$\exp (\partial)=\sigma$

by Vincent Bagayoko (imJ-Prg)

Joint work with L. S. Krapp, S. Kuhlmann, D. C. Panazzolo \& M. Serra

Question:

$$
a \cdot b=b \cdot a \quad ?
$$

Question:

$$
a \cdot b=b \cdot a \quad ?
$$

Answer: you are wrong.

Let \mathcal{A} be the \mathbb{C}-algebra of entire functions. For $f \in \mathcal{A}$ and $\alpha \in \mathbb{C}$, we have

$$
\forall z \in \mathbb{C}, f(z+\alpha)=\sum_{n \in \mathbb{N}} \frac{f^{(n)}(z)}{n!} \alpha^{n} .
$$

Let \mathcal{A} be the \mathbb{C}-algebra of entire functions. For $f \in \mathcal{A}$ and $\alpha \in \mathbb{C}$, we have

$$
\forall z \in \mathbb{C}, f(z+\alpha)=\sum_{n \in \mathbb{N}} \frac{f^{(n)}(z)}{n!} \alpha^{n}
$$

We have an automorphism $\sigma_{\alpha}: g \mapsto g \circ(\mathrm{id}+\alpha)$ of \mathcal{A} and a derivation $\partial_{\alpha}: g \mapsto \alpha g^{\prime}$ on \mathcal{A}, and

Let \mathcal{A} be the \mathbb{C}-algebra of entire functions. For $f \in \mathcal{A}$ and $\alpha \in \mathbb{C}$, we have

$$
\forall z \in \mathbb{C}, f(z+\alpha)=\sum_{n \in \mathbb{N}} \frac{f^{(n)}(z)}{n!} \alpha^{n}
$$

We have an automorphism $\sigma_{\alpha}: g \mapsto g \circ(\mathrm{id}+\alpha)$ of \mathcal{A} and a derivation $\partial_{\alpha}: g \mapsto \alpha g^{\prime}$ on \mathcal{A}, and

$$
\sigma_{\alpha}=\sum_{n \in \mathbb{N}} \frac{\partial_{\alpha}^{[n]}}{n!}=\exp \left(\partial_{\alpha}\right)
$$

Let \mathcal{A} be the \mathbb{C}-algebra of entire functions. For $f \in \mathcal{A}$ and $\alpha \in \mathbb{C}$, we have

$$
\forall z \in \mathbb{C}, f(z+\alpha)=\sum_{n \in \mathbb{N}} \frac{f^{(n)}(z)}{n!} \alpha^{n}
$$

We have an automorphism $\sigma_{\alpha}: g \mapsto g \circ(\mathrm{id}+\alpha)$ of \mathcal{A} and a derivation $\partial_{\alpha}: g \mapsto \alpha g^{\prime}$ on \mathcal{A}, and

$$
\sigma_{\alpha}=\sum_{n \in \mathbb{N}} \frac{\partial_{\alpha}^{[n]}}{n!}=\exp \left(\partial_{\alpha}\right)
$$

Furthermore, we have

$$
\forall \alpha, \beta \in \mathbb{C}, \exp \left(\partial_{\alpha}+\partial_{\beta}\right)=\exp \left(\partial_{\alpha+\beta}\right)=\sigma_{\alpha+\beta}=\sigma_{\alpha} \circ \sigma_{\beta}
$$

Let \mathcal{A} be the \mathbb{C}-algebra of entire functions. For $f \in \mathcal{A}$ and $\alpha \in \mathbb{C}$, we have

$$
\forall z \in \mathbb{C}, f(z+\alpha)=\sum_{n \in \mathbb{N}} \frac{f^{(n)}(z)}{n!} \alpha^{n}
$$

We have an automorphism $\sigma_{\alpha}: g \mapsto g \circ(\mathrm{id}+\alpha)$ of \mathcal{A} and a derivation $\partial_{\alpha}: g \mapsto \alpha g^{\prime}$ on \mathcal{A}, and

$$
\sigma_{\alpha}=\sum_{n \in \mathbb{N}} \frac{\partial_{\alpha}^{[n]}}{n!}=\exp \left(\partial_{\alpha}\right)
$$

Furthermore, we have

$$
\forall \alpha, \beta \in \mathbb{C}, \exp \left(\partial_{\alpha}+\partial_{\beta}\right)=\exp \left(\partial_{\alpha+\beta}\right)=\sigma_{\alpha+\beta}=\sigma_{\alpha} \circ \sigma_{\beta}
$$

The same applies for the algebra $\mathbb{C}[[x]] \supset \mathcal{A}$ of formal power series.

Fix a field k with $\operatorname{char}(k)=0$. Given an algebra A and an endomorphism $\phi: A \longrightarrow A$, we want to make sense of the exponential

$$
\exp (\phi)=\sum_{n \geqslant 0} \frac{1}{n!} \phi^{[n]}
$$

and logarithm

$$
\log (\operatorname{Id}+\phi)=\sum_{n>0} \frac{(-1)^{n+1}}{n!} \phi^{[n]}
$$

Fix a field k with $\operatorname{char}(k)=0$. Given an algebra A and an endomorphism $\phi: A \longrightarrow A$, we want to make sense of the exponential

$$
\exp (\phi)=\sum_{n \geqslant 0} \frac{1}{n!} \phi^{[n]}
$$

and logarithm

$$
\log (\operatorname{Id}+\phi)=\sum_{n>0} \frac{(-1)^{n+1}}{n!} \phi^{[n]}
$$

\rightarrow bijective correspondence between derivations and automorphisms?
\rightarrow interactions with the algebraic structures on derivations and automorphisms?

Fix a field k with $\operatorname{char}(k)=0$. Given an algebra A and an endomorphism $\phi: A \longrightarrow A$, we want to make sense of the exponential

$$
\exp (\phi)=\sum_{n \geqslant 0} \frac{1}{n!} \phi^{[n]}
$$

and logarithm

$$
\log (\operatorname{Id}+\phi)=\sum_{n>0} \frac{(-1)^{n+1}}{n!} \phi^{[n]}
$$

\rightarrow bijective correspondence between derivations and automorphisms?
\rightarrow interactions with the algebraic structures on derivations and automorphisms?

Ideas:

- In finite dimensional Lie group theory: notions of convergence, e.g. taking exponentials of matrices.
- On fields of generalised power series (e.g. Hahn series): notions of summability \rightarrow formal axiomatic approach?

Ideal context: an algebra \mathcal{A} with a notion of infinite sum such that the formal power series

$$
\exp (X):=\sum_{n \geqslant 0} \frac{1}{n!} X^{n} \quad \text { and } \quad \log (1+X):=\sum_{n>0} \frac{(-1)^{n+1}}{n} X^{n}
$$

can be evaluated on \mathcal{A}, and satisfy

$$
\log (\exp (a))=a \quad \text { and } \quad \exp (\log (1+a))=1+a
$$

whenever the expressions are defined.

Ideal context: an algebra \mathcal{A} with a notion of infinite sum such that the formal power series

$$
\exp (X):=\sum_{n \geqslant 0} \frac{1}{n!} X^{n} \quad \text { and } \quad \log (1+X):=\sum_{n>0} \frac{(-1)^{n+1}}{n} X^{n}
$$

can be evaluated on \mathcal{A}, and satisfy

$$
\log (\exp (a))=a \quad \text { and } \quad \exp (\log (1+a))=1+a
$$

whenever the expressions are defined.

Furthermore \mathcal{A} should be an algebra of linear maps on another algebra A, such that

$$
\exp (\mathcal{A} \cap \operatorname{Der}(A))=\mathcal{A} \cap \operatorname{Aut}(A)
$$

Fix a vector space V over k. For each set I, we have a vector space V^{I}.

Fix a vector space V over k. For each set I, we have a vector space V^{I}.
For $\boldsymbol{v} \in V^{I}$, write $\operatorname{supp} \boldsymbol{v}:=\{i \in I: \boldsymbol{v}(i) \neq 0\}$. We have a subspace

$$
V^{(I)}:=\{\boldsymbol{v} \in V: \operatorname{supp} \boldsymbol{v} \text { is finite }\}
$$

Fix a vector space V over k. For each set I, we have a vector space V^{I}.
For $\boldsymbol{v} \in V^{I}$, write $\operatorname{supp} \boldsymbol{v}:=\{i \in I: \boldsymbol{v}(i) \neq 0\}$. We have a subspace

$$
V^{(I)}:=\{\boldsymbol{v} \in V: \operatorname{supp} \boldsymbol{v} \text { is finite }\}
$$

and a linear summation operator

$$
\begin{aligned}
\Sigma_{I}^{\mathrm{fin}}: V^{(I)} & \longrightarrow V \\
\boldsymbol{v} & \longmapsto \sum_{i \in \operatorname{supp} \boldsymbol{v}} \boldsymbol{v}(i) .
\end{aligned}
$$

What are the properties of the family $\left(\sum_{I}^{\mathrm{fin}}\right)_{I \in \text { Set }}$?

Let I, J be sets and let $\boldsymbol{v} \in V^{(I)}$.

Let I, J be sets and let $\boldsymbol{v} \in V^{(I)}$.
Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $\boldsymbol{v} \circ \varphi \in V^{(J)}$ and

$$
\Sigma_{J}^{\mathrm{fin}}(\boldsymbol{v} \circ \varphi)=\Sigma_{I}^{\mathrm{fin}} \boldsymbol{v}
$$

Let I, J be sets and let $\boldsymbol{v} \in V^{(I)}$.
Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $\boldsymbol{v} \circ \varphi \in V^{(J)}$ and

$$
\Sigma_{J}^{\mathrm{fin}}(\boldsymbol{v} \circ \varphi)=\Sigma_{I}^{\mathrm{fin}} \boldsymbol{v}
$$

Summation by parts. If $I=\bigsqcup_{j \in J} I_{j}$, then for each $j \in J$, we have

$$
\boldsymbol{v}_{j}:=\boldsymbol{v} \upharpoonleft I_{j} \in V^{\left(I_{j}\right)} \quad \text { and } \quad\left(\sum_{I_{j}}^{\mathrm{fin}} \boldsymbol{v}_{j}\right)_{j \in J} \in V^{(I)} \quad \text { and } \quad \sum_{J}^{\mathrm{fin}}\left(\sum_{I_{j}}^{\mathrm{fin}} \boldsymbol{v}_{j}\right)_{j \in J}=\sum_{I}^{\mathrm{fin}} \boldsymbol{v}
$$

Let I, J be sets and let $v \in V^{(I)}$.
Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $\boldsymbol{v} \circ \varphi \in V^{(J)}$ and

$$
\Sigma_{J}^{\mathrm{fin}}(\boldsymbol{v} \circ \varphi)=\Sigma_{I}^{\mathrm{fin}} \boldsymbol{v}
$$

Summation by parts. If $I=\bigsqcup_{j \in J} I_{j}$, then for each $j \in J$, we have

$$
\boldsymbol{v}_{j}:=\boldsymbol{v} \upharpoonleft I_{j} \in V^{\left(I_{j}\right)} \quad \text { and } \quad\left(\sum_{I_{j}}^{\mathrm{fin}} \boldsymbol{v}_{j}\right)_{j \in J} \in V^{(I)} \quad \text { and } \quad \sum_{J}^{\mathrm{fin}}\left(\sum_{I_{j}}^{\mathrm{fin}} \boldsymbol{v}_{j}\right)_{j \in J}=\sum_{I}^{\mathrm{fin}} \boldsymbol{v}
$$

Finite pasting. If $I \cap J=\varnothing$ and $\boldsymbol{w} \in V^{(J)}$, then $\boldsymbol{v} \sqcup \boldsymbol{w} \in V^{(I \sqcup J)}$.

Let I, J be sets and let $v \in V^{(I)}$.
Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $\boldsymbol{v} \circ \varphi \in V^{(J)}$ and

$$
\Sigma_{J}^{\mathrm{fin}}(\boldsymbol{v} \circ \varphi)=\Sigma_{I}^{\mathrm{fin}} \boldsymbol{v}
$$

Summation by parts. If $I=\bigsqcup_{j \in J} I_{j}$, then for each $j \in J$, we have

$$
\boldsymbol{v}_{j}:=\boldsymbol{v} \upharpoonleft I_{j} \in V^{\left(I_{j}\right)} \quad \text { and } \quad\left(\Sigma_{I_{j}}^{\mathrm{fin}} \boldsymbol{v}_{j}\right)_{j \in J} \in V^{(I)} \quad \text { and } \quad \Sigma_{J}^{\mathrm{fin}}\left(\sum_{I_{j}}^{\mathrm{fin}} \boldsymbol{v}_{j}\right)_{j \in J}=\Sigma_{I}^{\mathrm{fin}} \boldsymbol{v}
$$

Finite pasting. If $I \cap J=\varnothing$ and $\boldsymbol{w} \in V^{(J)}$, then $\boldsymbol{v} \sqcup \boldsymbol{w} \in V^{(I \sqcup J)}$.
Ultrafiniteness. If $\left(f_{i}\right)_{i \in I}$ is a family of functions $f_{i}: \operatorname{dom} f_{i} \longrightarrow k$ with finite domains dom f_{i}, then writing

$$
I^{\prime}:=\left\{(i, x): i \in I \wedge x \in \operatorname{dom} f_{i}\right\}
$$

we have

$$
\left(f_{i}(x) \boldsymbol{v}(i)\right)_{(i, x) \in I^{\prime} \in V^{\left(I^{\prime}\right)}}
$$

Summability structure: family $\left(\Sigma_{I}\right)_{I \in \text { Set }}$ of linear operators Σ_{I} : dom $\Sigma_{I} \longrightarrow V$, where $V^{(I)} \subseteq$ $\operatorname{dom} \Sigma_{I} \subseteq V^{I}$ is a subspace, Σ_{I} extends $\Sigma_{I}^{\mathrm{fin}}$ on $\operatorname{dom} \Sigma_{I}$, and:

Summability structure: family $\left(\Sigma_{I}\right)_{I \in \text { Set }}$ of linear operators Σ_{I} : $\operatorname{dom} \Sigma_{I} \longrightarrow V$, where $V^{(I)} \subseteq$ $\operatorname{dom} \Sigma_{I} \subseteq V^{I}$ is a subspace, Σ_{I} extends $\Sigma_{I}^{\mathrm{fin}}$ on $\operatorname{dom} \Sigma_{I}$, and:
Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $\boldsymbol{v} \circ \varphi \in \operatorname{dom} \Sigma_{J}$ and

$$
\Sigma_{J}(\boldsymbol{v} \circ \varphi)=\Sigma_{I} \boldsymbol{v}
$$

Summability structure: family $\left(\Sigma_{I}\right)_{I \in \text { Set }}$ of linear operators Σ_{I} : dom $\Sigma_{I} \longrightarrow V$, where $V^{(I)} \subseteq$ $\operatorname{dom} \Sigma_{I} \subseteq V^{I}$ is a subspace, Σ_{I} extends $\Sigma_{I}^{\mathrm{fin}}$ on $\operatorname{dom} \Sigma_{I}$, and:
Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $\boldsymbol{v} \circ \varphi \in \operatorname{dom} \Sigma_{J}$ and

$$
\Sigma_{J}(\boldsymbol{v} \circ \varphi)=\Sigma_{I} \boldsymbol{v}
$$

Summation by parts. If $I=\bigsqcup_{j \in J} I_{j}$, then for each $j \in J$, we have

$$
\boldsymbol{v}_{j}:=\boldsymbol{v} \upharpoonleft I_{j} \in \operatorname{dom} \Sigma_{I_{j}} \quad \text { and } \quad\left(\sum_{I_{j}}^{\mathrm{fin}} \boldsymbol{v}_{j}\right)_{j \in J} \in \operatorname{dom} \Sigma_{I} \quad \text { and } \quad \Sigma_{J}\left(\Sigma_{I_{j}} \boldsymbol{v}_{j}\right)_{j \in J}=\Sigma_{I} \boldsymbol{v}
$$

Summability structure: family $\left(\Sigma_{I}\right)_{I \in \text { Set }}$ of linear operators Σ_{I} : dom $\Sigma_{I} \longrightarrow V$, where $V^{(I)} \subseteq$ $\operatorname{dom} \Sigma_{I} \subseteq V^{I}$ is a subspace, Σ_{I} extends $\Sigma_{I}^{\mathrm{fin}}$ on $\operatorname{dom} \Sigma_{I}$, and:
Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $\boldsymbol{v} \circ \varphi \in \operatorname{dom} \Sigma_{J}$ and

$$
\Sigma_{J}(\boldsymbol{v} \circ \varphi)=\Sigma_{I} \boldsymbol{v}
$$

Summation by parts. If $I=\bigsqcup_{j \in J} I_{j}$, then for each $j \in J$, we have

$$
\boldsymbol{v}_{j}:=\boldsymbol{v} \upharpoonleft I_{j} \in \operatorname{dom} \Sigma_{I_{j}} \quad \text { and } \quad\left(\sum_{I_{j}}^{\mathrm{fin}} \boldsymbol{v}_{j}\right)_{j \in J} \in \operatorname{dom} \Sigma_{I} \quad \text { and } \quad \Sigma_{J}\left(\Sigma_{I_{j}} \boldsymbol{v}_{j}\right)_{j \in J}=\Sigma_{I} \boldsymbol{v}
$$

Finite pasting. If $I \cap J=\varnothing$ and $\boldsymbol{w} \in \operatorname{dom} \Sigma_{J}$, then $\boldsymbol{v} \sqcup \boldsymbol{w} \in \operatorname{dom} \Sigma_{I \sqcup J .}$.

Summability structure: family $\left(\Sigma_{I}\right)_{I \in \text { Set }}$ of linear operators Σ_{I} : dom $\Sigma_{I} \longrightarrow V$, where $V^{(I)} \subseteq$ $\operatorname{dom} \Sigma_{I} \subseteq V^{I}$ is a subspace, Σ_{I} extends $\Sigma_{I}^{\mathrm{fin}}$ on $\operatorname{dom} \Sigma_{I}$, and:
Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $\boldsymbol{v} \circ \varphi \in \operatorname{dom} \Sigma_{J}$ and

$$
\Sigma_{J}(\boldsymbol{v} \circ \varphi)=\Sigma_{I} \boldsymbol{v}
$$

Summation by parts. If $I=\bigsqcup_{j \in J} I_{j}$, then for each $j \in J$, we have

$$
\boldsymbol{v}_{j}:=\boldsymbol{v} \upharpoonleft I_{j} \in \operatorname{dom} \Sigma_{I_{j}} \quad \text { and } \quad\left(\sum_{I_{j}}^{\mathrm{fin}} \boldsymbol{v}_{j}\right)_{j \in J} \in \operatorname{dom} \Sigma_{I} \quad \text { and } \quad \Sigma_{J}\left(\Sigma_{I_{j}} \boldsymbol{v}_{j}\right)_{j \in J}=\Sigma_{I} \boldsymbol{v}
$$

Finite pasting. If $I \cap J=\varnothing$ and $\boldsymbol{w} \in \operatorname{dom} \Sigma_{J}$, then $\boldsymbol{v} \sqcup \boldsymbol{w} \in \operatorname{dom} \Sigma_{I \sqcup J .}$.
Ultrafiniteness. If $\left(f_{i}\right)_{i \in I}$ is a family of functions $f_{i}: \operatorname{dom} f_{i} \longrightarrow k$ with finite domains $\operatorname{dom} f_{i}$, then writing

$$
I^{\prime}:=\left\{(i, x): i \in I \wedge x \in \operatorname{dom} f_{i}\right\}
$$

we have

$$
\left(f_{i}(x) \boldsymbol{v}(i)\right)_{(i, x) \in I^{\prime}} \in \operatorname{dom} \Sigma_{I^{\prime}}
$$

Summability structure: family $\left(\Sigma_{I}\right)_{I \in \text { Set }}$ of linear operators Σ_{I} : dom $\Sigma_{I} \longrightarrow V$, where $V^{(I)} \subseteq$ $\operatorname{dom} \Sigma_{I} \subseteq V^{I}$ is a subspace, Σ_{I} extends $\Sigma_{I}^{\mathrm{fin}}$ on $\operatorname{dom} \Sigma_{I}$, and:
Invariance under reindexing. If $\varphi: J \longrightarrow I$ is bijective, then $\boldsymbol{v} \circ \varphi \in \operatorname{dom} \Sigma_{J}$ and

$$
\Sigma_{J}(\boldsymbol{v} \circ \varphi)=\Sigma_{I} \boldsymbol{v}
$$

Summation by parts. If $I=\bigsqcup_{j \in J} I_{j}$, then for each $j \in J$, we have

$$
\boldsymbol{v}_{j}:=\boldsymbol{v} \upharpoonleft I_{j} \in \operatorname{dom} \Sigma_{I_{j}} \quad \text { and } \quad\left(\sum_{I_{j}}^{\mathrm{fin}} \boldsymbol{v}_{j}\right)_{j \in J} \in \operatorname{dom} \Sigma_{I} \quad \text { and } \quad \Sigma_{J}\left(\Sigma_{I_{j}} \boldsymbol{v}_{j}\right)_{j \in J}=\Sigma_{I} \boldsymbol{v}
$$

Finite pasting. If $I \cap J=\varnothing$ and $\boldsymbol{w} \in \operatorname{dom} \Sigma_{J}$, then $\boldsymbol{v} \sqcup \boldsymbol{w} \in \operatorname{dom} \Sigma_{I \sqcup J .}$.
Ultrafiniteness. If $\left(f_{i}\right)_{i \in I}$ is a family of functions $f_{i}: \operatorname{dom} f_{i} \longrightarrow k$ with finite domains dom f_{i}, then writing

$$
I^{\prime}:=\left\{(i, x): i \in I \wedge x \in \operatorname{dom} f_{i}\right\}
$$

we have

$$
\left(f_{i}(x) \boldsymbol{v}(i)\right)_{(i, x) \in I^{\prime}} \in \operatorname{dom} \Sigma_{I^{\prime}}
$$

We call $\left(V,\left(\Sigma_{I}\right)_{I \in \operatorname{Set}}\right)$ a summability space. For instance $\left(V, \Sigma^{\text {fin }}\right)$ is a summability space.
I) (V, Σ) : summability space; Ω : non-empty set; \mathfrak{q} : ideal in the Boolean algebra $\mathcal{P}(\Omega)$ containing all finite subsets. We have a subspace $V[\mathfrak{q}]:=\left\{\boldsymbol{v} \in V^{\Omega}: \operatorname{supp} \boldsymbol{v} \in \mathfrak{q}\right\}$ of V^{Ω}.
I) (V, Σ) : summability space; Ω : non-empty set; \mathfrak{q} : ideal in the Boolean algebra $\mathcal{P}(\Omega)$ containing all finite subsets. We have a subspace $V[\mathfrak{q}]:=\left\{\boldsymbol{v} \in V^{\Omega}: \operatorname{supp} \boldsymbol{v} \in \mathfrak{q}\right\}$ of V^{Ω}.

We define a summability structure $\Sigma^{\mathfrak{q}}$ on $V[\mathfrak{q}]$ by setting $\boldsymbol{v} \in \operatorname{dom} \Sigma_{I}^{\mathfrak{q}}$ if and only if

$$
\forall p \in \Omega,(\boldsymbol{v}(i)(p))_{i \in I} \in \operatorname{dom} \Sigma_{I}, \quad \text { and } \quad \bigcup_{i \in I} \operatorname{supp} \boldsymbol{v}(i) \in \mathfrak{q}
$$

I) (V, Σ) : summability space; Ω : non-empty set; \mathfrak{q} : ideal in the Boolean algebra $\mathcal{P}(\Omega)$ containing all finite subsets. We have a subspace $V[\mathfrak{q}]:=\left\{\boldsymbol{v} \in V^{\Omega}: \operatorname{supp} \boldsymbol{v} \in \mathfrak{q}\right\}$ of V^{Ω}.

We define a summability structure $\Sigma^{\mathfrak{q}}$ on $V[\mathfrak{q}]$ by setting $\boldsymbol{v} \in \operatorname{dom} \Sigma_{I}^{\mathfrak{q}}$ if and only if

$$
\forall p \in \Omega,(\boldsymbol{v}(i)(p))_{i \in I} \in \operatorname{dom} \Sigma_{I}, \quad \text { and } \quad \bigcup_{i \in I} \operatorname{supp} \boldsymbol{v}(i) \in \mathfrak{q} .
$$

Then

$$
\forall p \in \Omega,\left(\Sigma_{I}^{\mathfrak{q}} \boldsymbol{v}\right)(p):=\Sigma_{I}(\boldsymbol{v}(i)(p))_{i \in I}
$$

I) (V, Σ) : summability space; Ω : non-empty set; \mathfrak{q} : ideal in the Boolean algebra $\mathcal{P}(\Omega)$ containing all finite subsets. We have a subspace $V[\mathfrak{q}]:=\left\{\boldsymbol{v} \in V^{\Omega}: \operatorname{supp} \boldsymbol{v} \in \mathfrak{q}\right\}$ of V^{Ω}.

We define a summability structure $\Sigma^{\mathfrak{q}}$ on $V[\mathfrak{q}]$ by setting $\boldsymbol{v} \in \operatorname{dom} \Sigma_{I}^{\mathfrak{q}}$ if and only if

$$
\forall p \in \Omega,(\boldsymbol{v}(i)(p))_{i \in I} \in \operatorname{dom} \Sigma_{I}, \quad \text { and } \quad \bigcup_{i \in I} \operatorname{supp} \boldsymbol{v}(i) \in \mathfrak{q} .
$$

Then

$$
\forall p \in \Omega,\left(\Sigma_{I}^{\mathfrak{q}} \boldsymbol{v}\right)(p):=\Sigma_{I}(\boldsymbol{v}(i)(p))_{i \in I} .
$$

II) Let A be an algebra, $\mathfrak{p} \subset A$ a proper ideal with $\bigcap_{n>0} \mathfrak{p}^{n}=\{0\}$. Assume that A is complete in the \mathfrak{p}-adic topology. We define a summability structure Σ on A by setting
I) (V, Σ) : summability space; Ω : non-empty set; \mathfrak{q} : ideal in the Boolean algebra $\mathcal{P}(\Omega)$ containing all finite subsets. We have a subspace $V[\mathfrak{q}]:=\left\{\boldsymbol{v} \in V^{\Omega}: \operatorname{supp} \boldsymbol{v} \in \mathfrak{q}\right\}$ of V^{Ω}.

We define a summability structure $\Sigma^{\mathfrak{q}}$ on $V[\mathfrak{q}]$ by setting $\boldsymbol{v} \in \operatorname{dom} \Sigma_{I}^{\mathfrak{q}}$ if and only if

$$
\forall p \in \Omega,(\boldsymbol{v}(i)(p))_{i \in I} \in \operatorname{dom} \Sigma_{I}, \quad \text { and } \quad \bigcup_{i \in I} \operatorname{supp} \boldsymbol{v}(i) \in \mathfrak{q} .
$$

Then

$$
\forall p \in \Omega,\left(\Sigma_{I}^{\mathfrak{q}} \boldsymbol{v}\right)(p):=\Sigma_{I}(\boldsymbol{v}(i)(p))_{i \in I} .
$$

II) Let A be an algebra, $\mathfrak{p} \subset A$ a proper ideal with $\bigcap_{n>0} \mathfrak{p}^{n}=\{0\}$. Assume that A is complete in the \mathfrak{p}-adic topology. We define a summability structure Σ on A by setting

$$
\operatorname{dom} \Sigma_{I}:=\left\{\boldsymbol{a} \in A^{I}: \forall n>0,\left\{i \in I: \boldsymbol{a}(i) \notin \mathfrak{p}^{n}\right\} \text { is finite }\right\}
$$

and

$$
\Sigma_{I} \boldsymbol{a}:=\lim \left(\sum_{\boldsymbol{a}(i) \notin \mathfrak{p}^{n}} \mathfrak{a}(i)\right)_{n>0} .
$$

I) (V, Σ) : summability space; Ω : non-empty set; \mathfrak{q} : ideal in the Boolean algebra $\mathcal{P}(\Omega)$ containing all finite subsets. We have a subspace $V[\mathfrak{q}]:=\left\{\boldsymbol{v} \in V^{\Omega}: \operatorname{supp} \boldsymbol{v} \in \mathfrak{q}\right\}$ of V^{Ω}.

We define a summability structure $\Sigma^{\mathfrak{q}}$ on $V[\mathfrak{q}]$ by setting $\boldsymbol{v} \in \operatorname{dom} \Sigma_{I}^{\mathfrak{q}}$ if and only if

$$
\forall p \in \Omega,(\boldsymbol{v}(i)(p))_{i \in I} \in \operatorname{dom} \Sigma_{I}, \quad \text { and } \quad \bigcup_{i \in I} \operatorname{supp} \boldsymbol{v}(i) \in \mathfrak{q} .
$$

Then

$$
\forall p \in \Omega,\left(\Sigma_{I}^{\mathfrak{q}} \boldsymbol{v}\right)(p):=\Sigma_{I}(\boldsymbol{v}(i)(p))_{i \in I} .
$$

II) Let A be an algebra, $\mathfrak{p} \subset A$ a proper ideal with $\bigcap_{n>0} \mathfrak{p}^{n}=\{0\}$. Assume that A is complete in the \mathfrak{p}-adic topology. We define a summability structure Σ on A by setting

$$
\operatorname{dom} \Sigma_{I}:=\left\{\boldsymbol{a} \in A^{I}: \forall n>0,\left\{i \in I: \boldsymbol{a}(i) \notin \mathfrak{p}^{n}\right\} \text { is finite }\right\},
$$

and

$$
\Sigma_{I} \boldsymbol{a}:=\lim \left(\sum_{\boldsymbol{a}(i) \notin \mathfrak{p}^{n}} \mathfrak{a}(i)\right)_{n>0} .
$$

III) The category of summability spaces with suitable morphisms is complete and cocomplete.

Strongly linear maps

Let (V, Σ) be a summability space. A linear map $\phi: V \longrightarrow V$ is said strongly linear if for all sets I and $v \in \operatorname{dom} \Sigma_{I}$, we have $\phi \circ \boldsymbol{v} \in \operatorname{dom} \Sigma_{I}$ and

$$
\Sigma_{I}(\phi \circ \boldsymbol{v})=\phi\left(\Sigma_{I} \boldsymbol{v}\right)
$$

Strongly linear maps

Let (V, Σ) be a summability space. A linear map $\phi: V \longrightarrow V$ is said strongly linear if for all sets I and $v \in \operatorname{dom} \Sigma_{I}$, we have $\phi \circ \boldsymbol{v} \in \operatorname{dom} \Sigma_{I}$ and

$$
\Sigma_{I}(\phi \circ \boldsymbol{v})=\phi\left(\Sigma_{I} \boldsymbol{v}\right)
$$

Example: almost everything*.

Strongly linear maps

Let (V, Σ) be a summability space. A linear map $\phi: V \longrightarrow V$ is said strongly linear if for all sets I and $\boldsymbol{v} \in \operatorname{dom} \Sigma_{I}$, we have $\phi \circ \boldsymbol{v} \in \operatorname{dom} \Sigma_{I}$ and

$$
\Sigma_{I}(\phi \circ \boldsymbol{v})=\phi\left(\Sigma_{I} \boldsymbol{v}\right)
$$

Example: almost everything*.
Summability structure $\Sigma^{\text {Lin }}$ on the space $\operatorname{Lin}^{+}(V)$ of strongly linear maps. Given $I \in$ Set:

Strongly linear maps

Let (V, Σ) be a summability space. A linear map $\phi: V \longrightarrow V$ is said strongly linear if for all sets I and $\boldsymbol{v} \in \operatorname{dom} \Sigma_{I}$, we have $\phi \circ \boldsymbol{v} \in \operatorname{dom} \Sigma_{I}$ and

$$
\Sigma_{I}(\phi \circ \boldsymbol{v})=\phi\left(\Sigma_{I} \boldsymbol{v}\right)
$$

Example: almost everything*.
Summability structure $\Sigma^{\text {Lin }}$ on the space $\operatorname{Lin}^{+}(V)$ of strongly linear maps. Given $I \in$ Set:

- $\operatorname{dom} \Sigma_{I}^{\mathrm{Lin}}$ is the set of families $\phi: I \longrightarrow \operatorname{Lin}(V)$ such that for all $J \in$ Set and $\boldsymbol{v} \in \operatorname{dom} \Sigma_{J}$,

$$
(\phi(i)(\boldsymbol{v}(j)))_{(i, j) \in I \times J} \in \operatorname{dom} \Sigma_{I \times J} .
$$

Strongly linear maps

Let (V, Σ) be a summability space. A linear map $\phi: V \longrightarrow V$ is said strongly linear if for all sets I and $\boldsymbol{v} \in \operatorname{dom} \Sigma_{I}$, we have $\phi \circ \boldsymbol{v} \in \operatorname{dom} \Sigma_{I}$ and

$$
\Sigma_{I}(\phi \circ \boldsymbol{v})=\phi\left(\Sigma_{I} \boldsymbol{v}\right)
$$

Example: almost everything*.
Summability structure $\Sigma^{\text {Lin }}$ on the space $\operatorname{Lin}^{+}(V)$ of strongly linear maps. Given $I \in$ Set:

- $\operatorname{dom} \Sigma_{I}^{\mathrm{Lin}}$ is the set of families $\phi: I \longrightarrow \operatorname{Lin}(V)$ such that for all $J \in$ Set and $\boldsymbol{v} \in \operatorname{dom} \Sigma_{J}$,

$$
(\phi(i)(\boldsymbol{v}(j)))_{(i, j) \in I \times J} \in \operatorname{dom} \Sigma_{I \times J} .
$$

- For $\phi \in \operatorname{dom} \Sigma_{I}^{L i n}$, define

$$
\Sigma_{I}^{\operatorname{Lin}} \phi:=v \longmapsto \Sigma_{I}(\phi(i)(v))_{i \in I} .
$$

Definition: summability algebra

Let $(A,+, 0, ., \cdot)$ be an algebra over k, and Σ a summability structure on $(A,+, 0,$.$) . Then$ (A, Σ) is a summability algebra if for all sets I, J and all $(\boldsymbol{a}, \boldsymbol{b}) \in \operatorname{dom} \Sigma_{I} \times \operatorname{dom} \Sigma_{J}$, we have

$$
\boldsymbol{a} \cdot \boldsymbol{b}:=(\boldsymbol{a}(i) \cdot \boldsymbol{b}(j))_{(i, j) \in I \times J} \in \operatorname{dom} \Sigma_{I \times J},
$$

and

$$
\Sigma_{I \times J}(\boldsymbol{a} \cdot \boldsymbol{b})=\left(\Sigma_{I} \boldsymbol{a}\right) \cdot\left(\Sigma_{J} \boldsymbol{b}\right) .
$$

Definition: summability algebra

Let $(A,+, 0, ., \cdot)$ be an algebra over k, and Σ a summability structure on $(A,+, 0,$.$) . Then$ (A, Σ) is a summability algebra if for all sets I, J and all $(\boldsymbol{a}, \boldsymbol{b}) \in \operatorname{dom} \Sigma_{I} \times \operatorname{dom} \Sigma_{J}$, we have

$$
\boldsymbol{a} \cdot \boldsymbol{b}:=(\boldsymbol{a}(i) \cdot \boldsymbol{b}(j))_{(i, j) \in I \times J} \in \operatorname{dom} \Sigma_{I \times J},
$$

and

$$
\Sigma_{I \times J}(\boldsymbol{a} \cdot \boldsymbol{b})=\left(\Sigma_{I} \boldsymbol{a}\right) \cdot\left(\Sigma_{J} \boldsymbol{b}\right) .
$$

Examples:

Definition: summability algebra

Let $(A,+, 0, ., \cdot)$ be an algebra over k, and Σ a summability structure on $(A,+, 0,$.$) . Then$ (A, Σ) is a summability algebra if for all sets I, J and all $(\boldsymbol{a}, \boldsymbol{b}) \in \operatorname{dom} \Sigma_{I} \times \operatorname{dom} \Sigma_{J}$, we have

$$
\boldsymbol{a} \cdot \boldsymbol{b}:=(\boldsymbol{a}(i) \cdot \boldsymbol{b}(j))_{(i, j) \in I \times J} \in \operatorname{dom} \Sigma_{I \times J}
$$

and

$$
\Sigma_{I \times J}(\boldsymbol{a} \cdot \boldsymbol{b})=\left(\Sigma_{I} \boldsymbol{a}\right) \cdot\left(\Sigma_{J} \boldsymbol{b}\right) .
$$

Examples:

- given a summability algebra (A, Σ), a set $\Omega \neq \varnothing$ and an ideal \mathfrak{q} of $\mathcal{P}(\Omega)$ containg all finite subsets, the summability space $A[\mathfrak{q}]$ under pointwise product;

Definition: summability algebra

Let $(A,+, 0, ., \cdot)$ be an algebra over k, and Σ a summability structure on $(A,+, 0,$.$) . Then$ (A, Σ) is a summability algebra if for all sets I, J and all $(\boldsymbol{a}, \boldsymbol{b}) \in \operatorname{dom} \Sigma_{I} \times \operatorname{dom} \Sigma_{J}$, we have

$$
\boldsymbol{a} \cdot \boldsymbol{b}:=(\boldsymbol{a}(i) \cdot \boldsymbol{b}(j))_{(i, j) \in I \times J} \in \operatorname{dom} \Sigma_{I \times J}
$$

and

$$
\Sigma_{I \times J}(\boldsymbol{a} \cdot \boldsymbol{b})=\left(\Sigma_{I} \boldsymbol{a}\right) \cdot\left(\Sigma_{J} \boldsymbol{b}\right) .
$$

Examples:

- given a summability algebra (A, Σ), a set $\Omega \neq \varnothing$ and an ideal \mathfrak{q} of $\mathcal{P}(\Omega)$ containg all finite subsets, the summability space $A[\mathfrak{q}]$ under pointwise product;
- complete algebras for Hausdorff \mathfrak{p}-adic topologies;

Definition: summability algebra

Let $(A,+, 0, ., \cdot)$ be an algebra over k, and Σ a summability structure on $(A,+, 0,$.$) . Then$ (A, Σ) is a summability algebra if for all sets I, J and all $(\boldsymbol{a}, \boldsymbol{b}) \in \operatorname{dom} \Sigma_{I} \times \operatorname{dom} \Sigma_{J}$, we have

$$
\boldsymbol{a} \cdot \boldsymbol{b}:=(\boldsymbol{a}(i) \cdot \boldsymbol{b}(j))_{(i, j) \in I \times J} \in \operatorname{dom} \Sigma_{I \times J},
$$

and

$$
\Sigma_{I \times J}(\boldsymbol{a} \cdot \boldsymbol{b})=\left(\Sigma_{I} \boldsymbol{a}\right) \cdot\left(\Sigma_{J} \boldsymbol{b}\right) .
$$

Examples:

- given a summability algebra (A, Σ), a set $\Omega \neq \varnothing$ and an ideal \mathfrak{q} of $\mathcal{P}(\Omega)$ containg all finite subsets, the summability space $A[\mathfrak{q}]$ under pointwise product;
- complete algebras for Hausdorff \mathfrak{p}-adic topologies;
- given a summability space (V, Σ), the summability space $\operatorname{Lin}^{+}(V)$ under composition;

Definition: summability algebra

Let $(A,+, 0, ., \cdot)$ be an algebra over k, and Σ a summability structure on $(A,+, 0,$.$) . Then$ (A, Σ) is a summability algebra if for all sets I, J and all $(\boldsymbol{a}, \boldsymbol{b}) \in \operatorname{dom} \Sigma_{I} \times \operatorname{dom} \Sigma_{J}$, we have

$$
\boldsymbol{a} \cdot \boldsymbol{b}:=(\boldsymbol{a}(i) \cdot \boldsymbol{b}(j))_{(i, j) \in I \times J} \in \operatorname{dom} \Sigma_{I \times J}
$$

and

$$
\Sigma_{I \times J}(\boldsymbol{a} \cdot \boldsymbol{b})=\left(\Sigma_{I} \boldsymbol{a}\right) \cdot\left(\Sigma_{J} \boldsymbol{b}\right) .
$$

Examples:

- given a summability algebra (A, Σ), a set $\Omega \neq \varnothing$ and an ideal \mathfrak{q} of $\mathcal{P}(\Omega)$ containg all finite subsets, the summability space $A[\mathfrak{q}]$ under pointwise product;
- complete algebras for Hausdorff \mathfrak{p}-adic topologies;
- given a summability space (V, Σ), the summability space $\operatorname{Lin}^{+}(V)$ under composition;
- quotients of summability algebras by ideals which are closed under arbitrary sums.

Let (A, Σ) be a summability algebra. Write

$$
\begin{gathered}
\operatorname{Der}^{+}(A)=\left\{\delta \in \operatorname{Lin}^{+}(A): \forall a, b \in A, \delta(a \cdot b)=\delta(a) \cdot b+a \cdot \delta(b)\right\} \\
\operatorname{Aut}^{+}(A):=\left\{\sigma \in \operatorname{Lin}^{+}(A) \cap \operatorname{GL}(A): \forall a, b \in A, \sigma(a \cdot b)=\sigma(a) \cdot \sigma(b)\right\}
\end{gathered}
$$

Let (A, Σ) be a summability algebra. Write

$$
\begin{gathered}
\operatorname{Der}^{+}(A)=\left\{\delta \in \operatorname{Lin}^{+}(A): \forall a, b \in A, \delta(a \cdot b)=\delta(a) \cdot b+a \cdot \delta(b)\right\} \\
\operatorname{Aut}^{+}(A):=\left\{\sigma \in \operatorname{Lin}^{+}(A) \cap \mathrm{GL}(A): \forall a, b \in A, \sigma(a \cdot b)=\sigma(a) \cdot \sigma(b)\right\}
\end{gathered}
$$

$\operatorname{Der}^{+}(A)$: Lie subalgebra of $\operatorname{Lin}^{+}(A)$ which is closed under sums of summable families Aut ${ }^{+}(A)$: subgroup of the group of automorphisms of A.

Let (A, Σ) be a summability algebra. Write

$$
\begin{gathered}
\operatorname{Der}^{+}(A)=\left\{\delta \in \operatorname{Lin}^{+}(A): \forall a, b \in A, \delta(a \cdot b)=\delta(a) \cdot b+a \cdot \delta(b)\right\} \\
\operatorname{Aut}^{+}(A):=\left\{\sigma \in \operatorname{Lin}^{+}(A) \cap \mathrm{GL}(A): \forall a, b \in A, \sigma(a \cdot b)=\sigma(a) \cdot \sigma(b)\right\}
\end{gathered}
$$

$\operatorname{Der}^{+}(A)$: Lie subalgebra of $\operatorname{Lin}^{+}(A)$ which is closed under sums of summable families Aut ${ }^{+}(A)$: subgroup of the group of automorphisms of A.

We can now ask: does the exponential

$$
\delta \mapsto \sum_{n \in \mathbb{N}} \frac{\delta^{[n]}}{n!}
$$

define an isomorphism

$$
\left(\operatorname{Der}^{+}(A),+\right) \simeq\left(\operatorname{Aut}^{+}(A), \circ\right) \quad ?
$$

Finite words: Let $I \in$ Set. Write $I^{\star}:=\bigcup_{n \in \mathbb{N}} I^{n}$ for the monoid of finite words (including the empty one \varnothing) over I under concatenation

$$
\left(i_{1}, \ldots, i_{m}\right):\left(i_{m+1}, \ldots, i_{n}\right):=\left(i_{1}, \ldots, i_{n}\right)
$$

Finite words: Let $I \in$ Set. Write $I^{\star}:=\bigcup_{n \in \mathbb{N}} I^{n}$ for the monoid of finite words (including the empty one \varnothing) over I under concatenation

$$
\left(i_{1}, \ldots, i_{m}\right):\left(i_{m+1}, \ldots, i_{n}\right):=\left(i_{1}, \ldots, i_{n}\right)
$$

Formal series: Write $k\langle\langle I\rangle\rangle:=k^{I^{\star}}=k\left[\mathcal{P}\left(I^{\star}\right)\right]$ with its summability structure. Writing $X_{w}=\mathbb{1}_{\{w\}}$ for each $w \in I^{\star}$, the family $\left(P(w) X_{w}\right)_{w \in I^{\star}}$ is summable with

$$
P=\sum_{w \in I^{\star}} P(w) X_{w} .
$$

Finite words: Let $I \in$ Set. Write $I^{\star}:=\bigcup_{n \in \mathbb{N}} I^{n}$ for the monoid of finite words (including the empty one \varnothing) over I under concatenation

$$
\left(i_{1}, \ldots, i_{m}\right):\left(i_{m+1}, \ldots, i_{n}\right):=\left(i_{1}, \ldots, i_{n}\right)
$$

Formal series: Write $k\langle\langle I\rangle\rangle:=k^{I^{\star}}=k\left[\mathcal{P}\left(I^{\star}\right)\right]$ with its summability structure. Writing $X_{w}=\mathbb{1}_{\{w\}}$ for each $w \in I^{\star}$, the family $\left(P(w) X_{w}\right)_{w \in I^{\star}}$ is summable with

$$
P=\sum_{w \in I^{\star}} P(w) X_{w} .
$$

We have a Cauchy product

$$
P \cdot Q:=\left(w \mapsto \sum_{u: v=w} P(u) Q(v)\right)=\sum_{w \in I^{\star}}\left(\sum_{u: v=w} P(u) Q(v)\right) X_{w} .
$$

Finite words: Let $I \in$ Set. Write $I^{\star}:=\bigcup_{n \in \mathbb{N}} I^{n}$ for the monoid of finite words (including the empty one \varnothing) over I under concatenation

$$
\left(i_{1}, \ldots, i_{m}\right):\left(i_{m+1}, \ldots, i_{n}\right):=\left(i_{1}, \ldots, i_{n}\right)
$$

Formal series: Write $k\langle\langle I\rangle\rangle:=k^{I^{\star}}=k\left[\mathcal{P}\left(I^{\star}\right)\right]$ with its summability structure. Writing $X_{w}=\mathbb{1}_{\{w\}}$ for each $w \in I^{\star}$, the family $\left(P(w) X_{w}\right)_{w \in I^{\star}}$ is summable with

$$
P=\sum_{w \in I^{\star}} P(w) X_{w} .
$$

We have a Cauchy product

$$
P \cdot Q:=\left(w \mapsto \sum_{u: v=w} P(u) Q(v)\right)=\sum_{w \in I^{\star}}\left(\sum_{u: v=w} P(u) Q(v)\right) X_{w} .
$$

Then $k\langle\langle I\rangle\rangle$ is a unital summability algebra.

Summability algebras with evaluations

Let (A, Σ) be a unital summability algebra of the form $A=k+\mathfrak{m}$ where \mathfrak{m} is a (two-sided) proper ideal which is closed under arbitrary sums. Then A has evaluations if:

For all sets I and all families $\boldsymbol{a} \in \operatorname{dom} \Sigma_{I}$ with $\boldsymbol{a}(i) \in \mathfrak{m}$ for all $i \in I$, the family $\left(\boldsymbol{a}\left(i_{1}\right) \cdots \boldsymbol{a}\left(i_{n}\right)\right)_{n \in \mathbb{N} \wedge\left(i_{1}, \ldots, i_{n}\right) \in I^{n}}$ is summable.

Summability algebras with evaluations

Let (A, Σ) be a unital summability algebra of the form $A=k+\mathfrak{m}$ where \mathfrak{m} is a (two-sided) proper ideal which is closed under arbitrary sums. Then A has evaluations if:

For all sets I and all families $\boldsymbol{a} \in \operatorname{dom} \Sigma_{I}$ with $\boldsymbol{a}(i) \in \mathfrak{m}$ for all $i \in I$, the family $\left(\boldsymbol{a}\left(i_{1}\right) \cdots \boldsymbol{a}\left(i_{n}\right)\right)_{n \in \mathbb{N} \wedge\left(i_{1}, \ldots, i_{n}\right) \in I^{n}}$ is summable.

We can then define, for each such (I, \boldsymbol{a}), a strongly linear evaluation morphism

$$
\begin{aligned}
\mathrm{ev}_{\boldsymbol{a}}: k\langle\langle I\rangle\rangle & \longrightarrow A \\
P & \sum_{w=\left(i_{1}, \ldots, i_{n}\right) \in I^{\star}} P(w) \boldsymbol{a}\left(i_{1}\right) \cdots \boldsymbol{a}\left(i_{n}\right) .
\end{aligned}
$$

Summability algebras with evaluations

Let (A, Σ) be a unital summability algebra of the form $A=k+\mathfrak{m}$ where \mathfrak{m} is a (two-sided) proper ideal which is closed under arbitrary sums. Then A has evaluations if:

For all sets I and all families $\boldsymbol{a} \in \operatorname{dom} \Sigma_{I}$ with $\boldsymbol{a}(i) \in \mathfrak{m}$ for all $i \in I$, the family $\left(\boldsymbol{a}\left(i_{1}\right) \cdots \boldsymbol{a}\left(i_{n}\right)\right)_{n \in \mathbb{N} \wedge\left(i_{1}, \ldots, i_{n}\right) \in I^{n}}$ is summable.

We can then define, for each such (I, \boldsymbol{a}), a strongly linear evaluation morphism

$$
\begin{aligned}
\mathrm{ev}_{\boldsymbol{a}}: k\langle\langle I\rangle\rangle & \longrightarrow A \\
P & \sum_{w=\left(i_{1}, \ldots, i_{n}\right) \in I^{\star}} P(w) \boldsymbol{a}\left(i_{1}\right) \cdots \boldsymbol{a}\left(i_{n}\right) .
\end{aligned}
$$

$k\langle\langle I\rangle\rangle$ has evaluations. For $J \in$ Set, $\boldsymbol{Q}: J \longrightarrow k\langle\langle I\rangle\rangle$ summable and $P \in k\langle\langle J\rangle\rangle$, we have

Summability algebras with evaluations

Let (A, Σ) be a unital summability algebra of the form $A=k+\mathfrak{m}$ where \mathfrak{m} is a (two-sided) proper ideal which is closed under arbitrary sums. Then A has evaluations if:

For all sets I and all families $\boldsymbol{a} \in \operatorname{dom} \Sigma_{I}$ with $\boldsymbol{a}(i) \in \mathfrak{m}$ for all $i \in I$, the family $\left(\boldsymbol{a}\left(i_{1}\right) \cdots \boldsymbol{a}\left(i_{n}\right)\right)_{n \in \mathbb{N} \wedge\left(i_{1}, \ldots, i_{n}\right) \in I^{n}}$ is summable.

We can then define, for each such (I, \boldsymbol{a}), a strongly linear evaluation morphism

$$
\begin{aligned}
\mathrm{ev}_{\boldsymbol{a}}: k\langle\langle I\rangle\rangle & \longrightarrow A \\
P & \sum_{w=\left(i_{1}, \ldots, i_{n}\right) \in I^{\star}} P(w) \boldsymbol{a}\left(i_{1}\right) \cdots \boldsymbol{a}\left(i_{n}\right) .
\end{aligned}
$$

$k\langle\langle I\rangle\rangle$ has evaluations. For $J \in$ Set, $\boldsymbol{Q}: J \longrightarrow k\langle\langle I\rangle\rangle$ summable and $P \in k\langle\langle J\rangle\rangle$, we have

$$
P[\boldsymbol{Q}[\boldsymbol{a}]]=(P[\boldsymbol{Q}])[\boldsymbol{a}] .
$$

Summability algebras with evaluations

Let (A, Σ) be a unital summability algebra of the form $A=k+\mathfrak{m}$ where \mathfrak{m} is a (two-sided) proper ideal which is closed under arbitrary sums. Then A has evaluations if:

For all sets I and all families $\boldsymbol{a} \in \operatorname{dom} \Sigma_{I}$ with $\boldsymbol{a}(i) \in \mathfrak{m}$ for all $i \in I$, the family $\left(\boldsymbol{a}\left(i_{1}\right) \cdots \boldsymbol{a}\left(i_{n}\right)\right)_{n \in \mathbb{N} \wedge\left(i_{1}, \ldots, i_{n}\right) \in I^{n}}$ is summable.

We can then define, for each such (I, \boldsymbol{a}), a strongly linear evaluation morphism

$$
\begin{aligned}
\mathrm{ev}_{\boldsymbol{a}}: k\langle\langle I\rangle\rangle & \longrightarrow A \\
P & \sum_{w=\left(i_{1}, \ldots, i_{n}\right) \in I^{\star}} P(w) \boldsymbol{a}\left(i_{1}\right) \cdots \boldsymbol{a}\left(i_{n}\right) .
\end{aligned}
$$

$k\langle\langle I\rangle\rangle$ has evaluations. For $J \in$ Set, $\boldsymbol{Q}: J \longrightarrow k\langle\langle I\rangle\rangle$ summable and $P \in k\langle\langle J\rangle\rangle$, we have

$$
\operatorname{ev}_{\left(\operatorname{ev}_{\boldsymbol{a}}(\boldsymbol{Q}(j))\right)_{j \in J}}(P)=\operatorname{ev}_{\boldsymbol{a}}\left(\operatorname{ev}_{\boldsymbol{Q}}(P)\right)
$$

Let $A=\mathbb{C}+\mathfrak{m}$ have evaluations. Note that $\operatorname{PSL}_{2}(\mathbb{Z})$ acts on $\mathbb{H}+\mathfrak{m}$.

Let $A=\mathbb{C}+\mathfrak{m}$ have evaluations. For $\tau \in \mathbb{H}$ and $\xi \in \mathbb{C}$ lying above $-\tau$, we have

$$
j(\tau+\xi)=J_{\tau}(\xi)=\sum_{n \in \mathbb{N}} \frac{j^{(n)}(\tau)}{n!} \xi^{n}
$$

Let $A=\mathbb{C}+\mathfrak{m}$ have evaluations. For $\tau \in \mathbb{H}$ and $\xi \in \mathbb{C}$ lying above $-\tau$, we have

$$
j(\tau+\xi)=J_{\tau}(\xi)=\sum_{n \in \mathbb{N}} \frac{j^{(n)}(\tau)}{n!} \xi^{n}
$$

Given a $\gamma \in \mathrm{PSL}_{2}(\mathbb{Z})$, we have a $\Gamma_{\tau} \in \gamma \cdot \tau+z \mathbb{C}[[z]]$ with $\gamma \cdot(\tau+\xi)=\Gamma_{\tau}(\xi)$ for all such ξ.

Let $A=\mathbb{C}+\mathfrak{m}$ have evaluations. For $\tau \in \mathbb{H}$ and $\xi \in \mathbb{C}$ lying above $-\tau$, we have

$$
j(\tau+\xi)=J_{\tau}(\xi)=\sum_{n \in \mathbb{N}} \frac{j^{(n)}(\tau)}{n!} \xi^{n}
$$

Given a $\gamma \in \operatorname{PSL}_{2}(\mathbb{Z})$, we have a $\Gamma_{\tau} \in \gamma \cdot \tau+z \mathbb{C}[[z]]$ with $\gamma \cdot(\tau+\xi)=\Gamma_{\tau}(\xi)$ for all such ξ. We have $j(\gamma \cdot(\tau+\xi))=j(\tau+\xi)$ for all ξ, so $J_{\gamma \cdot \tau}\left[\Gamma_{\tau}-\gamma \cdot \tau\right]=J_{\tau}$ in $\mathbb{C}[[z]]$.

Let $A=\mathbb{C}+\mathfrak{m}$ have evaluations. For $\tau \in \mathbb{H}$ and $\xi \in \mathbb{C}$ lying above $-\tau$, we have

$$
j(\tau+\xi)=J_{\tau}(\xi)=\sum_{n \in \mathbb{N}} \frac{j^{(n)}(\tau)}{n!} \xi^{n}
$$

Given a $\gamma \in \operatorname{PSL}_{2}(\mathbb{Z})$, we have a $\Gamma_{\tau} \in \gamma \cdot \tau+z \mathbb{C}[[z]]$ with $\gamma \cdot(\tau+\xi)=\Gamma_{\tau}(\xi)$ for all such ξ. We have $j(\gamma \cdot(\tau+\xi))=j(\tau+\xi)$ for all ξ, so $J_{\gamma \cdot \tau}\left[\Gamma_{\tau}-\gamma \cdot \tau\right]=J_{\tau}$ in $\mathbb{C}[[z]]$.

For each $\phi \in \tau+\mathfrak{m}$, defining $\hat{j}(\phi):=J_{\tau}[\phi-\tau] \in A$, we can compute

Let $A=\mathbb{C}+\mathfrak{m}$ have evaluations. For $\tau \in \mathbb{H}$ and $\xi \in \mathbb{C}$ lying above $-\tau$, we have

$$
j(\tau+\xi)=J_{\tau}(\xi)=\sum_{n \in \mathbb{N}} \frac{j^{(n)}(\tau)}{n!} \xi^{n}
$$

Given a $\gamma \in \operatorname{PSL}_{2}(\mathbb{Z})$, we have a $\Gamma_{\tau} \in \gamma \cdot \tau+z \mathbb{C}[[z]]$ with $\gamma \cdot(\tau+\xi)=\Gamma_{\tau}(\xi)$ for all such ξ.
We have $j(\gamma \cdot(\tau+\xi))=j(\tau+\xi)$ for all ξ, so $J_{\gamma \cdot \tau}\left[\Gamma_{\tau}-\gamma \cdot \tau\right]=J_{\tau}$ in $\mathbb{C}[[z]]$.
For each $\phi \in \tau+\mathfrak{m}$, defining $\hat{j}(\phi):=J_{\tau}[\phi-\tau] \in A$, we can compute

$$
\begin{align*}
\hat{j}(\gamma \cdot \phi) & =\hat{j}\left(\Gamma_{\tau}[\phi-\tau]\right) \\
& =J_{\gamma \cdot \tau}\left[\Gamma_{\tau}[\phi-\tau]-\gamma \cdot \tau\right] \\
& =J_{\gamma \cdot \tau}\left[\left(\Gamma_{\tau}-\gamma \cdot \tau\right)[\phi-\tau]\right] \tag{16}\\
& =\left(J_{\gamma \cdot \tau}\left[\Gamma_{\tau}-\gamma \cdot \tau\right]\right)[\phi-\tau] \tag{17}\\
& =J_{\tau}[\phi-\tau] \tag{18}\\
& =\hat{j}(\phi) .
\end{align*}
$$

Let $A=\mathbb{C}+\mathfrak{m}$ have evaluations. For $\tau \in \mathbb{H}$ and $\xi \in \mathbb{C}$ lying above $-\tau$, we have

$$
j(\tau+\xi)=J_{\tau}(\xi)=\sum_{n \in \mathbb{N}} \frac{j^{(n)}(\tau)}{n!} \xi^{n}
$$

Given a $\gamma \in \operatorname{PSL}_{2}(\mathbb{Z})$, we have a $\Gamma_{\tau} \in \gamma \cdot \tau+z \mathbb{C}[[z]]$ with $\gamma \cdot(\tau+\xi)=\Gamma_{\tau}(\xi)$ for all such ξ.
We have $j(\gamma \cdot(\tau+\xi))=j(\tau+\xi)$ for all ξ, so $J_{\gamma \cdot \tau}\left[\Gamma_{\tau}-\gamma \cdot \tau\right]=J_{\tau}$ in $\mathbb{C}[[z]]$.
For each $\phi \in \tau+\mathfrak{m}$, defining $\hat{j}(\phi):=J_{\tau}[\phi-\tau] \in A$, we can compute

$$
\begin{align*}
\hat{j}(\gamma \cdot \phi) & =\hat{j}\left(\Gamma_{\tau}[\phi-\tau]\right) \\
& =J_{\gamma \cdot \tau}\left[\Gamma_{\tau}[\phi-\tau]-\gamma \cdot \tau\right] \\
& =J_{\gamma \cdot \tau}\left[\left(\Gamma_{\tau}-\gamma \cdot \tau\right)[\phi-\tau]\right] \tag{19}\\
& =\left(J_{\gamma \cdot \tau}\left[\Gamma_{\tau}-\gamma \cdot \tau\right]\right)[\phi-\tau] \tag{20}\\
& =J_{\tau}[\phi-\tau] \tag{21}\\
& =\hat{j}(\phi) .
\end{align*}
$$

We get a "modular function" \hat{j} on $\mathbb{H}+\mathfrak{m}$! (maybe)

Let $I=\{0,1\}$. In $k\langle\langle I\rangle\rangle$, we have formal series

$$
\exp \left(X_{i}\right):=\sum_{n \in \mathbb{N}} \frac{1}{n!} X_{i}^{n}, i \in\{0,1\} \quad \text { and } \quad \log \left(1+X_{0}\right):=\sum_{n>0} \frac{(-1)^{n+1}}{n} X_{0}^{n}
$$

Let $I=\{0,1\}$. In $k\langle\langle I\rangle\rangle$, we have formal series

$$
\exp \left(X_{i}\right):=\sum_{n \in \mathbb{N}} \frac{1}{n!} X_{i}^{n}, i \in\{0,1\} \quad \text { and } \quad \log \left(1+X_{0}\right):=\sum_{n>0} \frac{(-1)^{n+1}}{n} X_{0}^{n}
$$

Given a summability algebra (A, Σ) with evaluations, with maximal ideal \mathfrak{m}, define

$$
\begin{aligned}
\exp : \mathfrak{m} & \longrightarrow 1+\mathfrak{m} \\
\varepsilon & \longmapsto \operatorname{ev}_{\varepsilon}\left(\exp \left(X_{0}\right)\right)=\sum_{n \in \mathbb{N}} \frac{1}{n!} \varepsilon^{n} .
\end{aligned}
$$

Let $I=\{0,1\}$. In $k\langle\langle I\rangle\rangle$, we have formal series

$$
\exp \left(X_{i}\right):=\sum_{n \in \mathbb{N}} \frac{1}{n!} X_{i}^{n}, i \in\{0,1\} \quad \text { and } \quad \log \left(1+X_{0}\right):=\sum_{n>0} \frac{(-1)^{n+1}}{n} X_{0}^{n}
$$

Given a summability algebra (A, Σ) with evaluations, with maximal ideal \mathfrak{m}, define

$$
\begin{aligned}
\exp : \mathfrak{m} & \longrightarrow 1+\mathfrak{m} \\
\varepsilon & \longmapsto \operatorname{ev}_{\varepsilon}\left(\exp \left(X_{0}\right)\right)=\sum_{n \in \mathbb{N}} \frac{1}{n!} \varepsilon^{n} .
\end{aligned}
$$

Routine computations give $\exp \left(\log \left(1+X_{0}\right)\right)=1+X_{0}$ and $\log \left(\exp \left(X_{0}\right)\right)=X_{0}$. Thus exp is bijective with inverse

$$
\begin{aligned}
\log : 1+\mathfrak{m} & \longrightarrow \mathfrak{m} \\
1+\varepsilon & \longmapsto \mathrm{ev}_{\varepsilon}\left(\log \left(1+X_{0}\right)\right)=\sum_{n>0} \frac{(-1)^{n+1}}{n} \varepsilon^{n}
\end{aligned}
$$

Less routine computations give that the series

$$
X_{0} * X_{1}:=\log \left(\exp \left(X_{0}\right) \cdot \exp \left(X_{1}\right)\right) \in k\langle\langle I\rangle
$$

is a sum of elements in the Lie subalgebra of $k\langle\langle I\rangle\rangle_{0}$ generated by X_{0} and X_{1}.

Less routine computations give that the series

$$
X_{0} * X_{1}:=\log \left(\exp \left(X_{0}\right) \cdot \exp \left(X_{1}\right)\right) \in k\langle\langle I\rangle
$$

is a sum of elements in the Lie subalgebra of $k\langle\langle I\rangle\rangle_{0}$ generated by X_{0} and X_{1}.
Define a group operation $*: \mathfrak{m} \times \mathfrak{m} \longrightarrow \mathfrak{m}$ by

$$
\forall \varepsilon_{0}, \varepsilon_{1} \in \mathfrak{m}, \varepsilon_{0} * \varepsilon_{1}:=\operatorname{ev}_{\varepsilon_{0}, \varepsilon_{1}}\left(X_{0} * X_{1}\right)
$$

Less routine computations give that the series

$$
X_{0} * X_{1}:=\log \left(\exp \left(X_{0}\right) \cdot \exp \left(X_{1}\right)\right) \in k\langle\langle I\rangle
$$

is a sum of elements in the Lie subalgebra of $k\langle\langle I\rangle\rangle_{0}$ generated by X_{0} and X_{1}.
Define a group operation $*: \mathfrak{m} \times \mathfrak{m} \longrightarrow \mathfrak{m}$ by

$$
\forall \varepsilon_{0}, \varepsilon_{1} \in \mathfrak{m}, \varepsilon_{0} * \varepsilon_{1}:=\operatorname{ev}_{\varepsilon_{0}, \varepsilon_{1}}\left(X_{0} * X_{1}\right)
$$

By evaluation, we obtain that

- $\exp \left(\varepsilon_{0}\right) \cdot \exp \left(\varepsilon_{1}\right)=\exp \left(\varepsilon_{0} * \varepsilon_{1}\right)$
- $\varepsilon_{0} * \varepsilon_{1}$ is a sum of elements in the Lie subalgebra of \mathfrak{m} generated by ε_{0} and ε_{1} (in particular * preserves derivations).
- $\exp :(\mathfrak{m}, *) \longrightarrow(1+\mathfrak{m}, \cdot)$ is an isomorphism.

Now assume that $k+\mathfrak{m}$ is a summability algebra with evaluations, which is a subalgebra of $\left(\operatorname{Lin}^{+}(A),+, ., \circ\right)$ for a given summability algebra (A, Σ).

Now assume that $k+\mathfrak{m}$ is a summability algebra with evaluations, which is a subalgebra of $\left(\operatorname{Lin}^{+}(A),+, ., \circ\right)$ for a given summability algebra (A, Σ).

Theorem \mathbf{A}

$A \delta \in \mathfrak{m}$ is a derivation on A if and only if $\exp (\delta)$ is an automorphism of A. Therefore

$$
\exp :\left(\operatorname{Der}^{+}(A) \cap \mathfrak{m}, *\right) \longrightarrow\left(\operatorname{Aut}^{+}(A) \cap(1+\mathfrak{m}), \circ\right)
$$

is an isomorphism.

Now assume that $k+\mathfrak{m}$ is a summability algebra with evaluations, which is a subalgebra of $\left(\operatorname{Lin}^{+}(A),+, ., \circ\right)$ for a given summability algebra (A, Σ).

Theorem \mathbf{A}

$A \delta \in \mathfrak{m}$ is a derivation on A if and only if $\exp (\delta)$ is an automorphism of A. Therefore

$$
\exp :\left(\operatorname{Der}^{+}(A) \cap \mathfrak{m}, *\right) \longrightarrow\left(\operatorname{Aut}^{+}(A) \cap(1+\mathfrak{m}), \circ\right)
$$

is an isomorphism.
As a corollary, the group $\operatorname{Aut}^{+}(A) \cap(1+\mathfrak{m})$ is divisible and torsion-free.

Now assume that $k+\mathfrak{m}$ is a summability algebra with evaluations, which is a subalgebra of $\left(\operatorname{Lin}^{+}(A),+, ., \circ\right)$ for a given summability algebra (A, Σ).

Theorem \mathbf{A}

$A \delta \in \mathfrak{m}$ is a derivation on A if and only if $\exp (\delta)$ is an automorphism of A. Therefore

$$
\exp :\left(\operatorname{Der}^{+}(A) \cap \mathfrak{m}, *\right) \longrightarrow\left(\operatorname{Aut}^{+}(A) \cap(1+\mathfrak{m}), \circ\right)
$$

is an isomorphism.
As a corollary, the group $\operatorname{Aut}^{+}(A) \cap(1+\mathfrak{m})$ is divisible and torsion-free.

How can we find examples of such situations?

Let $(M,+, 0,<)$ be an ordered monoid. A subset of M is said Noetherian (or w.q.o) if it has no infinite antichain and no strictly decreasing infinite sequence.

Let $(M,+, 0,<)$ be an ordered monoid. A subset of M is said Noetherian (or w.q.o) if it has no infinite antichain and no strictly decreasing infinite sequence.

The set \mathfrak{n} of Noetherian subsets of M is an ideal of $\mathcal{P}(M)$. Thus $k((M)):=k[\mathfrak{n}]$ has a natural structure of summability space.

Let $(M,+, 0,<)$ be an ordered monoid. A subset of M is said Noetherian (or w.q.o) if it has no infinite antichain and no strictly decreasing infinite sequence.

The set \mathfrak{n} of Noetherian subsets of M is an ideal of $\mathcal{P}(M)$. Thus $k((M)):=k[\mathfrak{n}]$ has a natural structure of summability space.

This is a summability algebra under the expected Cauchy product

$$
\forall m \in M,(a \cdot b)(m)=\sum_{m_{0}+m_{1}=m} a\left(m_{0}\right) b\left(m_{1}\right)
$$

Let $(M,+, 0,<)$ be an ordered monoid. A subset of M is said Noetherian (or w.q.o) if it has no infinite antichain and no strictly decreasing infinite sequence.

The set \mathfrak{n} of Noetherian subsets of M is an ideal of $\mathcal{P}(M)$. Thus $k((M)):=k[\mathfrak{n}]$ has a natural structure of summability space.

This is a summability algebra under the expected Cauchy product

$$
\forall m \in M,(a \cdot b)(m)=\sum_{m_{0}+m_{1}=m} a\left(m_{0}\right) b\left(m_{1}\right)
$$

Examples

- If M is a totally ordered group, then $k((M))$ is a skew field (e.g. Hahn field if M is Abelian).

Let $(M,+, 0,<)$ be an ordered monoid. A subset of M is said Noetherian (or w.q.o) if it has no infinite antichain and no strictly decreasing infinite sequence.

The set \mathfrak{n} of Noetherian subsets of M is an ideal of $\mathcal{P}(M)$. Thus $k((M)):=k[\mathfrak{n}]$ has a natural structure of summability space.

This is a summability algebra under the expected Cauchy product

$$
\forall m \in M,(a \cdot b)(m)=\sum_{m_{0}+m_{1}=m} a\left(m_{0}\right) b\left(m_{1}\right)
$$

Examples

- If M is a totally ordered group, then $k((M))$ is a skew field (e.g. Hahn field if M is Abelian).
- If $M=(\mathbb{N},+, 0,<)^{n}$, then $k((M)) \simeq k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$.

Let $(M,+, 0,<)$ be an ordered monoid. A subset of M is said Noetherian (or w.q.o) if it has no infinite antichain and no strictly decreasing infinite sequence.

The set \mathfrak{n} of Noetherian subsets of M is an ideal of $\mathcal{P}(M)$. Thus $k((M)):=k[\mathfrak{n}]$ has a natural structure of summability space.

This is a summability algebra under the expected Cauchy product

$$
\forall m \in M,(a \cdot b)(m)=\sum_{m_{0}+m_{1}=m} a\left(m_{0}\right) b\left(m_{1}\right)
$$

Examples

- If M is a totally ordered group, then $k((M))$ is a skew field (e.g. Hahn field if M is Abelian).
- If $M=(\mathbb{N},+, 0,<)^{n}$, then $k((M)) \simeq k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$.
- If $M=(G,+, 0, \varnothing)$ for a group $(G,+, 0)$, then $k((M)) \simeq k[G]$.

Let $(M,+, 0,<)$ be an ordered monoid. A subset of M is said Noetherian (or w.q.o) if it has no infinite antichain and no strictly decreasing infinite sequence.

The set \mathfrak{n} of Noetherian subsets of M is an ideal of $\mathcal{P}(M)$. Thus $k((M)):=k[\mathfrak{n}]$ has a natural structure of summability space.

This is a summability algebra under the expected Cauchy product

$$
\forall m \in M,(a \cdot b)(m)=\sum_{m_{0}+m_{1}=m} a\left(m_{0}\right) b\left(m_{1}\right)
$$

Examples

- If M is a totally ordered group, then $k((M))$ is a skew field (e.g. Hahn field if M is Abelian).
- If $M=(\mathbb{N},+, 0,<)^{n}$, then $k((M)) \simeq k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$.
- If $M=(G,+, 0, \varnothing)$ for a group $(G,+, 0)$, then $k((M)) \simeq k[G]$.
- If $(I,<)$ is a Noetherian ordered set and $M=\left(I^{\star},:, \varnothing,<^{\star}\right)$ for Higman's ordering $<^{\star}$ on I^{\star}, then $k((M))=k\langle\langle I\rangle\rangle$.

Write $\mathbb{A}=k((M))$. Given $a, b \in \mathbb{A}, b \neq 0$, we write

$$
a \prec b
$$

if for all $m_{a} \in \operatorname{supp} a$, there is an $m_{b} \in \operatorname{supp} b$ with $m_{a}>m_{b}$.

Write $\mathbb{A}=k((M))$. Given $a, b \in \mathbb{A}, b \neq 0$, we write

$$
a \prec b
$$

if for all $m_{a} \in \operatorname{supp} a$, there is an $m_{b} \in \operatorname{supp} b$ with $m_{a}>m_{b}$.
A linear map $\phi: \mathbb{A} \longrightarrow \mathbb{A}$ is said contracting if $\phi(a) \prec a$ for each $a \neq 0$. We write $\operatorname{Lin}_{\prec}^{+}(\mathbb{A})$ for the set of contracting strongly linear maps $\mathbb{A} \longrightarrow \mathbb{A}$.

Write $\mathbb{A}=k((M))$. Given $a, b \in \mathbb{A}, b \neq 0$, we write

$$
a \prec b
$$

if for all $m_{a} \in \operatorname{supp} a$, there is an $m_{b} \in \operatorname{supp} b$ with $m_{a}>m_{b}$.
A linear map $\phi: \mathbb{A} \longrightarrow \mathbb{A}$ is said contracting if $\phi(a) \prec a$ for each $a \neq 0$. We write $\operatorname{Lin}_{\prec}^{+}(\mathbb{A})$ for the set of contracting strongly linear maps $\mathbb{A} \longrightarrow \mathbb{A}$.

Theorem B

The subalgebra $k \operatorname{Id}_{\mathbb{A}}+\operatorname{Lin}_{\prec}^{+}(\mathbb{A})$ of $\operatorname{Lin}^{+}(\mathbb{A})$ has evaluations.

Write $\mathbb{A}=k((M))$. Given $a, b \in \mathbb{A}, b \neq 0$, we write

$$
a \prec b
$$

if for all $m_{a} \in \operatorname{supp} a$, there is an $m_{b} \in \operatorname{supp} b$ with $m_{a}>m_{b}$.
A linear map $\phi: \mathbb{A} \longrightarrow \mathbb{A}$ is said contracting if $\phi(a) \prec a$ for each $a \neq 0$. We write $\operatorname{Lin}_{\prec}^{+}(\mathbb{A})$ for the set of contracting strongly linear maps $\mathbb{A} \longrightarrow \mathbb{A}$.

Theorem B

The subalgebra $k \operatorname{Id}_{\mathbb{A}}+\operatorname{Lin}_{\prec}^{+}(\mathbb{A})$ of $\operatorname{Lin}^{+}(\mathbb{A})$ has evaluations.
Write $1-\operatorname{Aut}_{k}^{+}(\mathbb{A})$ for the space of automorphisms σ of \mathbb{A} with $\sigma(a)-a \prec a$ for all $a \neq 0$.

Write $\mathbb{A}=k((M))$. Given $a, b \in \mathbb{A}, b \neq 0$, we write

$$
a \prec b
$$

if for all $m_{a} \in \operatorname{supp} a$, there is an $m_{b} \in \operatorname{supp} b$ with $m_{a}>m_{b}$.
A linear map $\phi: \mathbb{A} \longrightarrow \mathbb{A}$ is said contracting if $\phi(a) \prec a$ for each $a \neq 0$. We write $\operatorname{Lin}_{\prec}^{+}(\mathbb{A})$ for the set of contracting strongly linear maps $\mathbb{A} \longrightarrow \mathbb{A}$.

Theorem B

The subalgebra $k \operatorname{Id}_{\mathbb{A}}+\operatorname{Lin}_{\prec}^{+}(\mathbb{A})$ of $\operatorname{Lin}^{+}(\mathbb{A})$ has evaluations.
Write $1-\operatorname{Aut}_{k}^{+}(\mathbb{A})$ for the space of automorphisms σ of \mathbb{A} with $\sigma(a)-a \prec a$ for all $a \neq 0$.

Corollary

We have an isomorphism

$$
\begin{aligned}
\exp :\left(\operatorname{Der}^{+}(\mathbb{A}) \cap \operatorname{Lin}_{\prec}^{+}(\mathbb{A}), *\right) & \longrightarrow\left(1-\operatorname{Aut}_{k}^{+}(\mathbb{A}), o\right) \\
\partial & \longmapsto \sum_{n \in \mathbb{N}} \frac{1}{n!} \partial^{[n]} .
\end{aligned}
$$

One can study properties of the group $1-\operatorname{Aut}_{k}^{+}(\mathbb{A})$ by looking at $\operatorname{Der}_{\prec}^{+}(\mathbb{A})$ instead.

One can study properties of the group $1-\operatorname{Aut}_{k}^{+}(\mathbb{A})$ by looking at $\operatorname{Der}_{\prec}^{+}(\mathbb{A})$ instead.

Theorem C

Let $\Phi: \operatorname{Der}_{\prec}^{+}(\mathbb{A}) \longrightarrow \operatorname{Der}_{\prec}^{+}(\mathbb{B})$ be a strongly linear Lie algebra endomorphism. There is a unique group morphism $\Psi: 1-\operatorname{Aut}_{k}^{+}(\mathbb{A}) \longrightarrow 1-\operatorname{Aut}_{k}^{+}(\mathbb{B})$ with $\exp \circ \Phi=\Psi \circ \exp$.

One can study properties of the group $1-\operatorname{Aut}_{k}^{+}(\mathbb{A})$ by looking at $\operatorname{Der}_{\prec}^{+}(\mathbb{A})$ instead.

Theorem C

Let $\Phi: \operatorname{Der}_{\prec}^{+}(\mathbb{A}) \longrightarrow \operatorname{Der}_{\prec}^{+}(\mathbb{B})$ be a strongly linear Lie algebra endomorphism. There is a unique group morphism $\Psi: 1-\operatorname{Aut}_{k}^{+}(\mathbb{A}) \longrightarrow 1-\operatorname{Aut}_{k}^{+}(\mathbb{B})$ with $\exp \circ \Phi=\Psi \circ \exp$.

Question. The group 1-Aut ${ }_{k}^{+}(\mathbb{A})$ can be equipped with infinite ordered products in a precise sense. If $\Psi: 1-\operatorname{Aut}_{k}^{+}(\mathbb{A}) \longrightarrow 1-$ Aut $_{k}^{+}(\mathbb{B})$ preserves infinite products, does it induce a strongly linear Lie algebra homomorphism?

(don't look at the picture)

