Hardy fields and generalized power series with exponential.

Mickaël Matusinski (University of Bordeaux)

Workshop on Exponential Fields, Banff International Research Station February 4 - 9, 2024

周 ト イ ヨ ト イ ヨ ト

 $\mathbb{K} = (\mathbb{K}, +, \cdot, 0, 1, <, \mathsf{exp})$ real field endowed with an exponential map

$$\mathsf{exp}: (\mathbb{K}, +, <) \twoheadrightarrow (\mathbb{K}_{>0}, \cdot, <)$$

Possibly with a **derivation**:

$$\partial : (\mathbb{K}, +, <) \rightarrow (\mathbb{K}, +, <)$$

 $\partial (a \cdot b) = \partial (a) \cdot b + a \cdot \partial (b)$
 $\partial (\exp(a)) = \partial (a) \cdot \exp(a)$

• • = • • = •

 $\mathbb{K} = (\mathbb{K}, +, \cdot, 0, 1, <, \mathsf{exp})$ real field endowed with an exponential map

$$\mathsf{exp}: (\mathbb{K},+,<) \twoheadrightarrow (\mathbb{K}_{>0},\cdot,<)$$

Possibly with a **derivation**:

$$\partial : (\mathbb{K}, +, <) \rightarrow (\mathbb{K}, +, <)$$

 $\partial (a \cdot b) = \partial (a) \cdot b + a \cdot \partial (b)$
 $\partial (\exp(a)) = \partial (a) \cdot \exp(a)$

4 3 6 4 3

Key objects:

<u>Archimedean:</u> (\mathbb{R} , exp), its prime model

Non archimedean: exponential Hardy fields, exponential (sub)fields of generalized series

Universal domain: surreal numbers

周 ト イ ヨ ト イ ヨ ト

Key objects:

<u>Archimedean:</u> (\mathbb{R} , exp), its prime model

Non archimedean: exponential Hardy fields, exponential (sub)fields of generalized series

Universal domain: surreal numbers

周 ト イ ヨ ト イ ヨ ト

Key objects:

<u>Archimedean:</u> (\mathbb{R} , exp), its prime model

Non archimedean: exponential Hardy fields, exponential (sub)fields of generalized series

Universal domain: surreal numbers

• • = • • = •

$\mathcal{G}=\mathsf{ring}$ of germs at $+\infty$ of real functions

Definition (Bourbaki 76)

A **Hardy field** \mathbb{K} is a subring of \mathcal{G} which is a *field* and which is *closed under derivation*.

\Rightarrow strongly non-oscillating: \mathbb{K} ordered subfield of $\bigcap_{k \in \mathbb{N}_0} \mathcal{C}^k$

伺 ト イヨト イヨト

$\mathcal{G}=\mathsf{ring}$ of germs at $+\infty$ of real functions

Definition (Bourbaki 76)

A **Hardy field** \mathbb{K} is a subring of \mathcal{G} which is a *field* and which is *closed under derivation*.

 $\Rightarrow \underbrace{\text{strongly non-oscillating:}}_{k \in \mathbb{N}_0} \mathbb{C}^k$ ordered subfield of

周 ト イ ヨ ト イ ヨ ト

Example

- $\mathbb{R} \subseteq \mathbb{R}(t) \subseteq \mathbb{R}(\log(t), t, \exp(t)) \subseteq \cdots$
- Log-exp functions = "*L*-functions" (Hardy 12)

• Unary definable functions in an **o-minimal** structure expanding \mathbb{R} : e.g. \mathbb{R}_{exp} (Wilkie 96), $\mathbb{R}_{an,exp}$ (van den Dries-Miller 94),...

Example

- $\mathbb{R} \subseteq \mathbb{R}(t) \subseteq \mathbb{R}(\log(t), t, \exp(t)) \subseteq \cdots$
- Log-exp functions = "*L*-functions" (Hardy 12)

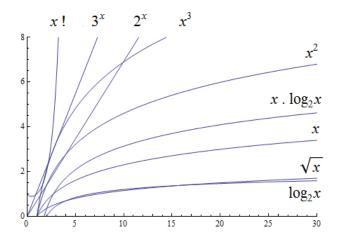
Unary definable functions in an o-minimal structure expanding R: e.g. R_{exp} (Wilkie 96), R_{an,exp} (van den Dries-Miller 94),...

Example

- $\mathbb{R} \subseteq \mathbb{R}(t) \subseteq \mathbb{R}(\log(t), t, \exp(t)) \subseteq \cdots$
- Log-exp functions = "*L*-functions" (Hardy 12)
- Unary definable functions in an **o-minimal** structure expanding \mathbb{R} : e.g. \mathbb{R}_{exp} (Wilkie 96), $\mathbb{R}_{an,exp}$ (van den Dries-Miller 94),...

4 周 ト 4 ヨ ト 4 ヨ ト -

Asymptotic scales



Mickaël Matusinski Hardy fields and generalized power series with exponential.

<ロ> <同> <同> <同> <同> < 同>

æ

The natural valuation.

Definition **Valuation** v with valuation ring $\mathcal{O}_v = \operatorname{Conv}(\mathbb{Q})$

- value group $\Gamma := \{ \mathit{archimedean} \ \sim \mathit{classes} \ of \ \mathbb{K} \}$
- \bullet residue field $\subseteq \mathbb{R}$
- rank $\Phi := \{ \operatorname{archimedean} \ \sim \operatorname{classes} \ \operatorname{of} \ \Gamma \}$

Dominance relation: $a \preccurlyeq b :\Leftrightarrow v(a) \ge v(b)$

- 4 回 ト 4 戸 ト - 4 戸 ト -

Still get a Hardy field by:

- Passing to the real closure (Bourbaki, A. Robinson 72)
- Closing under real powers (Rosenlicht 83)

• Adjoining solutions of *certain* differential equations (Boshernitzan, Rosenlicht, Singer 80's)

 \rightarrow (linear) order 1: Liouville closure: integration, exp and log; other e.g. P(y)y' = Q(y)

 \rightarrow certain linear order 2 diff equ

and much more: **DIVP** (Aschenbrenner-van den Dries-van der Hoeven preprint 2023)

< ロ > < 同 > < 三 > < 三 >

Still get a Hardy field by:

- Passing to the real closure (Bourbaki, A. Robinson 72)
- Closing under real powers (Rosenlicht 83)

• Adjoining solutions of *certain* differential equations (Boshernitzan, Rosenlicht, Singer 80's)

 \rightarrow (linear) order 1: Liouville closure: integration, exp and log; other e.g. P(y)y' = Q(y)

 \rightarrow certain linear order 2 diff equ

and much more: **DIVP** (Aschenbrenner-van den Dries-van der Hoeven preprint 2023)

イロト イポト イラト イラト

• O-minimal expansions of \mathbb{R} : adjoining **quasi-analytic** classes (Rolin-Speissegger-Wilkie 2003); passing to the pfaffian closure (Speissegger 2018)

• Adjoining **quasianalytic IIYashenko algebras** (link with *Hilbert 16*: Speissegger, Galal-Kaiser-Speissegger 2020)

• Adjoining *certain* solutions of functional equations: **transexponential function** (Boshernitzan 86)

• **Maximal Hardy fields** = no proper Hardy field extension... (Boshernitzan, Aschenbrenner-van den Dries-van der Hoeven preprint 2023)

< 同 > < 三 > < 三 > 、

• O-minimal expansions of \mathbb{R} : adjoining **quasi-analytic** classes (Rolin-Speissegger-Wilkie 2003); passing to the pfaffian closure (Speissegger 2018)

• Adjoining **quasianalytic IIYashenko algebras** (link with *Hilbert 16*: Speissegger, Galal-Kaiser-Speissegger 2020)

• Adjoining *certain* solutions of functional equations: **transexponential function** (Boshernitzan 86)

• **Maximal Hardy fields** = no proper Hardy field extension... (Boshernitzan, Aschenbrenner-van den Dries-van der Hoeven preprint 2023)

< 同 > < 三 > < 三 > -

• O-minimal expansions of \mathbb{R} : adjoining **quasi-analytic** classes (Rolin-Speissegger-Wilkie 2003); passing to the pfaffian closure (Speissegger 2018)

• Adjoining **quasianalytic IIYashenko algebras** (link with *Hilbert 16*: Speissegger, Galal-Kaiser-Speissegger 2020)

• Adjoining *certain* solutions of functional equations: **transexponential function** (Boshernitzan 86)

• Maximal Hardy fields = no proper Hardy field extension... (Boshernitzan, Aschenbrenner-van den Dries-van der Hoeven preprint 2023)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Hardy fields as differential valued fields

Hardy type derivation (Rosenlicht 79-83, Kuhlmann-M. 2011):

- (HD1) $\mathbb{R} = \ker \partial$
- (HD2) l'Hospital's rule:

 $\forall v(a), v(b) \neq 0, v(a) \geq v(b) \Leftrightarrow v(\partial(a)) \preccurlyeq v(\partial(b))$

• (HD3) logarithmic derivative:

 $|v(a)| \gg |v(b)| > 0 \Leftrightarrow v(\partial(a)/a) < v(\partial(b)/b)$

H-field (Aschenbrenner-van den Dries 2002):

- (HF1) = (HD1)
- $a > \mathbb{R} \Rightarrow a' > 0$

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

Exponential Hardy fields

Valuative properties:

- Natural valuation ⇒ Poincaré asymptotic expansions (Rosenlicht 83)
- Exponential rank (Kuhlmann-Kuhlmann 2000)
- Levels (Rosenlicht 87, Marker-Miller 97, Kuhlmann-Kuhlmann 2003)

Exponential Hardy fields

Differential and "analytic" properties:

• Compatibility

$$\partial(\exp(a)) = \partial(a) \cdot \exp(a) \qquad \partial(\log(a)) = rac{\partial(a)}{a}$$

• "Strong" morphism

$$\exp(\sum \alpha u) = \prod \exp(u)^{\alpha} \quad \log(\prod u^{\alpha}) = \sum \alpha \log(u)$$

 \rightsquigarrow Composition...

~ /

Generalized series

 $\mathbb{R}((t^{\Gamma}))$ where :

- $\Gamma = (\Gamma, +, <)$ ordered abelian group of exponents
- \mathbb{R} as ordered field of **coefficients**.

Definition (Hahn 07)

A generalized series is

$$a:\Gamma
ightarrow \mathbb{R}$$

with well-ordered support:

$$\operatorname{supp}(a) := \{ \gamma \in \Gamma : a(\gamma) \neq 0 \}$$

Notation: $a = \sum_{\gamma \in \Gamma} a_{\gamma} t^{\gamma}$

The natural valuation.

Definition (Baer 27) Ordering: $a > 0 \Leftrightarrow a_{\gamma_0} > 0$ where $\gamma_0 := \min(\text{supp } a)$.

 \Rightarrow natural valuation on $\mathbb{R}((\Gamma))$ is:

$$egin{array}{rcl} egin{array}{ccc} egin{array}{cccc} egin{array}{ccc} egin{array}{ccc} egin{arr$$

The order type of Φ is called the rank of $\Gamma,$ and as well the rank of $\mathbb{R}((\Gamma)).$

•Kaplansky 42: Universal domain for valued fields

・ 同 ト ・ ヨ ト ・ ヨ ト …

The natural valuation.

Definition (Baer 27) Ordering: $a > 0 \Leftrightarrow a_{\gamma_0} > 0$ where $\gamma_0 := \min(\text{supp } a)$.

 \Rightarrow natural valuation on $\mathbb{R}((\Gamma))$ is:

$$egin{array}{rll} egin{array}{ccc} \kappa : & \mathbb{R}((\Gamma)) &
ightarrow & \Gamma \cup \{\infty\} \ & a & \mapsto & \min(\mathrm{supp} \ a) \ & 0 & \mapsto & \infty \end{array}$$

The order type of Φ is called the **rank** of Γ , and as well the **rank** of $\mathbb{R}((\Gamma))$.

•Kaplansky 42: Universal domain for valued fields

Hardy type derivations

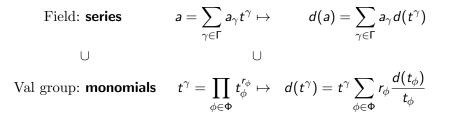
Lifting principle (Kuhlmann-M. 2011-12):

Field: series
$$a = \sum_{\gamma \in \Gamma} a_{\gamma} t^{\gamma} \mapsto d(a) = \sum_{\gamma \in \Gamma} a_{\gamma} d(t^{\gamma})$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Hardy type derivations

Lifting principle (Kuhlmann-M. 2011-12):

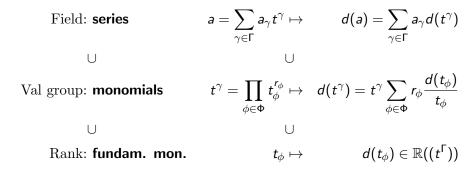


・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Hardy type derivations

Lifting principle (Kuhlmann-M. 2011-12):



- 4 同 ト 4 三 ト - 三 - の Q ()

Generalized series and exponentiation

We would like:

$\mathbb{R}((t^{\Gamma_{<0}})) \oplus \mathbb{R} \oplus \mathbb{R}((t^{\Gamma_{>0}})) \stackrel{\exp}{\underset{\mathsf{log}}{\leftrightarrow}} t^{\Gamma} \otimes \mathbb{R}_{>0} \otimes (1 + \mathbb{R}((t^{\Gamma_{>0}})))$

Mickaël Matusinski Hardy fields and generalized power series with exponential.

• • = • • = •

Generalized series and exponentiation

For:

$$\mathbb{R} \oplus \mathbb{R}((t^{\Gamma_{>0}})) \stackrel{\mathsf{exp}}{\underset{\mathsf{log}}{\rightleftharpoons}} \mathbb{R}_{>0} \otimes (1 + \mathbb{R}((t^{\Gamma_{>0}})))$$

use the **analytic** formulas (Alling 87):

$$\exp(r+\varepsilon) = e^r \cdot \sum_n \frac{\varepsilon^n}{n!} \qquad \log(r \cdot (1+\varepsilon)) = \ln(r) + \sum_{n>0} \frac{\varepsilon^n}{n}$$

Image: A Image: A

Generalized series and exponentiation

For

?
$$\mathbb{R}((t^{\Gamma_{<0}})) \stackrel{\exp}{\underset{\log}{\leftrightarrow}} t^{\Gamma}$$
 ?

Kuhlmann-Kuhlmann-Shelah 97: $\mathbb{R}((t^{\Gamma_{<0}})) \not\simeq t^{\Gamma}$, hence $\mathbb{R}((t^{\Gamma}))$ cannot be an exponential field.

Generalized series and exponentiation

Kuhlmann-Kuhlmann-Shelah 97: $\mathbb{R}((t^{\Gamma}))$ cannot be an exponential field.

<u>BUT</u> a *subfield* of an *extended* $\mathbb{R}((t^{\tilde{\Gamma}}))$ may be! (Dahn-Göring 86):

• **Exp-log series** (Kuhlmann-Kuhlmann 97, Kuhlmann-M. 2011), κ-**bounded series** (Kuhlmann-Shelah)

- Log-exp series (van den Dries-Macintyre-Marker 97)
- Transseries (Ecalle 92, van der Hoeven 97)

・ 同 ト ・ ヨ ト ・ ヨ ト

Exponential and logarithmic closure of a series field

A two-complementary-steps procedure:

• To get a pre-logarithmic series field:

• To get a **pre-exponential** series field:

Exponential and logarithmic closure of a series field

A two-complementary-steps procedure:

• To get a pre-logarithmic series field: e.g. by integration:

 \rightarrow asymptotic integration:

$$\forall a, \exists b, \partial(b) \sim a$$

 \rightarrow ultrametric fixed point theorem: holds in spherically complete fields (Priess-Crampe-Ribenboim 93), in unions of spher. compl. fields (vdD-M.M., vdH., K., K.-M., B.M., B.K.M.M., ...)

• To get a pre-exponential series field:

く 戸 と く ヨ と く ヨ と

Exponential and logarithmic closure of a series field

A two-complementary-steps procedure:

- To get a pre-logarithmic series field:
- To get a **pre-exponential** series field: e.g. by **exponential closure**

 \rightarrow exponential extension:

$$egin{array}{cccc} t^{\Gamma^{\sharp}} & & \stackrel{I^{\sharp}}{\longrightarrow} & \mathbb{R}((t^{\Gamma^{\sharp}_{<0}})) \ \cup & & \searrow & & \cup \ t^{\Gamma} & & \stackrel{I}{\longrightarrow} & \mathbb{R}((t^{\Gamma_{<0}})) \end{array}$$

 \rightarrow inductive limite procedure

・ 同 ト ・ ヨ ト ・ ヨ ト

Differential valued exponential fields

Exponential Hardy fields

Differential exponential subfields of series

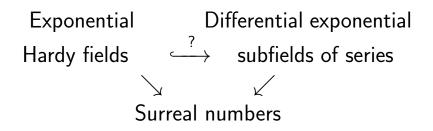
Mickaël Matusinski Hardy fields and generalized power series with exponential.

Differential valued exponential fields

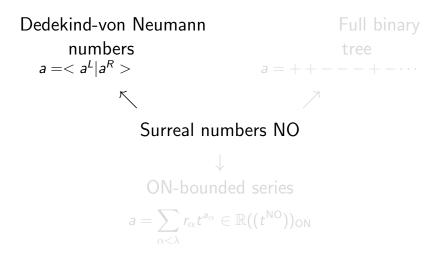
$\begin{array}{ccc} \mathsf{Exponential} & \mathsf{Differential} \ \mathsf{exponential} \\ \mathsf{Hardy} \ \mathsf{fields} & \stackrel{?}{\longrightarrow} \ \mathsf{subfields} \ \mathsf{of} \ \mathsf{series} \end{array}$

e.g. $\mathcal{H}(\mathbb{R}_{\mathrm{an},\mathsf{exp}}) \hookrightarrow \mathbb{T}$

Differential valued exponential fields

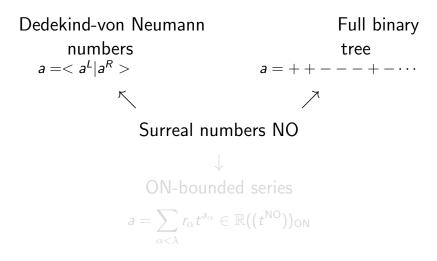


Surreal numbers (Conway 76, Gonshor 86)



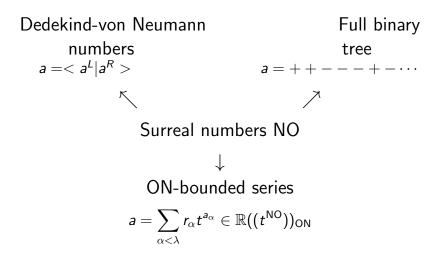
・ 同 ト ・ ヨ ト ・ ヨ ト …

Surreal numbers (Conway 76, Gonshor 86)



・ 同 ト ・ ヨ ト ・ ヨ ト …

Surreal numbers (Conway 76, Gonshor 86)



伺 ト イヨ ト イヨ ト

As (analytic) exponential fields Language $\mathcal{L} = \{+, \cdot, 0, 1, <, \exp\}$

Theorem (Gonshor 86, van den Dries-Ehrlich 2001, Ehrlich-Kaplan 2021)

With Gonshor's exponential:

$$(\mathsf{NO},\mathsf{exp})\succcurlyeq(\mathbb{R},\mathsf{exp})$$

Moreover, NO is a canonical monster model for $Th(\mathbb{R}_{exp})$.

NB: Same statement with $Th(\mathbb{R}_{an,exp})$.

As (analytic) exponential fields Language $\mathcal{L} = \{+, \cdot, 0, 1, <, \mathsf{exp}\}$

Theorem (Gonshor 86, van den Dries-Ehrlich 2001, Ehrlich-Kaplan 2021)

With Gonshor's exponential:

$$(\mathsf{NO},\mathsf{exp})\succcurlyeq(\mathbb{R},\mathsf{exp})$$

Moreover, NO is a canonical monster model for $Th(\mathbb{R}_{exp})$.

NB: Same statement with $Th(\mathbb{R}_{an,exp})$.

As (analytic) exponential fields

Language
$$\mathcal{L} = \{+, \cdot, 0, 1, <, \mathsf{exp}\}$$

- \bullet Exponential Hardy field \hookrightarrow NO
- (Differential) exponential subfield of series \hookrightarrow **NO**

周 ト イ ヨ ト イ ヨ ト

Omega-fields

Definition (Berarducci-Kuhlmann-Mantova-M. 2023) An ordered field endowed with an omega map:

$$\Omega: (\mathbb{K}, +, <) \twoheadrightarrow (t^{\Gamma}, \cdot, <)$$

where Γ is the value group.

Example

• Surreal numbers NO (Conway 76)

• κ -bounded series, transseries \mathbb{T} , etc. (BKMM. 2023, Berarducci-Freni 2021)

A (B) < A (B) < A (B)</p>

Omega-fields

Definition (Berarducci-Kuhlmann-Mantova-M. 2023) An ordered field endowed with an omega map:

$$\Omega: (\mathbb{K},+,<) \twoheadrightarrow (t^{\Gamma},\cdot,<)$$

where Γ is the value group.

Example

- Surreal numbers NO (Conway 76)
- κ -bounded series, transseries \mathbb{T} , etc. (BKMM. 2023, Berarducci-Freni 2021)

Language
$$\mathcal{L} = \{+,\cdot,\mathsf{0},1,<,\preccurlyeq,\partial\}$$

Theorem (Aschenbrenner-van den Dries-van der Hoeven 2017-19)

NO \models Th(T), the latter being model complete.

• Hardy fields \hookrightarrow **NO**

周 ト イ ヨ ト イ ヨ ト

Language
$$\mathcal{L} = \{+,\cdot,\mathsf{0},\mathsf{1},<,\preccurlyeq,\partial\}$$

Theorem (Aschenbrenner-van den Dries-van der Hoeven 2017-19)

NO \models Th(T), the latter being model complete.

 $\bullet \text{ Hardy fields} \hookrightarrow \textbf{NO}$

• • = • • = •

Language $\mathcal{L} = \{+, \cdot, 0, 1, <, \preccurlyeq, \partial\}$

Maximal Hardy fields = no proper Hardy field extension

Theorem (Aschenbrenner–van den Dries–van der Hoeven preprint 2023) *Maximal Hardy fields* \models Th(T). DIVP: $P(a)P(b) < 0 \Rightarrow \exists c \in (a, b), P(c) = 0.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Language $\mathcal{L} = \{+, \cdot, 0, 1, <, \preccurlyeq, \partial\}$

Maximal Hardy fields = no proper Hardy field extension

Theorem (Aschenbrenner-van den Dries-van der Hoeven preprint 2023)

Maximal Hardy fields $\models Th(\mathbb{T})$. DIVP: $P(a)P(b) < 0 \Rightarrow \exists c \in (a, b), P(c) = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Questions

- Model theory of differential exponential fields, e.g. \mathbb{T} , **NO** etc ? (AvdDvdH, Kaplan)
- Model theory of transexponential Hardy fields? O-minimality? Hyperseries? (Bagayoko-van der Hoeven, Kuhlmann-Krapp, Padgett)

Questions

- Differential Kaplansky embedding theorem for Hardy fields? (Kuhlmann-M.)
- Hardy omega-fields? As e.g. maximal Hardy fields? (BKMM.)
- Composition and compatible derivation on **NO**? (BKMM., Bagayoko-van der Hoeven)

・ 同 ト ・ ヨ ト ・ ヨ ト

Thanks for your attention...

.. and have a nice workshop!

Mickaël Matusinski Hardy fields and generalized power series with exponential.

500