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scalings: s�: x 7¡!�x, �2R>0 (S+)
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We observe that each element g2G corresponds to a function definable inRan;exp, and therefore
is given by a convergent transseries.

What is the structure of the group G? (e.g. are there any free subgroups inside G)
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Theorem (P, 2017): The group G is isomorphic to the HNN-extension of Aff+=T oS+, with
E is playing the role of the stable letter .

This result implies the existence of many free subgroups inside G: : :

Example of free subgroups in G: (powers and translations) the group hT ;P i�G generated by

T :x!x+ a; P :x!x�; �2R>0

is free. (Question of Higman).

x! (((x+ a1)�1+ a2)�2+ � � �+ an)�n
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The previous theorem gives a complete description of the structure of such group.

But this is not enough for the applications that I will describe in a moment..

We are interested in considering the structure of the general group of Dulac series.
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Dulac germ (after Ilyashenko)

A Dulac germ is a bounded holomorphic function defined in a standard quadratic domain

fz: jIm(z)j6CRe(z)2g�


and which has an asymptotic expansion as a Dulac series.

(Quasianalyticity) The Taylor expansion map

T :D¡!D~

is injective. In particular, a germ d2D is real if and only if T (d)2D~ is a real series.

(Composition) The Dulac germs forms a group under composition, with subgroup

D\Homeo(R;+1)
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Consider the element � 2D given by

� :x 7¡!x+2i�

We say that a Dulac germ d is unramified if [� ; d] := �¡1d¡1�d= id.

- d is unramified if and only if it has an unramified Dulac series i.e. a series of the form

x+ b+
X
k2N?

cke
¡kx; ck2C

- d is unramified if and only if there exists a '2C1fxg such d=E ¡1fE, where E(x)= e¡x
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Motivation: Classification of analytic vector fields in the vicinity of hyperbolic polycycles

We can also consider the formal counterpart: classification of elements inD up to U~-conjugation

d1�U~d2()9f 2U~: d1= f¡1d2 f
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The group U~ is much larger than U (as C[[x]] is much larger than Cfxg).

So, we expect that the U~-orbit of an element d2D to be much larger than its U-orbit . . .

Example: Classification of germs in Cfxg of the form

f(x)= e2i��x+O(x2)

with given �2R nQ.

- formal classification: There is an unique orbit: all such germs are formally conjugated to
the linear germ x 7! e2i��x.

- holomorphic classification: ? (if � is not a Bryuno number there exists germs which are
formally conjugated but not analytically conjugated)
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We say that a Dulac germ d2D is U~-rigid (shortly rigid) if the following property holds

If d; d12D are U~-conjugate then they are U-conjugate

If we denote by U~ � d= ff¡1df : f 2U~g the U~-orbit of d, then

d is rigid () (U~ � d)\D=U � d

The previous example shows that some unramified d2U germs cannot be U~-rigid .

The following theorem states that ramification generates rigidity (almost . . . )

Theorem: Let d2D. One of the following conditions hold:

1) d is unramified

2) d lies in D nU and is formally conjugated to the time 1-flow of e¡�x @

@x
, �2 1

2
Z.

3) d is rigid.
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The main ingredient of the proof is based Tauberian type result on Gevrey-summability:

If a formal series is k-summable and k 0-summable for k=/ k 0 then such series is convergent

C[[x]]k\C[[x]]k 0=Cfxg

From a dynamical systems point of view, the idea is to look for a conjugacy between a Dulac
germ of the form

f(x)=x+ p�(x)e¡�x+ o(e¡�x)

and the translation x!x+1 (i.e. solve the so-called Abel's equation)

Such conjugacy is possible in strip-like domains . . .
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Thanks for your attention


