Tutorium 2

30. November 2022 - Solution

2.1 Multiobjective Optimization

Exercise 1

On the set $U_{a d}=\left\{u_{1}, \ldots, u_{10}\right\}$ the function $J: U_{a d} \rightarrow \mathbb{R}^{3}$ is given via the following table:

$J\left(u_{1}\right)$	$J\left(u_{2}\right)$	$J\left(u_{3}\right)$	$J\left(u_{4}\right)$	$J\left(u_{5}\right)$	$J\left(u_{6}\right)$	$J\left(u_{7}\right)$	$J\left(u_{8}\right)$	$J\left(u_{9}\right)$	$J\left(u_{10}\right)$
4	5	-6	0	10	9	-1	5	-6	10
8	-2	-3	3	5	-8	2	-1	-3	-8
6	7	-8	-3	-9	5	1	4	-8	5

Characterize all dominated and non-dominated points and specify all Pareto-optimal points.

Exercise 2

Characterize and visualize the (parameter dependent) set \mathcal{P} (set of all Pareto-optimal points) of KKT-points associated to the MOP

$$
\min _{u \in \mathbb{R}^{2}} \frac{1}{2}\binom{u_{1}^{2}+p u_{2}^{2}}{\left(u_{1}-1\right)^{2}+\left(u_{2}-1\right)^{2}}
$$

for $p \in \mathbb{R}$.

Exercise 3

Give an example of a differentiable MOP such that the weighted-sum method finds a point which is not Pareto optimal. Justify your answer.

