdot)$ be an algebra over k, and Σ a summability structure on (A, +, 0, .). Then (A, Σ) is a summability algebra if for all sets I, J and all $(a, b) \in \operatorname{dom} \Sigma_I \times \operatorname{dom} \Sigma_J$, we have

$$\boldsymbol{a} \cdot \boldsymbol{b} := (\boldsymbol{a}(i) \cdot \boldsymbol{b}(j))_{(i,j) \in I \times J} \in \operatorname{dom} \Sigma_{I \times J},$$

and

 $\Sigma_{I \times J} (\boldsymbol{a} \cdot \boldsymbol{b}) = (\Sigma_{I} \boldsymbol{a}) \cdot (\Sigma_{J} \boldsymbol{b}).$

Definition: summability algebra

Let $(A, +, 0, ., \cdot)$ be an algebra over k, and Σ a summability structure on (A, +, 0, .). Then (A, Σ) is a summability algebra if for all sets I, J and all $(a, b) \in \operatorname{dom} \Sigma_I \times \operatorname{dom} \Sigma_J$, we have

$$\boldsymbol{a} \cdot \boldsymbol{b} := (\boldsymbol{a}(i) \cdot \boldsymbol{b}(j))_{(i,j) \in I \times J} \in \operatorname{dom} \Sigma_{I \times J},$$

and

$$\Sigma_{I \times J} (\boldsymbol{a} \cdot \boldsymbol{b}) = (\Sigma_{I} \boldsymbol{a}) \cdot (\Sigma_{J} \boldsymbol{b}).$$

Definition: summability algebra

Let $(A, +, 0, ., \cdot)$ be an algebra over k, and Σ a summability structure on (A, +, 0, .). Then (A, Σ) is a summability algebra if for all sets I, J and all $(a, b) \in \operatorname{dom} \Sigma_I \times \operatorname{dom} \Sigma_J$, we have

$$\boldsymbol{a} \cdot \boldsymbol{b} := (\boldsymbol{a}(i) \cdot \boldsymbol{b}(j))_{(i,j) \in I \times J} \in \operatorname{dom} \Sigma_{I \times J},$$

and

 $\Sigma_{I \times J} (\boldsymbol{a} \cdot \boldsymbol{b}) = (\Sigma_{I} \boldsymbol{a}) \cdot (\Sigma_{J} \boldsymbol{b}).$

Examples:

• given a summability algebra (A, Σ) , a set $\Omega \neq \emptyset$ and an ideal \mathfrak{q} of $\mathcal{P}(\Omega)$ containg all finite subsets, the summability space $A[\mathfrak{q}]$ under pointwise product;

Definition: summability algebra

Let $(A, +, 0, ., \cdot)$ be an algebra over k, and Σ a summability structure on (A, +, 0, .). Then (A, Σ) is a summability algebra if for all sets I, J and all $(a, b) \in \operatorname{dom} \Sigma_I \times \operatorname{dom} \Sigma_J$, we have

$$\boldsymbol{a} \cdot \boldsymbol{b} := (\boldsymbol{a}(i) \cdot \boldsymbol{b}(j))_{(i,j) \in I \times J} \in \operatorname{dom} \Sigma_{I \times J},$$

and

 $\Sigma_{I \times J} (\boldsymbol{a} \cdot \boldsymbol{b}) = (\Sigma_{I} \boldsymbol{a}) \cdot (\Sigma_{J} \boldsymbol{b}).$

- given a summability algebra (A, Σ), a set Ω ≠ Ø and an ideal q of P(Ω) containg all finite subsets, the summability space A[q] under pointwise product;
- complete algebras for Hausdorff p-adic topologies;

Definition: summability algebra

Let $(A, +, 0, ., \cdot)$ be an algebra over k, and Σ a summability structure on (A, +, 0, .). Then (A, Σ) is a summability algebra if for all sets I, J and all $(a, b) \in \operatorname{dom} \Sigma_I \times \operatorname{dom} \Sigma_J$, we have

$$\boldsymbol{a} \cdot \boldsymbol{b} := (\boldsymbol{a}(i) \cdot \boldsymbol{b}(j))_{(i,j) \in I \times J} \in \operatorname{dom} \Sigma_{I \times J},$$

and

 $\Sigma_{I \times J} (\boldsymbol{a} \cdot \boldsymbol{b}) = (\Sigma_{I} \boldsymbol{a}) \cdot (\Sigma_{J} \boldsymbol{b}).$

- given a summability algebra (A, Σ), a set Ω ≠ Ø and an ideal q of P(Ω) containg all finite subsets, the summability space A[q] under pointwise product;
- complete algebras for Hausdorff p-adic topologies;
- given a summability space (V, Σ) , the summability space $Lin^+(V)$ under composition;

Definition: summability algebra

Let $(A, +, 0, ., \cdot)$ be an algebra over k, and Σ a summability structure on (A, +, 0, .). Then (A, Σ) is a summability algebra if for all sets I, J and all $(a, b) \in \operatorname{dom} \Sigma_I \times \operatorname{dom} \Sigma_J$, we have

$$\boldsymbol{a} \cdot \boldsymbol{b} := (\boldsymbol{a}(i) \cdot \boldsymbol{b}(j))_{(i,j) \in I \times J} \in \operatorname{dom} \Sigma_{I \times J},$$

and

 $\Sigma_{I \times J} (\boldsymbol{a} \cdot \boldsymbol{b}) = (\Sigma_{I} \boldsymbol{a}) \cdot (\Sigma_{J} \boldsymbol{b}).$

- given a summability algebra (A, Σ), a set Ω ≠ Ø and an ideal q of P(Ω) containg all finite subsets, the summability space A[q] under pointwise product;
- complete algebras for Hausdorff p-adic topologies;
- given a summability space (V, Σ) , the summability space $Lin^+(V)$ under composition;
- quotients of summability algebras by ideals which are closed under arbitrary sums.

Strongly linear derivations and automorphisms

Let (A,Σ) be a summability algebra. Write

$$\mathrm{Der}^+(A) = \{ \delta \in \mathrm{Lin}^+(A) : \forall a, b \in A, \delta(a \cdot b) = \delta(a) \cdot b + a \cdot \delta(b) \}.$$

 $\operatorname{Aut}^+(A) := \{ \sigma \in \operatorname{Lin}^+(A) \cap \operatorname{GL}(A) : \forall a, b \in A, \sigma(a \cdot b) = \sigma(a) \cdot \sigma(b) \}.$

Strongly linear derivations and automorphisms

Let (A, Σ) be a summability algebra. Write

$$\mathrm{Der}^+(A) = \{ \delta \in \mathrm{Lin}^+(A) : \forall a, b \in A, \delta(a \cdot b) = \delta(a) \cdot b + a \cdot \delta(b) \}.$$

$$\operatorname{Aut}^+(A) := \{ \sigma \in \operatorname{Lin}^+(A) \cap \operatorname{GL}(A) : \forall a, b \in A, \sigma(a \cdot b) = \sigma(a) \cdot \sigma(b) \}.$$

 $Der^+(A)$: Lie subalgebra of $Lin^+(A)$ which is closed under sums of summable families $Aut^+(A)$: subgroup of the group of automorphisms of A.

Strongly linear derivations and automorphisms

Let $({\cal A},\Sigma)$ be a summability algebra. Write

$$\mathrm{Der}^+(A) = \{ \delta \in \mathrm{Lin}^+(A) : \forall a, b \in A, \delta(a \cdot b) = \delta(a) \cdot b + a \cdot \delta(b) \}.$$

 $\operatorname{Aut}^+(A) := \{ \sigma \in \operatorname{Lin}^+(A) \cap \operatorname{GL}(A) : \forall a, b \in A, \sigma(a \cdot b) = \sigma(a) \cdot \sigma(b) \}.$

 $Der^+(A)$: Lie subalgebra of $Lin^+(A)$ which is closed under sums of summable families $Aut^+(A)$: subgroup of the group of automorphisms of A.

We can now ask: does the exponential

$$\delta \mapsto \sum_{n \in \mathbb{N}} \frac{\delta^{[n]}}{n!}$$

define an isomorphism

$$(\operatorname{Der}^+(A), +) \simeq (\operatorname{Aut}^+(A), \circ)$$
 ?

Finite words: Let $I \in \mathbf{Set}$. Write $I^* := \bigcup_{n \in \mathbb{N}} I^n$ for the monoid of finite words (including the empty one \emptyset) over I under concatenation

 $(i_1,\ldots,i_m):(i_{m+1},\ldots,i_n):=(i_1,\ldots,i_n).$

Finite words: Let $I \in \mathbf{Set}$. Write $I^* := \bigcup_{n \in \mathbb{N}} I^n$ for the monoid of finite words (including the empty one \emptyset) over I under concatenation

$$(i_1,\ldots,i_m):(i_{m+1},\ldots,i_n):=(i_1,\ldots,i_n).$$

Formal series: Write $k\langle\!\langle I \rangle\!\rangle := k^{I^*} = k[\mathcal{P}(I^*)]$ with its summability structure. Writing $X_w = \mathbb{1}_{\{w\}}$ for each $w \in I^*$, the family $(P(w) X_w)_{w \in I^*}$ is summable with

$$P = \sum_{w \in I^{\star}} P(w) X_w.$$

Finite words: Let $I \in \mathbf{Set}$. Write $I^* := \bigcup_{n \in \mathbb{N}} I^n$ for the monoid of finite words (including the empty one \emptyset) over I under concatenation

$$(i_1,\ldots,i_m):(i_{m+1},\ldots,i_n):=(i_1,\ldots,i_n).$$

Formal series: Write $k\langle\!\langle I \rangle\!\rangle := k^{I^*} = k[\mathcal{P}(I^*)]$ with its summability structure. Writing $X_w = \mathbb{1}_{\{w\}}$ for each $w \in I^*$, the family $(P(w) X_w)_{w \in I^*}$ is summable with

$$P = \sum_{w \in I^*} P(w) X_w.$$

We have a Cauchy product

$$P \cdot Q := \left(w \mapsto \sum_{u:v=w} P(u) Q(v) \right) = \sum_{w \in I^*} \left(\sum_{u:v=w} P(u) Q(v) \right) X_w$$

Finite words: Let $I \in \mathbf{Set}$. Write $I^* := \bigcup_{n \in \mathbb{N}} I^n$ for the monoid of finite words (including the empty one \emptyset) over I under concatenation

$$(i_1,\ldots,i_m):(i_{m+1},\ldots,i_n):=(i_1,\ldots,i_n).$$

Formal series: Write $k\langle\!\langle I \rangle\!\rangle := k^{I^*} = k[\mathcal{P}(I^*)]$ with its summability structure. Writing $X_w = \mathbb{1}_{\{w\}}$ for each $w \in I^*$, the family $(P(w) X_w)_{w \in I^*}$ is summable with

$$P = \sum_{w \in I^*} P(w) X_w.$$

We have a Cauchy product

$$P \cdot Q := \left(w \mapsto \sum_{u:v=w} P(u) Q(v) \right) = \sum_{w \in I^*} \left(\sum_{u:v=w} P(u) Q(v) \right) X_w$$

Then $k\langle\!\langle I \rangle\!\rangle$ is a unital summability algebra.

Let (A, Σ) be a unital summability algebra of the form $A = k + \mathfrak{m}$ where \mathfrak{m} is a (two-sided) proper ideal which is closed under arbitrary sums. Then A has evaluations if:

For all sets I and all families $a \in \text{dom } \Sigma_I$ with $a(i) \in \mathfrak{m}$ for all $i \in I$, the family $(a(i_1) \cdots a(i_n))_{n \in \mathbb{N} \land (i_1, \ldots, i_n) \in I^n}$ is summable.

Let (A, Σ) be a unital summability algebra of the form $A = k + \mathfrak{m}$ where \mathfrak{m} is a (two-sided) proper ideal which is closed under arbitrary sums. Then A has evaluations if:

For all sets I and all families $a \in \text{dom } \Sigma_I$ with $a(i) \in \mathfrak{m}$ for all $i \in I$, the family $(a(i_1) \cdots a(i_n))_{n \in \mathbb{N} \land (i_1, \ldots, i_n) \in I^n}$ is summable.

We can then define, for each such (I, a), a strongly linear evaluation morphism

$$\operatorname{ev}_{\boldsymbol{a}}: k \langle\!\langle I \rangle\!\rangle \longrightarrow A$$
$$P \longmapsto \sum_{w=(i_1,\ldots,i_n)\in I^{\star}} P(w) \, \boldsymbol{a}(i_1) \cdots \boldsymbol{a}(i_n).$$

Let (A, Σ) be a unital summability algebra of the form $A = k + \mathfrak{m}$ where \mathfrak{m} is a (two-sided) proper ideal which is closed under arbitrary sums. Then A has evaluations if:

For all sets I and all families $a \in \text{dom } \Sigma_I$ with $a(i) \in \mathfrak{m}$ for all $i \in I$, the family $(a(i_1) \cdots a(i_n))_{n \in \mathbb{N} \land (i_1, \ldots, i_n) \in I^n}$ is summable.

We can then define, for each such (I, a), a strongly linear evaluation morphism

$$ev_{\boldsymbol{a}} : k \langle\!\langle I \rangle\!\rangle \longrightarrow A P \longmapsto \sum_{w = (i_1, \dots, i_n) \in I^*} P(w) \, \boldsymbol{a}(i_1) \cdots \boldsymbol{a}(i_n).$$

 $k\langle\!\langle I \rangle\!\rangle$ has evaluations. For $J \in \mathbf{Set}$, $\mathbf{Q} : J \longrightarrow k\langle\!\langle I \rangle\!\rangle$ summable and $P \in k\langle\!\langle J \rangle\!\rangle$, we have

Let (A, Σ) be a unital summability algebra of the form $A = k + \mathfrak{m}$ where \mathfrak{m} is a (two-sided) proper ideal which is closed under arbitrary sums. Then A has evaluations if:

For all sets I and all families $a \in \text{dom } \Sigma_I$ with $a(i) \in \mathfrak{m}$ for all $i \in I$, the family $(a(i_1) \cdots a(i_n))_{n \in \mathbb{N} \land (i_1, \ldots, i_n) \in I^n}$ is summable.

We can then define, for each such (I, a), a strongly linear evaluation morphism

$$ev_{\boldsymbol{a}} : k \langle\!\langle I \rangle\!\rangle \longrightarrow A P \longmapsto \sum_{w = (i_1, \dots, i_n) \in I^{\star}} P(w) \, \boldsymbol{a}(i_1) \cdots \boldsymbol{a}(i_n).$$

 $k\langle\!\langle I \rangle\!\rangle$ has evaluations. For $J \in \mathbf{Set}$, $\mathbf{Q} : J \longrightarrow k\langle\!\langle I \rangle\!\rangle$ summable and $P \in k\langle\!\langle J \rangle\!\rangle$, we have

 $P[\boldsymbol{Q}[\boldsymbol{a}]] = (P[\boldsymbol{Q}])[\boldsymbol{a}].$

Let (A, Σ) be a unital summability algebra of the form $A = k + \mathfrak{m}$ where \mathfrak{m} is a (two-sided) proper ideal which is closed under arbitrary sums. Then A has evaluations if:

For all sets I and all families $a \in \text{dom } \Sigma_I$ with $a(i) \in \mathfrak{m}$ for all $i \in I$, the family $(a(i_1) \cdots a(i_n))_{n \in \mathbb{N} \land (i_1, \ldots, i_n) \in I^n}$ is summable.

We can then define, for each such (I, a), a strongly linear evaluation morphism

$$ev_{\boldsymbol{a}} : k \langle\!\langle I \rangle\!\rangle \longrightarrow A P \longmapsto \sum_{w = (i_1, \dots, i_n) \in I^{\star}} P(w) \, \boldsymbol{a}(i_1) \cdots \boldsymbol{a}(i_n).$$

 $k\langle\!\langle I \rangle\!\rangle$ has evaluations. For $J \in \mathbf{Set}$, $\mathbf{Q} : J \longrightarrow k\langle\!\langle I \rangle\!\rangle$ summable and $P \in k\langle\!\langle J \rangle\!\rangle$, we have

$$\operatorname{ev}_{(\operatorname{ev}_{a}(Q(j)))_{j\in J}}(P) = \operatorname{ev}_{a}(\operatorname{ev}_{Q}(P)).$$

Let $A = \mathbb{C} + \mathfrak{m}$ have evaluations. Note that $PSL_2(\mathbb{Z})$ acts on $\mathbb{H} + \mathfrak{m}$.

Let $A = \mathbb{C} + \mathfrak{m}$ have evaluations. For $\tau \in \mathbb{H}$ and $\xi \in \mathbb{C}$ lying above $-\tau$, we have

$$j(\tau + \xi) = J_{\tau}(\xi) = \sum_{n \in \mathbb{N}} \frac{j^{(n)}(\tau)}{n!} \xi^n.$$

Let $A = \mathbb{C} + \mathfrak{m}$ have evaluations. For $\tau \in \mathbb{H}$ and $\xi \in \mathbb{C}$ lying above $-\tau$, we have

$$j(\tau + \xi) = J_{\tau}(\xi) = \sum_{n \in \mathbb{N}} \frac{j^{(n)}(\tau)}{n!} \xi^n.$$

Given a $\gamma \in PSL_2(\mathbb{Z})$, we have a $\Gamma_{\tau} \in \gamma \cdot \tau + z \mathbb{C}[[z]]$ with $\gamma \cdot (\tau + \xi) = \Gamma_{\tau}(\xi)$ for all such ξ .

Let $A = \mathbb{C} + \mathfrak{m}$ have evaluations. For $\tau \in \mathbb{H}$ and $\xi \in \mathbb{C}$ lying above $-\tau$, we have

$$j(\tau + \xi) = J_{\tau}(\xi) = \sum_{n \in \mathbb{N}} \frac{j^{(n)}(\tau)}{n!} \xi^n.$$

Given a $\gamma \in \text{PSL}_2(\mathbb{Z})$, we have a $\Gamma_{\tau} \in \gamma \cdot \tau + z \mathbb{C}[[z]]$ with $\gamma \cdot (\tau + \xi) = \Gamma_{\tau}(\xi)$ for all such ξ . We have $j(\gamma \cdot (\tau + \xi)) = j(\tau + \xi)$ for all ξ , so $J_{\gamma \cdot \tau}[\Gamma_{\tau} - \gamma \cdot \tau] = J_{\tau}$ in $\mathbb{C}[[z]]$.

Let $A = \mathbb{C} + \mathfrak{m}$ have evaluations. For $\tau \in \mathbb{H}$ and $\xi \in \mathbb{C}$ lying above $-\tau$, we have

$$j(\tau + \xi) = J_{\tau}(\xi) = \sum_{n \in \mathbb{N}} \frac{j^{(n)}(\tau)}{n!} \xi^n.$$

Given a $\gamma \in \mathrm{PSL}_2(\mathbb{Z})$, we have a $\Gamma_{\tau} \in \gamma \cdot \tau + z \mathbb{C}[[z]]$ with $\gamma \cdot (\tau + \xi) = \Gamma_{\tau}(\xi)$ for all such ξ . We have $j(\gamma \cdot (\tau + \xi)) = j(\tau + \xi)$ for all ξ , so $J_{\gamma \cdot \tau}[\Gamma_{\tau} - \gamma \cdot \tau] = J_{\tau}$ in $\mathbb{C}[[z]]$.

For each $\phi \in \tau + \mathfrak{m}$, defining $\hat{j}(\phi) := J_{\tau}[\phi - \tau] \in A$, we can compute

Let $A = \mathbb{C} + \mathfrak{m}$ have evaluations. For $\tau \in \mathbb{H}$ and $\xi \in \mathbb{C}$ lying above $-\tau$, we have

$$j(\tau + \xi) = J_{\tau}(\xi) = \sum_{n \in \mathbb{N}} \frac{j^{(n)}(\tau)}{n!} \xi^n.$$

Given a $\gamma \in \mathrm{PSL}_2(\mathbb{Z})$, we have a $\Gamma_{\tau} \in \gamma \cdot \tau + z \mathbb{C}[[z]]$ with $\gamma \cdot (\tau + \xi) = \Gamma_{\tau}(\xi)$ for all such ξ . We have $j(\gamma \cdot (\tau + \xi)) = j(\tau + \xi)$ for all ξ , so $J_{\gamma \cdot \tau}[\Gamma_{\tau} - \gamma \cdot \tau] = J_{\tau}$ in $\mathbb{C}[[z]]$.

For each $\phi \in \tau + \mathfrak{m}$, defining $\hat{j}(\phi) := J_{\tau}[\phi - \tau] \in A$, we can compute

$$\hat{j}(\gamma \cdot \phi) = \hat{j}(\Gamma_{\tau}[\phi - \tau])
= J_{\gamma \cdot \tau}[\Gamma_{\tau}[\phi - \tau] - \gamma \cdot \tau]
= J_{\gamma \cdot \tau}[(\Gamma_{\tau} - \gamma \cdot \tau)[\phi - \tau]]$$
(16)
$$= (J_{\gamma \cdot \tau}[\Gamma_{\tau} - \gamma \cdot \tau])[\phi - \tau]$$
(17)
$$= J_{\tau}[\phi - \tau]$$
(18)

$$= \hat{j}(\phi).$$

Let $A = \mathbb{C} + \mathfrak{m}$ have evaluations. For $\tau \in \mathbb{H}$ and $\xi \in \mathbb{C}$ lying above $-\tau$, we have

$$j(\tau + \xi) = J_{\tau}(\xi) = \sum_{n \in \mathbb{N}} \frac{j^{(n)}(\tau)}{n!} \xi^n.$$

Given a $\gamma \in \mathrm{PSL}_2(\mathbb{Z})$, we have a $\Gamma_{\tau} \in \gamma \cdot \tau + z \mathbb{C}[[z]]$ with $\gamma \cdot (\tau + \xi) = \Gamma_{\tau}(\xi)$ for all such ξ . We have $j(\gamma \cdot (\tau + \xi)) = j(\tau + \xi)$ for all ξ , so $J_{\gamma \cdot \tau}[\Gamma_{\tau} - \gamma \cdot \tau] = J_{\tau}$ in $\mathbb{C}[[z]]$.

For each $\phi \in \tau + \mathfrak{m}$, defining $\hat{j}(\phi) := J_{\tau}[\phi - \tau] \in A$, we can compute

$$\hat{j}(\gamma \cdot \phi) = \hat{j}(\Gamma_{\tau}[\phi - \tau])
= J_{\gamma \cdot \tau}[\Gamma_{\tau}[\phi - \tau] - \gamma \cdot \tau]
= J_{\gamma \cdot \tau}[(\Gamma_{\tau} - \gamma \cdot \tau)[\phi - \tau]]
= (J_{\gamma \cdot \tau}[\Gamma_{\tau} - \gamma \cdot \tau])[\phi - \tau]$$
(19)

(20)

$$= J_{\tau}[\phi - \tau] \tag{21}$$

$$= \hat{j}(\phi).$$

We get a "modular function" \hat{j} on $\mathbb{H} + \mathfrak{m}$! (maybe)

Back to exp-log

Let $I = \{0, 1\}$. In $k \langle\!\langle I \rangle\!\rangle$, we have formal series

$$\exp(X_i) := \sum_{n \in \mathbb{N}} \frac{1}{n!} X_i^n, i \in \{0, 1\}$$
 and

$$\log(1+X_0) := \sum_{n>0} \frac{(-1)^{n+1}}{n} X_0^n.$$

Back to exp-log

Let $I = \{0, 1\}$. In $k \langle\!\langle I \rangle\!\rangle$, we have formal series

$$\exp(X_i) := \sum_{n \in \mathbb{N}} \frac{1}{n!} X_i^n, i \in \{0, 1\} \quad \text{and} \quad \log(1 + X_0) := \sum_{n > 0} \frac{(-1)^{n+1}}{n} X_0^n.$$

Given a summability algebra (A, Σ) with evaluations, with maximal ideal \mathfrak{m} , define

$$\exp: \mathfrak{m} \longrightarrow 1 + \mathfrak{m}$$
$$\varepsilon \longmapsto \operatorname{ev}_{\varepsilon}(\exp(X_0)) = \sum_{n \in \mathbb{N}} \frac{1}{n!} \varepsilon^n.$$

Back to exp-log

Let $I = \{0, 1\}$. In $k \langle\!\langle I \rangle\!\rangle$, we have formal series

$$\exp(X_i) := \sum_{n \in \mathbb{N}} \frac{1}{n!} X_i^n, i \in \{0, 1\} \quad \text{and} \quad \log(1 + X_0) := \sum_{n > 0} \frac{(-1)^{n+1}}{n} X_0^n.$$

Given a summability algebra (A, Σ) with evaluations, with maximal ideal \mathfrak{m} , define

$$\exp: \mathfrak{m} \longrightarrow 1 + \mathfrak{m}$$
$$\varepsilon \longmapsto \operatorname{ev}_{\varepsilon}(\exp(X_0)) = \sum_{n \in \mathbb{N}} \frac{1}{n!} \varepsilon^n.$$

Routine computations give $\exp(\log(1 + X_0)) = 1 + X_0$ and $\log(\exp(X_0)) = X_0$. Thus exp is bijective with inverse

$$\log : 1 + \mathfrak{m} \longrightarrow \mathfrak{m}$$

$$1 + \varepsilon \longmapsto \operatorname{ev}_{\varepsilon}(\log(1 + X_0)) = \sum_{n > 0} \frac{(-1)^{n+1}}{n} \varepsilon^n.$$

The Baker-Campbell-Hausdorff operation

Less routine computations give that the series

$$X_0 * X_1 := \log(\exp(X_0) \cdot \exp(X_1)) \in k \langle\!\langle I \rangle\!\rangle$$

is a sum of elements in the Lie subalgebra of $k\langle\!\langle I \rangle\!\rangle_0$ generated by X_0 and X_1 .

The Baker-Campbell-Hausdorff operation

Less routine computations give that the series

$$X_0 * X_1 := \log(\exp(X_0) \cdot \exp(X_1)) \in k \langle\!\langle I \rangle\!\rangle$$

is a sum of elements in the Lie subalgebra of $k \langle\!\langle I \rangle\!\rangle_0$ generated by X_0 and X_1 . Define a group operation $*: \mathfrak{m} \times \mathfrak{m} \longrightarrow \mathfrak{m}$ by

$$\forall \varepsilon_0, \varepsilon_1 \in \mathfrak{m}, \varepsilon_0 * \varepsilon_1 := \operatorname{ev}_{\varepsilon_0, \varepsilon_1}(X_0 * X_1).$$

The Baker-Campbell-Hausdorff operation

Less routine computations give that the series

$$X_0 * X_1 := \log(\exp(X_0) \cdot \exp(X_1)) \in k \langle\!\langle I \rangle\!\rangle$$

is a sum of elements in the Lie subalgebra of $k \langle\!\langle I \rangle\!\rangle_0$ generated by X_0 and X_1 . Define a group operation $*: \mathfrak{m} \times \mathfrak{m} \longrightarrow \mathfrak{m}$ by

$$\forall \varepsilon_0, \varepsilon_1 \in \mathfrak{m}, \varepsilon_0 * \varepsilon_1 := \operatorname{ev}_{\varepsilon_0, \varepsilon_1}(X_0 * X_1).$$

By evaluation, we obtain that

- $\exp(\varepsilon_0) \cdot \exp(\varepsilon_1) = \exp(\varepsilon_0 * \varepsilon_1)$
- ε₀ * ε₁ is a sum of elements in the Lie subalgebra of m generated by ε₀ and ε₁ (in particular
 * preserves derivations).
- $\exp:(\mathfrak{m},*) \longrightarrow (1+\mathfrak{m},\cdot)$ is an isomorphism.

$$\exp(\partial) = \sigma$$

Now assume that $k + \mathfrak{m}$ is a summability algebra with evaluations, which is a subalgebra of $(\operatorname{Lin}^+(A), +, ., \circ)$ for a given summability algebra (A, Σ) .

$$\exp(\partial) = \sigma$$

Now assume that $k + \mathfrak{m}$ is a summability algebra with evaluations, which is a subalgebra of $(\operatorname{Lin}^+(A), +, ., \circ)$ for a given summability algebra (A, Σ) .

Theorem A

A $\delta \in \mathfrak{m}$ is a derivation on A if and only if $\exp(\delta)$ is an automorphism of A. Therefore

$$\exp: (\mathrm{Der}^+(A) \cap \mathfrak{m}, *) \longrightarrow (\mathrm{Aut}^+(A) \cap (1 + \mathfrak{m}), \circ)$$

is an isomorphism.

$$\exp(\partial) \,{=}\, \sigma$$

Now assume that $k + \mathfrak{m}$ is a summability algebra with evaluations, which is a subalgebra of $(\operatorname{Lin}^+(A), +, ., \circ)$ for a given summability algebra (A, Σ) .

Theorem A

A $\delta \in \mathfrak{m}$ is a derivation on A if and only if $\exp(\delta)$ is an automorphism of A. Therefore

$$\exp: (\mathrm{Der}^+(A) \cap \mathfrak{m}, *) \longrightarrow (\mathrm{Aut}^+(A) \cap (1 + \mathfrak{m}), \circ)$$

is an isomorphism.

As a corollary, the group $\operatorname{Aut}^+(A) \cap (1 + \mathfrak{m})$ is divisible and torsion-free.

$$\exp(\partial) = \sigma$$

Now assume that $k + \mathfrak{m}$ is a summability algebra with evaluations, which is a subalgebra of $(\operatorname{Lin}^+(A), +, ., \circ)$ for a given summability algebra (A, Σ) .

Theorem A

A $\delta \in \mathfrak{m}$ is a derivation on A if and only if $\exp(\delta)$ is an automorphism of A. Therefore

$$\exp: (\mathrm{Der}^+(A) \cap \mathfrak{m}, *) \longrightarrow (\mathrm{Aut}^+(A) \cap (1 + \mathfrak{m}), \circ)$$

is an isomorphism.

As a corollary, the group $\operatorname{Aut}^+(A) \cap (1 + \mathfrak{m})$ is divisible and torsion-free.

How can we find examples of such situations?

Let (M, +, 0, <) be an ordered monoid. A subset of M is said **Noetherian** (or w.q.o) if it has no infinite antichain and no strictly decreasing infinite sequence.

Let (M, +, 0, <) be an ordered monoid. A subset of M is said **Noetherian** (or w.q.o) if it has no infinite antichain and no strictly decreasing infinite sequence.

The set \mathfrak{n} of Noetherian subsets of M is an ideal of $\mathcal{P}(M)$. Thus $k((M)) := k[\mathfrak{n}]$ has a natural structure of summability space.

Let (M, +, 0, <) be an ordered monoid. A subset of M is said **Noetherian** (or w.q.o) if it has no infinite antichain and no strictly decreasing infinite sequence.

The set \mathfrak{n} of Noetherian subsets of M is an ideal of $\mathcal{P}(M)$. Thus $k((M)) := k[\mathfrak{n}]$ has a natural structure of summability space.

This is a summability algebra under the expected Cauchy product

$$\forall m \in M, (a \cdot b)(m) = \sum_{m_0 + m_1 = m} a(m_0) b(m_1).$$

Let (M, +, 0, <) be an ordered monoid. A subset of M is said **Noetherian** (or w.q.o) if it has no infinite antichain and no strictly decreasing infinite sequence.

The set \mathfrak{n} of Noetherian subsets of M is an ideal of $\mathcal{P}(M)$. Thus $k((M)) := k[\mathfrak{n}]$ has a natural structure of summability space.

This is a summability algebra under the expected Cauchy product

$$\forall m \in M, (a \cdot b)(m) = \sum_{m_0 + m_1 = m} a(m_0) b(m_1).$$

Examples

• If M is a totally ordered group, then k((M)) is a skew field (e.g. Hahn field if M is Abelian).

Let (M, +, 0, <) be an ordered monoid. A subset of M is said **Noetherian** (or w.q.o) if it has no infinite antichain and no strictly decreasing infinite sequence.

The set \mathfrak{n} of Noetherian subsets of M is an ideal of $\mathcal{P}(M)$. Thus $k((M)) := k[\mathfrak{n}]$ has a natural structure of summability space.

This is a summability algebra under the expected Cauchy product

$$\forall m \in M, (a \cdot b)(m) = \sum_{m_0 + m_1 = m} a(m_0) b(m_1).$$

Examples

- If M is a totally ordered group, then k((M)) is a skew field (e.g. Hahn field if M is Abelian).
- If $M = (\mathbb{N}, +, 0, <)^n$, then $k((M)) \simeq k[[X_1, \dots, X_n]]$.

Let (M, +, 0, <) be an ordered monoid. A subset of M is said **Noetherian** (or w.q.o) if it has no infinite antichain and no strictly decreasing infinite sequence.

The set \mathfrak{n} of Noetherian subsets of M is an ideal of $\mathcal{P}(M)$. Thus $k((M)) := k[\mathfrak{n}]$ has a natural structure of summability space.

This is a summability algebra under the expected Cauchy product

$$\forall m \in M, (a \cdot b)(m) = \sum_{m_0 + m_1 = m} a(m_0) b(m_1).$$

Examples

- If M is a totally ordered group, then k((M)) is a skew field (e.g. Hahn field if M is Abelian).
- If $M = (\mathbb{N}, +, 0, <)^n$, then $k((M)) \simeq k[[X_1, \dots, X_n]]$.
- If $M = (G, +, 0, \varnothing)$ for a group (G, +, 0), then $k((M)) \simeq k[G]$.

Let (M, +, 0, <) be an ordered monoid. A subset of M is said **Noetherian** (or w.q.o) if it has no infinite antichain and no strictly decreasing infinite sequence.

The set \mathfrak{n} of Noetherian subsets of M is an ideal of $\mathcal{P}(M)$. Thus $k((M)) := k[\mathfrak{n}]$ has a natural structure of summability space.

This is a summability algebra under the expected Cauchy product

$$\forall m \in M, (a \cdot b)(m) = \sum_{m_0 + m_1 = m} a(m_0) b(m_1).$$

Examples

- If M is a totally ordered group, then k((M)) is a skew field (e.g. Hahn field if M is Abelian).
- If $M = (\mathbb{N}, +, 0, <)^n$, then $k((M)) \simeq k[[X_1, \dots, X_n]]$.
- If $M = (G, +, 0, \varnothing)$ for a group (G, +, 0), then $k((M)) \simeq k[G]$.
- If (I, <) is a Noetherian ordered set and $M = (I^*, :, \emptyset, <^*)$ for Higman's ordering $<^*$ on I^* , then $k((M)) = k\langle\!\langle I \rangle\!\rangle$.

Write $\mathbb{A} = k((M)).$ Given $a, b \in \mathbb{A}, b \neq 0$, we write

 $a \prec b$

if for all $m_a \in \text{supp } a$, there is an $m_b \in \text{supp } b$ with $m_a > m_b$.

Write $\mathbb{A} = k((M))$. Given $a, b \in \mathbb{A}, b \neq 0$, we write

 $a \prec b$

if for all $m_a \in \operatorname{supp} a$, there is an $m_b \in \operatorname{supp} b$ with $m_a > m_b$.

A linear map $\phi : \mathbb{A} \longrightarrow \mathbb{A}$ is said **contracting** if $\phi(a) \prec a$ for each $a \neq 0$. We write $\operatorname{Lin}_{\prec}^+(\mathbb{A})$ for the set of contracting strongly linear maps $\mathbb{A} \longrightarrow \mathbb{A}$.

Write $\mathbb{A} = k((M))$. Given $a, b \in \mathbb{A}, b \neq 0$, we write

 $a \prec b$

if for all $m_a \in \operatorname{supp} a$, there is an $m_b \in \operatorname{supp} b$ with $m_a > m_b$.

A linear map $\phi : \mathbb{A} \longrightarrow \mathbb{A}$ is said **contracting** if $\phi(a) \prec a$ for each $a \neq 0$. We write $\operatorname{Lin}_{\prec}^+(\mathbb{A})$ for the set of contracting strongly linear maps $\mathbb{A} \longrightarrow \mathbb{A}$.

Theorem B

The subalgebra $k \operatorname{Id}_{\mathbb{A}} + \operatorname{Lin}_{\prec}^+(\mathbb{A})$ of $\operatorname{Lin}^+(\mathbb{A})$ has evaluations.

Write $\mathbb{A} = k((M))$. Given $a, b \in \mathbb{A}, b \neq 0$, we write

 $a \prec b$

if for all $m_a \in \operatorname{supp} a$, there is an $m_b \in \operatorname{supp} b$ with $m_a > m_b$.

A linear map $\phi : \mathbb{A} \longrightarrow \mathbb{A}$ is said **contracting** if $\phi(a) \prec a$ for each $a \neq 0$. We write $\operatorname{Lin}_{\prec}^+(\mathbb{A})$ for the set of contracting strongly linear maps $\mathbb{A} \longrightarrow \mathbb{A}$.

Theorem B

The subalgebra $k \operatorname{Id}_{\mathbb{A}} + \operatorname{Lin}_{\prec}^+(\mathbb{A})$ of $\operatorname{Lin}^+(\mathbb{A})$ has evaluations.

Write 1-Aut⁺_k(A) for the space of automorphisms σ of A with $\sigma(a) - a \prec a$ for all $a \neq 0$.

Write $\mathbb{A} = k((M))$. Given $a, b \in \mathbb{A}, b \neq 0$, we write

 $a \prec b$

if for all $m_a \in \operatorname{supp} a$, there is an $m_b \in \operatorname{supp} b$ with $m_a > m_b$.

A linear map $\phi : \mathbb{A} \longrightarrow \mathbb{A}$ is said **contracting** if $\phi(a) \prec a$ for each $a \neq 0$. We write $\operatorname{Lin}_{\prec}^+(\mathbb{A})$ for the set of contracting strongly linear maps $\mathbb{A} \longrightarrow \mathbb{A}$.

Theorem B

The subalgebra $k \operatorname{Id}_{\mathbb{A}} + \operatorname{Lin}_{\prec}^+(\mathbb{A})$ of $\operatorname{Lin}^+(\mathbb{A})$ has evaluations.

Write 1-Aut⁺_k(A) for the space of automorphisms σ of A with $\sigma(a) - a \prec a$ for all $a \neq 0$.

Corollary

We have an isomorphism

$$\exp: (\mathrm{Der}^+(\mathbb{A}) \cap \mathrm{Lin}_{\prec}^+(\mathbb{A}), *) \longrightarrow (1 - \mathrm{Aut}_k^+(\mathbb{A}), \circ)$$
$$\partial \longmapsto \sum_{n \in \mathbb{N}} \frac{1}{n!} \partial^{[n]}.$$

Lie homomorphism theorem

One can study properties of the group 1-Aut $_k^+(\mathbb{A})$ by looking at $\mathrm{Der}_{\prec}^+(\mathbb{A})$ instead.

Lie homomorphism theorem

One can study properties of the group 1-Aut⁺_k(A) by looking at $Der^+_{\prec}(A)$ instead.

Theorem C

Let $\Phi : \operatorname{Der}_{\prec}^+(\mathbb{A}) \longrightarrow \operatorname{Der}_{\prec}^+(\mathbb{B})$ be a strongly linear Lie algebra endomorphism. There is a unique group morphism $\Psi : 1 \operatorname{Aut}_k^+(\mathbb{A}) \longrightarrow 1 \operatorname{Aut}_k^+(\mathbb{B})$ with $\exp \circ \Phi = \Psi \circ \exp$.

Lie homomorphism theorem

One can study properties of the group 1-Aut⁺_k(A) by looking at $\text{Der}^+_{\prec}(A)$ instead.

Theorem C

Let $\Phi : \operatorname{Der}_{\prec}^+(\mathbb{A}) \longrightarrow \operatorname{Der}_{\prec}^+(\mathbb{B})$ be a strongly linear Lie algebra endomorphism. There is a unique group morphism $\Psi : 1 \operatorname{Aut}_k^+(\mathbb{A}) \longrightarrow 1 \operatorname{Aut}_k^+(\mathbb{B})$ with $\exp \circ \Phi = \Psi \circ \exp$.

Question. The group 1-Aut⁺_k(A) can be equipped with infinite ordered products in a precise sense. If Ψ : 1-Aut⁺_k(A) \longrightarrow 1-Aut⁺_k(B) preserves infinite products, does it induce a strongly linear Lie algebra homomorphism?

(don't look at the picture)