Structure of some subgroups of transseries

(joint work with M. Resman)

```
G \subset \operatorname{Homeo}(\mathbb{R}, +\infty)
```

whose elements have transserial assymptotic expansions.

 $G \subset \operatorname{Homeo}(\mathbb{R}, +\infty)$

whose elements have transserial assymptotic expansions.

Example: Consider the subgroup $G \subset \operatorname{Homeo}(\mathbb{R}, +\infty)$ generated by

 $G \subset \operatorname{Homeo}(\mathbb{R}, +\infty)$

whose elements have transserial assymptotic expansions.

Example: Consider the subgroup $G \subset \operatorname{Homeo}(\mathbb{R}, +\infty)$ generated by

translations: $t_a: x \mapsto x + a, \quad a \in \mathbb{R}$ (T)

 $G \subset \operatorname{Homeo}(\mathbb{R}, +\infty)$

whose elements have transserial assymptotic expansions.

Example: Consider the subgroup $G \subset \text{Homeo}(\mathbb{R}, +\infty)$ generated by translations: $t_a: x \longmapsto x + a, \quad a \in \mathbb{R}$ (T)

scalings: s_{α} : $x \mapsto \alpha x$, $\alpha \in \mathbb{R}_{>0}$ (S^+)

 $G \subset \operatorname{Homeo}(\mathbb{R}, +\infty)$

whose elements have transserial assymptotic expansions.

Example: Consider the subgroup $G \subset \operatorname{Homeo}(\mathbb{R}, +\infty)$ generated by translations: $t_a: x \longmapsto x + a, \quad a \in \mathbb{R}$ (*T*) scalings: $s_{\alpha}: x \longmapsto \alpha x, \quad \alpha \in \mathbb{R}_{>0}$ (*S*⁺) the exponential and log: exp: $x \longmapsto \exp(x) \quad \log: x \longmapsto \log(x)$ (*E*)

 $G \subset \operatorname{Homeo}(\mathbb{R}, +\infty)$

whose elements have transserial assymptotic expansions.

Example: Consider the subgroup $G \subset \text{Homeo}(\mathbb{R}, +\infty)$ generated by translations: $t_a: x \longmapsto x + a, \quad a \in \mathbb{R}$ (*T*) scalings: $s_{\alpha}: x \longmapsto \alpha x, \quad \alpha \in \mathbb{R}_{>0}$ (*S*⁺) the exponential and log: exp: $x \longmapsto \exp(x)$ log: $x \longmapsto \log(x)$ (*E*)

We observe that each element $g \in G$ corresponds to a function definable in $\mathbb{R}_{an,exp}$, and therefore is given by a *convergent* transseries.

 $G \subset \operatorname{Homeo}(\mathbb{R}, +\infty)$

whose elements have transserial assymptotic expansions.

We observe that each element $g \in G$ corresponds to a function definable in $\mathbb{R}_{an,exp}$, and therefore is given by a *convergent* transseries.

What is the structure of the group G? (e.g. are there any **free subgroups** inside G)

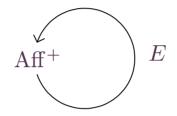
$$et_a e^{-1}(x) = \exp(a + \log x) = \exp(a) x$$

$$et_a e^{-1}(x) = \exp(a + \log x) = \exp(a) x$$

$$et_a e^{-1} = s_{\exp(a)}$$

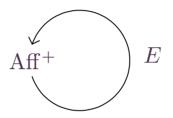
$$et_a e^{-1}(x) = \exp(a + \log x) = \exp(a) x$$

$$et_a e^{-1} = s_{\exp(a)}$$



$$et_a e^{-1}(x) = \exp(a + \log x) = \exp(a) x$$

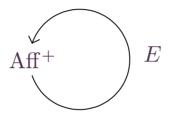
 $et_a e^{-1} = s_{\exp(a)}$



Theorem (P, 2017): The group G is isomorphic to the *HNN-extension* of $Aff_+ = T \rtimes S_+$, with E is playing the role of the *stable letter*.

$$et_a e^{-1}(x) = \exp(a + \log x) = \exp(a) x$$

$$et_a e^{-1} = s_{\exp(a)}$$

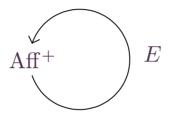


Theorem (P, 2017): The group G is isomorphic to the *HNN-extension* of $Aff_+ = T \rtimes S_+$, with E is playing the role of the *stable letter*.

This result implies the existence of many free subgroups inside G...

$$et_a e^{-1}(x) = \exp(a + \log x) = \exp(a) x$$

$$et_a e^{-1} = s_{\exp(a)}$$



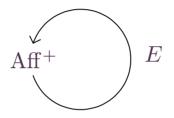
Theorem (P, 2017): The group G is isomorphic to the *HNN-extension* of $Aff_+ = T \rtimes S_+$, with E is playing the role of the *stable letter*.

This result implies the existence of many free subgroups inside G...

Example of free subgroups in G: (powers and translations) the group $\langle T, P \rangle \subset G$ generated by

$$et_a e^{-1}(x) = \exp(a + \log x) = \exp(a) x$$

$$et_a e^{-1} = s_{\exp(a)}$$



Theorem (P, 2017): The group G is isomorphic to the *HNN-extension* of $Aff_+ = T \rtimes S_+$, with E is playing the role of the *stable letter*.

This result implies the existence of many free subgroups inside G...

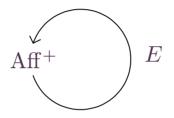
Example of free subgroups in G: (powers and translations) the group $\langle T, P \rangle \subset G$ generated by

$$T: x \to x + a, \qquad P: x \to x^{\lambda}, \qquad \lambda \in \mathbb{R}_{>0}$$

is free. (Question of Higman).

$$et_a e^{-1}(x) = \exp(a + \log x) = \exp(a) x$$

$$et_a e^{-1} = s_{\exp(a)}$$



Theorem (P, 2017): The group G is isomorphic to the *HNN-extension* of $Aff_+ = T \rtimes S_+$, with E is playing the role of the *stable letter*.

This result implies the existence of many free subgroups inside G...

Example of free subgroups in G: (powers and translations) the group $\langle T, P \rangle \subset G$ generated by

$$T: x \to x + a, \qquad P: x \to x^{\lambda}, \qquad \lambda \in \mathbb{R}_{>0}$$

is free. (Question of Higman).

$$x \to (((x+a_1)^{\lambda_1}+a_2)^{\lambda_2}+\cdots+a_n)^{\lambda_n}$$

For instance, we can generate

$$x \to \frac{1}{\lambda} \log(e^{\lambda x} + a) = x + \log\left(1 + \frac{a}{e^{\lambda x}}\right) = x + a e^{-\lambda x} + o(e^{-\lambda x})$$

For instance, we can generate

$$x \to \frac{1}{\lambda} \log(e^{\lambda x} + a) = x + \log\left(1 + \frac{a}{e^{\lambda x}}\right) = x + ae^{-\lambda x} + o(e^{-\lambda x})$$

By finite composition of such germs, we can generate a **subgroup** of the group of germs at infinity having a convergent transserial expansion

For instance, we can generate

$$x \to \frac{1}{\lambda} \log(e^{\lambda x} + a) = x + \log\left(1 + \frac{a}{e^{\lambda x}}\right) = x + ae^{-\lambda x} + o(e^{-\lambda x})$$

By finite composition of such germs, we can generate a **subgroup** of the group of germs at infinity having a convergent transserial expansion

$$g(x) = x + \sum_{\lambda \nearrow \infty} a_{\lambda} e^{-\lambda x}$$

For instance, we can generate

$$x \to \frac{1}{\lambda} \log(e^{\lambda x} + a) = x + \log\left(1 + \frac{a}{e^{\lambda x}}\right) = x + ae^{-\lambda x} + o(e^{-\lambda x})$$

By finite composition of such germs, we can generate a **subgroup** of the group of germs at infinity having a convergent transserial expansion

$$g(x) = x + \sum_{\lambda \nearrow \infty} a_{\lambda} e^{-\lambda x}$$

which we call finitary Dulac series.

For instance, we can generate

$$x \to \frac{1}{\lambda} \log(e^{\lambda x} + a) = x + \log\left(1 + \frac{a}{e^{\lambda x}}\right) = x + ae^{-\lambda x} + o(e^{-\lambda x})$$

By finite composition of such germs, we can generate a **subgroup** of the group of germs at infinity having a convergent transserial expansion

$$g(x) = x + \sum_{\lambda \nearrow \infty} a_{\lambda} e^{-\lambda x}$$

which we call finitary Dulac series.

The previous theorem gives a complete description of the structure of such group.

For instance, we can generate

$$x \to \frac{1}{\lambda} \log(e^{\lambda x} + a) = x + \log\left(1 + \frac{a}{e^{\lambda x}}\right) = x + ae^{-\lambda x} + o(e^{-\lambda x})$$

By finite composition of such germs, we can generate a **subgroup** of the group of germs at infinity having a convergent transserial expansion

$$g(x) = x + \sum_{\lambda \nearrow \infty} a_{\lambda} e^{-\lambda x}$$

which we call finitary Dulac series.

The previous theorem gives a complete description of the structure of such group.

But this is not enough for the applications that I will describe in a moment..

For instance, we can generate

$$x \to \frac{1}{\lambda} \log(e^{\lambda x} + a) = x + \log\left(1 + \frac{a}{e^{\lambda x}}\right) = x + ae^{-\lambda x} + o(e^{-\lambda x})$$

By finite composition of such germs, we can generate a **subgroup** of the group of germs at infinity having a convergent transserial expansion

$$g(x) = x + \sum_{\lambda \nearrow \infty} a_{\lambda} e^{-\lambda x}$$

which we call finitary Dulac series.

The previous theorem gives a complete description of the structure of such group.

But this is not enough for the applications that I will describe in a moment..

We are interested in considering the structure of the general group of Dulac series.

$$d(x) = ax + b + \sum_{0 < \mu \nearrow \infty} p_{\mu}(x)e^{-\mu x}$$

$$d(x) = ax + b + \sum_{0 < \mu \nearrow \infty} p_{\mu}(x)e^{-\mu x}$$

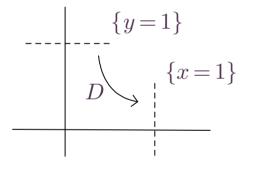
with a>0, $b\in\mathbb{C}$, $p_{\mu}\in\mathbb{C}[x]$ (it is important to allow complex coefficients here)

$$d(x) = ax + b + \sum_{0 < \mu \nearrow \infty} p_{\mu}(x)e^{-\mu x}$$

with a > 0, $b \in \mathbb{C}$, $p_{\mu} \in \mathbb{C}[x]$ (it is important to allow complex coefficients here) Motivation of Dulac: Transition maps near hyperbolic saddles in planar vector fields

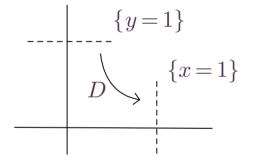
$$d(x) = ax + b + \sum_{0 < \mu \nearrow \infty} p_{\mu}(x)e^{-\mu x}$$

with a > 0, $b \in \mathbb{C}$, $p_{\mu} \in \mathbb{C}[x]$ (it is important to allow complex coefficients here) Motivation of Dulac: Transition maps near hyperbolic saddles in planar vector fields



$$d(x) = ax + b + \sum_{0 < \mu \nearrow \infty} p_{\mu}(x)e^{-\mu x}$$

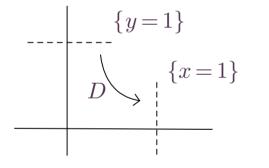
with a > 0, $b \in \mathbb{C}$, $p_{\mu} \in \mathbb{C}[x]$ (it is important to allow complex coefficients here) Motivation of Dulac: Transition maps near hyperbolic saddles in planar vector fields



(linear saddle: $x \frac{\partial}{\partial x} - \lambda y \frac{\partial}{\partial y}$: $D(x) = x^{\lambda} \iff \text{logarithmic chart:}$

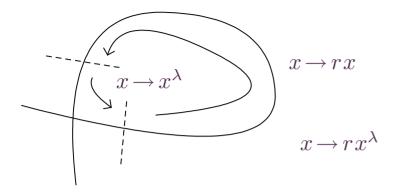
$$d(x) = ax + b + \sum_{0 < \mu \nearrow \infty} p_{\mu}(x)e^{-\mu x}$$

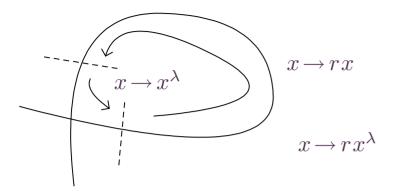
with a > 0, $b \in \mathbb{C}$, $p_{\mu} \in \mathbb{C}[x]$ (it is important to allow complex coefficients here) Motivation of Dulac: Transition maps near hyperbolic saddles in planar vector fields



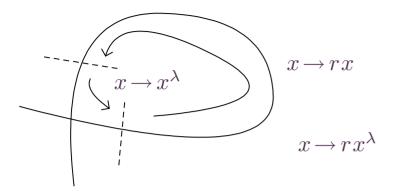
(linear saddle: $x \frac{\partial}{\partial x} - \lambda y \frac{\partial}{\partial y}$: $D(x) = x^{\lambda} \iff \text{logarithmic chart:}$

$$d(x) = -\log D(e^{-x}) = \lambda x$$

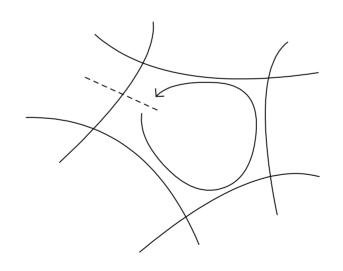




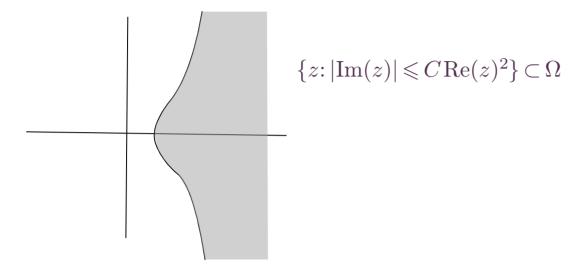
 $d(x) = \lambda x - \log r$



 $d(x) = \lambda x - \log r$

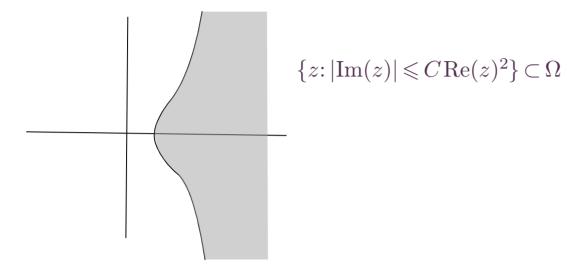


A Dulac germ is a bounded holomorphic function defined in a standard quadratic domain



and which has an asymptotic expansion as a Dulac series.

A Dulac germ is a bounded holomorphic function defined in a standard quadratic domain



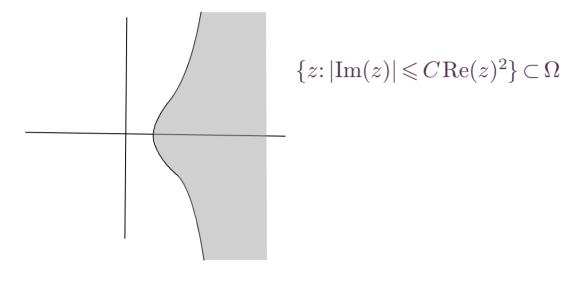
and which has an asymptotic expansion as a Dulac series.

(Quasianalyticity) The Taylor expansion map

$$T\colon \mathcal{D}\longrightarrow \tilde{\mathcal{D}}$$

is injective. In particular, a germ $d \in D$ is real if and only if $T(d) \in \tilde{D}$ is a real series.

A Dulac germ is a bounded holomorphic function defined in a standard quadratic domain



and which has an asymptotic expansion as a Dulac series. (Quasianalyticity) The Taylor expansion map

 $T: \mathcal{D} \longrightarrow \tilde{\mathcal{D}}$

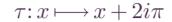
is injective. In particular, a germ $d \in D$ is real if and only if $T(d) \in \tilde{D}$ is a real series. (Composition) The Dulac germs forms a group under composition, with subgroup

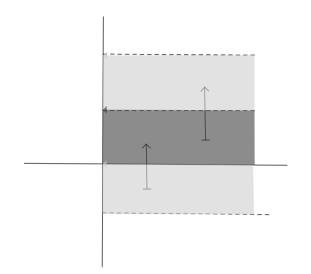
 $\mathcal{D} \cap \operatorname{Homeo}(\mathbb{R}, +\infty)$

Consider the element $\tau\in\mathcal{D}$ given by

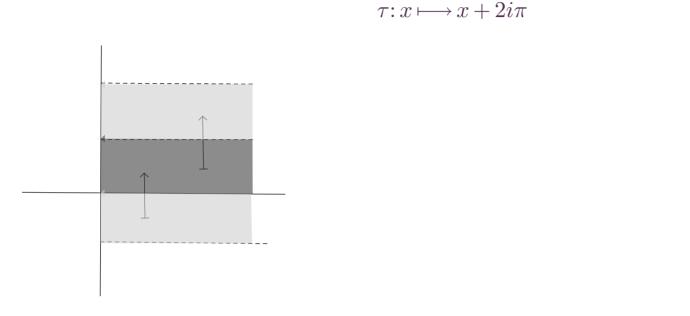
 $\tau : x \longmapsto x + 2i\pi$

Consider the element $\tau \in \mathcal{D}$ given by



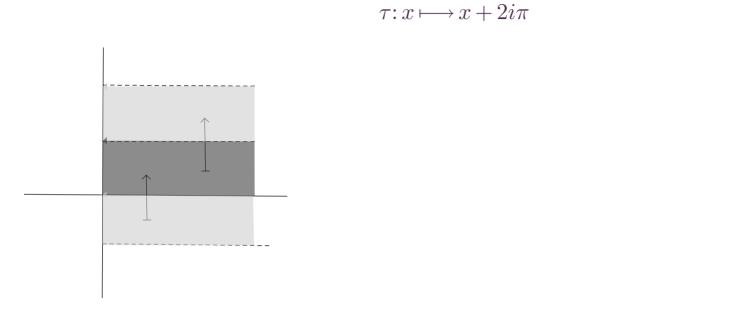


Consider the element $\tau\in\mathcal{D}$ given by



We say that a Dulac germ d is unramified if $[\tau,d]:=\tau^{-1}d^{-1}\tau d=\mathrm{id}.$

Consider the element $\tau\in\mathcal{D}$ given by

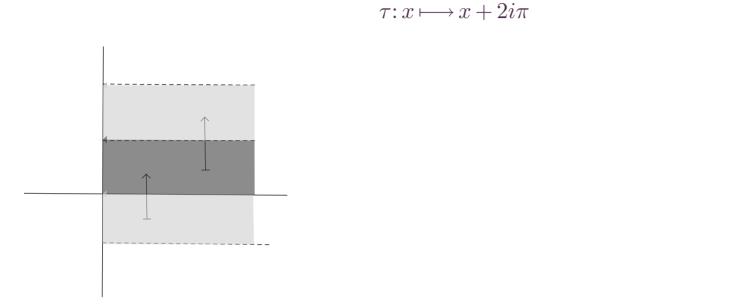


We say that a Dulac germ d is **unramified** if $[\tau, d] := \tau^{-1} d^{-1} \tau d = id$.

- d is unramified if and only if it has an **unramified** Dulac series i.e. a series of the form

$$x+b+\sum_{k\in\mathbb{N}^{\star}}c_{k}e^{-kx},\qquad c_{k}\in\mathbb{C}$$

Consider the element $\tau\in\mathcal{D}$ given by



We say that a Dulac germ d is **unramified** if $[\tau, d] := \tau^{-1} d^{-1} \tau d = id$.

- d is unramified if and only if it has an **unramified** Dulac series i.e. a series of the form

$$x+b+\sum_{k\in\mathbb{N}^{\star}}c_{k}e^{-kx},\qquad c_{k}\in\mathbb{C}$$

- d is unramified if and only if there exists a $\varphi \in \mathbb{C}_1\{x\}$ such $d = E^{-1}fE$, where $E(x) = e^{-x}$

We consider the problem of *classification of elements in* \mathcal{D} *up to* \mathcal{U} *-conjugation.*

We consider the problem of *classification of elements in* \mathcal{D} *up to* \mathcal{U} *-conjugation.*

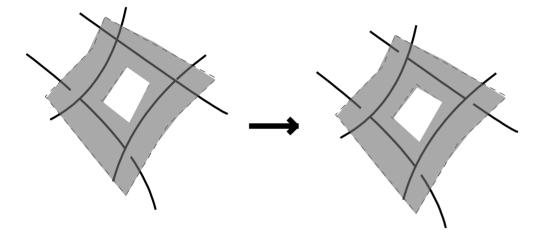
$$d_1 \sim_{\mathcal{U}} d_2 \Longleftrightarrow \exists f \in \mathcal{U}: \quad d_1 = f^{-1} d_2 f$$

$$d_1 \sim_{\mathcal{U}} d_2 \Longleftrightarrow \exists f \in \mathcal{U}: \quad d_1 = f^{-1} d_2 f$$

Motivation: Classification of analytic vector fields in the vicinity of hyperbolic polycycles

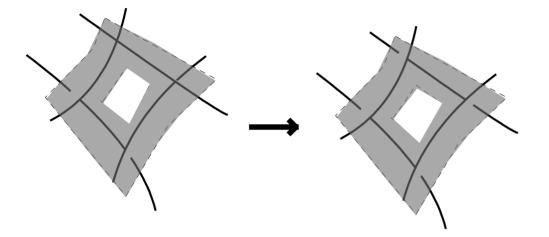
$$d_1 \sim_{\mathcal{U}} d_2 \Longleftrightarrow \exists f \in \mathcal{U}: \quad d_1 = f^{-1} d_2 f$$

Motivation: Classification of analytic vector fields in the vicinity of hyperbolic polycycles



$$d_1 \sim_{\mathcal{U}} d_2 \Longleftrightarrow \exists f \in \mathcal{U}: \quad d_1 = f^{-1} d_2 f$$

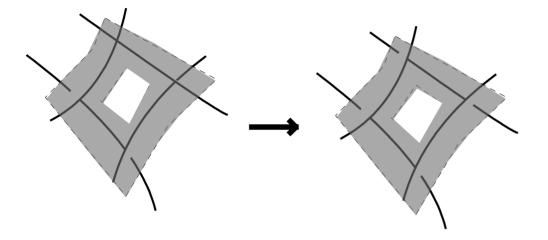
Motivation: Classification of analytic vector fields in the vicinity of hyperbolic polycycles



We can also consider the formal counterpart: classification of elements in \mathcal{D} up to $\tilde{\mathcal{U}}$ -conjugation

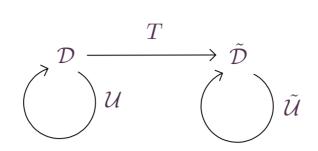
$$d_1 \sim_{\mathcal{U}} d_2 \Longleftrightarrow \exists f \in \mathcal{U}: \quad d_1 = f^{-1} d_2 f$$

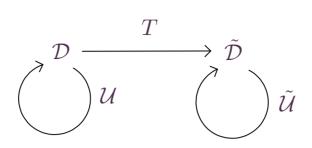
Motivation: Classification of analytic vector fields in the vicinity of hyperbolic polycycles



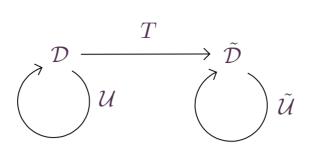
We can also consider the formal counterpart: classification of elements in \mathcal{D} up to $\tilde{\mathcal{U}}$ -conjugation

$$d_1 \sim_{\tilde{\mathcal{U}}} d_2 \Longleftrightarrow \exists f \in \tilde{\mathcal{U}}: \quad d_1 = f^{-1} d_2 f$$



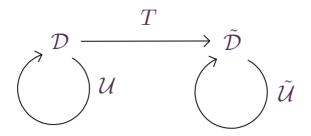


The group $\tilde{\mathcal{U}}$ is much larger than \mathcal{U} (as $\mathbb{C}[[x]]$ is much larger than $\mathbb{C}\{x\}$).



The group $\tilde{\mathcal{U}}$ is much larger than \mathcal{U} (as $\mathbb{C}[[x]]$ is much larger than $\mathbb{C}\{x\}$).

So, we expect that the $\tilde{\mathcal{U}}$ -orbit of an element $d \in \mathcal{D}$ to be much larger than its \mathcal{U} -orbit...



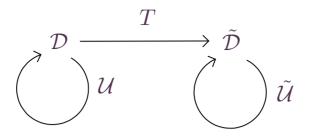
The group $\tilde{\mathcal{U}}$ is much larger than \mathcal{U} (as $\mathbb{C}[[x]]$ is much larger than $\mathbb{C}\{x\}$).

So, we expect that the $\tilde{\mathcal{U}}$ -orbit of an element $d \in \mathcal{D}$ to be much larger than its \mathcal{U} -orbit... Example: Classification of germs in $\mathbb{C}\{x\}$ of the form

 $f(x) = e^{2i\pi\lambda}x + O(x^2)$

with given $\lambda \in \mathbb{R} \setminus \mathbb{Q}$.

- formal classification: There is an unique orbit: all such germs are formally conjugated to the linear germ $x \mapsto e^{2i\pi\lambda}x$.



The group $\tilde{\mathcal{U}}$ is much larger than \mathcal{U} (as $\mathbb{C}[[x]]$ is much larger than $\mathbb{C}\{x\}$).

So, we expect that the $\tilde{\mathcal{U}}$ -orbit of an element $d \in \mathcal{D}$ to be much larger than its \mathcal{U} -orbit... Example: Classification of germs in $\mathbb{C}\{x\}$ of the form

 $f(x) = e^{2i\pi\lambda}x + O(x^2)$

with given $\lambda \in \mathbb{R} \setminus \mathbb{Q}$.

- formal classification: There is an unique orbit: all such germs are formally conjugated to the linear germ $x \mapsto e^{2i\pi\lambda}x$.

- holomorphic classification: ? (if λ is not a Bryuno number there exists germs which are formally conjugated but not analytically conjugated)

We say that a Dulac germ $d \in D$ is \tilde{U} -rigid (shortly rigid) if the following property holds

We say that a Dulac germ $d \in \mathcal{D}$ is $\tilde{\mathcal{U}}$ -rigid (shortly rigid) if the following property holds

If $d, d_1 \in \mathcal{D}$ are $\tilde{\mathcal{U}}$ -conjugate then they are \mathcal{U} -conjugate

We say that a Dulac germ $d \in \mathcal{D}$ is $\tilde{\mathcal{U}}$ -rigid (shortly rigid) if the following property holds

If $d, d_1 \in \mathcal{D}$ are $\tilde{\mathcal{U}}$ -conjugate then they are \mathcal{U} -conjugate

If we denote by $\tilde{\mathcal{U}} \cdot d = \{f^{-1}df : f \in \tilde{\mathcal{U}}\}$ the $\tilde{\mathcal{U}}$ -orbit of d, then

 $d \text{ is rigid } \iff (\tilde{\mathcal{U}} \cdot d) \cap \mathcal{D} = \mathcal{U} \cdot d$

We say that a Dulac germ $d \in \mathcal{D}$ is $\tilde{\mathcal{U}}$ -rigid (shortly rigid) if the following property holds

If $d, d_1 \in \mathcal{D}$ are $\tilde{\mathcal{U}}$ -conjugate then they are \mathcal{U} -conjugate

If we denote by $\tilde{\mathcal{U}} \cdot d = \{f^{-1}df : f \in \tilde{\mathcal{U}}\}$ the $\tilde{\mathcal{U}}$ -orbit of d, then

$$d \text{ is rigid } \iff (\tilde{\mathcal{U}} \cdot d) \cap \mathcal{D} = \mathcal{U} \cdot d$$

The previous example shows that some unramified $d \in \mathcal{U}$ germs cannot be $\mathcal{\hat{U}}$ -rigid.

We say that a Dulac germ $d \in D$ is \tilde{U} -rigid (shortly rigid) if the following property holds

If $d, d_1 \in \mathcal{D}$ are $\tilde{\mathcal{U}}$ -conjugate then they are \mathcal{U} -conjugate

If we denote by $\tilde{\mathcal{U}} \cdot d = \{f^{-1}df : f \in \tilde{\mathcal{U}}\}$ the $\tilde{\mathcal{U}}$ -orbit of d, then

$$d \text{ is rigid } \iff (\tilde{\mathcal{U}} \cdot d) \cap \mathcal{D} = \mathcal{U} \cdot d$$

The previous example shows that some unramified $d \in \mathcal{U}$ germs cannot be \mathcal{U} -rigid. The following theorem states that ramification generates rigidity (almost...)

We say that a Dulac germ $d \in \mathcal{D}$ is $\tilde{\mathcal{U}}$ -rigid (shortly rigid) if the following property holds

If $d, d_1 \!\in\! \mathcal{D}$ are $\tilde{\mathcal{U}}\text{-}\mathsf{conjugate}$ then they are $\mathcal{U}\text{-}\mathsf{conjugate}$

If we denote by $\tilde{\mathcal{U}} \cdot d = \{f^{-1}df : f \in \tilde{\mathcal{U}}\}$ the $\tilde{\mathcal{U}}$ -orbit of d, then

$$d \text{ is rigid } \iff (\tilde{\mathcal{U}} \cdot d) \cap \mathcal{D} = \mathcal{U} \cdot d$$

The previous example shows that some unramified $d \in U$ germs cannot be \tilde{U} -rigid. The following theorem states that ramification generates rigidity (almost...) **Theorem:** Let $d \in D$. One of the following conditions hold:

We say that a Dulac germ $d \in \mathcal{D}$ is $\tilde{\mathcal{U}}$ -rigid (shortly rigid) if the following property holds If $d, d_1 \in \mathcal{D}$ are $\tilde{\mathcal{U}}$ -conjugate then they are \mathcal{U} -conjugate

If we denote by $\tilde{\mathcal{U}} \cdot d = \{f^{-1}df : f \in \tilde{\mathcal{U}}\}$ the $\tilde{\mathcal{U}}$ -orbit of d, then

$$d \text{ is rigid } \iff (\tilde{\mathcal{U}} \cdot d) \cap \mathcal{D} = \mathcal{U} \cdot d$$

The previous example shows that some unramified $d \in U$ germs cannot be \tilde{U} -rigid. The following theorem states that ramification generates rigidity (almost...) **Theorem:** Let $d \in D$. One of the following conditions hold:

1) d is unramified

We say that a Dulac germ $d \in \mathcal{D}$ is $\tilde{\mathcal{U}}$ -rigid (shortly rigid) if the following property holds If $d, d_1 \in \mathcal{D}$ are $\tilde{\mathcal{U}}$ -conjugate then they are \mathcal{U} -conjugate If we denote by $\tilde{\mathcal{U}} \cdot d = \{f^{-1}df : f \in \tilde{\mathcal{U}}\}$ the $\tilde{\mathcal{U}}$ -orbit of d, then

 $d \text{ is rigid } \iff (\tilde{\mathcal{U}} \cdot d) \cap \mathcal{D} = \mathcal{U} \cdot d$

The previous example shows that some unramified $d \in U$ germs cannot be \tilde{U} -rigid. The following theorem states that ramification generates rigidity (almost...) **Theorem:** Let $d \in \mathcal{D}$. One of the following conditions hold:

1) d is unramified

2) d lies in $\mathcal{D} \setminus \mathcal{U}$ and is formally conjugated to the time 1-flow of $e^{-\lambda x} \frac{\partial}{\partial x}$, $\lambda \in \frac{1}{2}\mathbb{Z}$.

We say that a Dulac germ $d \in \mathcal{D}$ is $\tilde{\mathcal{U}}$ -rigid (shortly rigid) if the following property holds If $d, d_1 \in \mathcal{D}$ are $\tilde{\mathcal{U}}$ -conjugate then they are \mathcal{U} -conjugate If we denote by $\tilde{\mathcal{U}} \cdot d = \{f^{-1}df : f \in \tilde{\mathcal{U}}\}$ the $\tilde{\mathcal{U}}$ -orbit of d, then

 $d \text{ is rigid } \iff (\tilde{\mathcal{U}} \cdot d) \cap \mathcal{D} = \mathcal{U} \cdot d$

The previous example shows that some unramified $d \in U$ germs cannot be \tilde{U} -rigid. The following theorem states that ramification generates rigidity (almost...) **Theorem:** Let $d \in D$. One of the following conditions hold:

1) d is unramified

2) d lies in $\mathcal{D} \setminus \mathcal{U}$ and is formally conjugated to the time 1-flow of $e^{-\lambda x} \frac{\partial}{\partial x}$, $\lambda \in \frac{1}{2}\mathbb{Z}$. 3) d is rigid.

If a formal series is k-summable and k'-summable for $k \neq k'$ then such series is convergent

If a formal series is k-summable and k'-summable for $k \neq k'$ then such series is convergent

 $\mathbb{C}[[x]]_k \cap \mathbb{C}[[x]]_{k'} \!=\! \mathbb{C}\{x\}$

If a formal series is k-summable and k'-summable for $k \neq k'$ then such series is convergent

 $\mathbb{C}[[x]]_k \cap \mathbb{C}[[x]]_{k'} \!=\! \mathbb{C}\{x\}$

From a dynamical systems point of view, the idea is to look for a conjugacy between a Dulac germ of the form

If a formal series is k-summable and k'-summable for $k \neq k'$ then such series is convergent

 $\mathbb{C}[[x]]_k \cap \mathbb{C}[[x]]_{k'} = \mathbb{C}\{x\}$

From a dynamical systems point of view, the idea is to look for a conjugacy between a Dulac germ of the form

$$f(x) = x + p_{\lambda}(x)e^{-\lambda x} + o(e^{-\lambda x})$$

and the translation $x \rightarrow x + 1$ (i.e. solve the so-called Abel's equation)

If a formal series is k-summable and k'-summable for $k \neq k'$ then such series is convergent

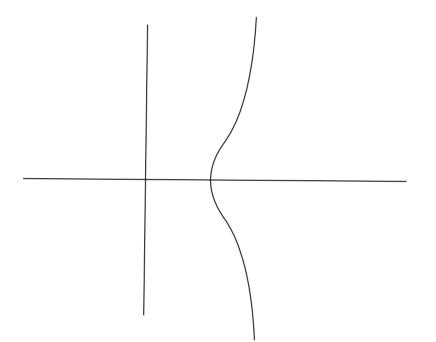
 $\mathbb{C}[[x]]_k \cap \mathbb{C}[[x]]_{k'} = \mathbb{C}\{x\}$

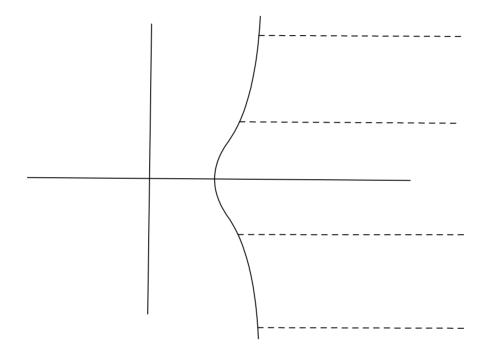
From a dynamical systems point of view, the idea is to look for a conjugacy between a Dulac germ of the form

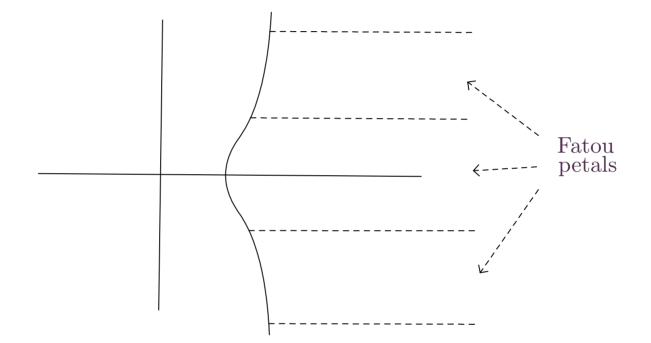
$$f(x) = x + p_{\lambda}(x)e^{-\lambda x} + o(e^{-\lambda x})$$

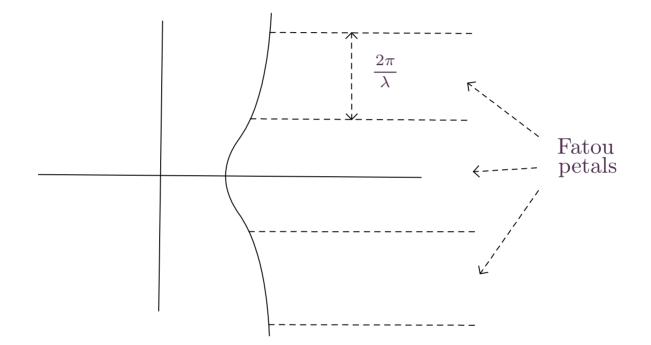
and the translation $x \rightarrow x + 1$ (i.e. solve the so-called Abel's equation)

Such conjugacy is possible in strip-like domains...









Thanks for your attention