Bicriterial Optimal Control by the Reference Point Method

Stefan Volkwein*
* Lecture Optimization III, Department of Mathematics and Statistics, University of Konstanz, 18 November 2022

1. PROBLEM FORMULATION

1.1 The state equation

For time $T>0$ the state equation is given by

$$
\begin{align*}
y_{t}(t, \boldsymbol{x})-\Delta y(t, \boldsymbol{x}) & =\sum_{i=1}^{m} u_{i} \chi_{i}(t, \boldsymbol{x}) & & \text { for }(t, \boldsymbol{x}) \in Q \\
\frac{\partial y}{\partial \boldsymbol{n}}(t, \boldsymbol{x}) & =0 & & \text { for }(t, \boldsymbol{x}) \in \Sigma \tag{1}\\
y(0, \boldsymbol{x}) & =y_{\circ}(\boldsymbol{x}) & & \text { for } \boldsymbol{x} \in \Omega
\end{align*}
$$

where $\Omega \subset \mathbb{R}^{d}, d \in\{2,3\}$, is a bounded domain with Lipschitz-continuous boundary $\Gamma=\partial \Omega$ and \boldsymbol{n} stands for the outward normal vector. We set $Q=(0, T) \times \Omega$ and $\Sigma=(0, T) \times \Gamma$. Let $H=L^{2}(\Omega)$ and $V=H^{1}(\Omega)$ be endowed by the canonical inner products given as

$$
\begin{array}{ll}
\langle\varphi, \phi\rangle_{H}=\int_{\Omega} \varphi(\boldsymbol{x}) \phi(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} & \text { for } \varphi, \phi \in H \\
\langle\varphi, \phi\rangle_{V}=\langle\varphi, \phi\rangle_{H}+\int_{\Omega} \nabla \varphi(\boldsymbol{x}) \cdot \nabla \phi(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} & \text { for } \varphi, \phi \in V
\end{array}
$$

The variable $u=\left(u_{1}, \ldots, u_{m}\right) \in \mathcal{U}=\mathbb{R}^{m}$ denotes the control and $\chi_{i} \in L^{\infty}(Q), 1=1, \ldots, m$, are given control shape functions. Furthermore, $y_{\circ} \in L^{\infty}(\Omega)$ denotes a given initial heat distribution. We write $y(t)$ when y is considered as a function in \boldsymbol{x} only for fixed $t \in[0, T]$. Recall that

$$
W(0, T)=\left\{\varphi \in L^{2}(0, T ; V) \mid \varphi_{t} \in L^{2}\left(0, T ; V^{\prime}\right)\right\}
$$

is a Hilbert space endowed with the common inner product

$$
\langle\varphi, \phi\rangle_{W(0, T)}=\int_{0}^{T}\left\langle\varphi_{t}(t), \phi_{t}(t)\right\rangle_{V^{\prime}}+\langle\varphi(t), \phi\rangle_{V} \mathrm{~d} t
$$

for $\varphi, \phi \in W(0, T)$; see, e.g., Dautray and Lions (2000). A weak solution $y \in y=W(0, T)$ to (1) is called a state and has to satisfy for all test functions $\varphi \in V$:
(2) $\frac{\mathrm{d}}{\mathrm{d} t}\langle y(t), \varphi\rangle_{H}+\int_{\Omega} \nabla y(t) \cdot \nabla \varphi \mathrm{d} \boldsymbol{x}=\sum_{i=1}^{m} u_{i}\left\langle\chi_{i}(t), \varphi\right\rangle_{H}$,

$$
\langle y(0), \varphi\rangle_{H}=\left\langle y_{\circ}, \varphi\right\rangle_{H}
$$

It is shown in Dautray and Lions (2000) that (2) admits a unique solution y and

$$
\begin{equation*}
\|y\|_{y} \leq C\left(\left\|y_{\circ}\right\|_{H}+\|u\|_{u}\right) \tag{3}
\end{equation*}
$$

for a contant $C \geq 0$. We introduce the linear operator $\mathcal{S}: \mathcal{U} \rightarrow \mathcal{y}$, where $y=\mathcal{S} u$ is the solution to (2) for given $u \in \mathcal{U}$ with $y_{\circ}=0$. From (3) it follows that \mathcal{S} is bounded. Moreover, let $\hat{y} \in y$ be the solution to (2) for $u=0$. Then, the affine linear mapping $\mathcal{U} \ni u \mapsto y(u)=\hat{y}+\mathcal{S} u \in \mathcal{y}$ is affine linear, and $y(u)$ is the weak solution to (1).

1.2 The multiobjective optimal control problem

For given $u_{a}, u_{b} \in \mathcal{U}$ with $u_{a} \leq u_{b}$ in \mathcal{U}, the set of admissible controls is given as

$$
\mathcal{U}_{\mathrm{ad}}=\left\{u \in \mathcal{U} \mid u_{a} \leq u \leq u_{b} \text { in } \mathbb{R}^{m}\right\}
$$

Introducing the bicriterial cost functional

$$
J: y \times U \rightarrow \mathbb{R}^{2}, \quad J(y, u)=\frac{1}{2}\binom{\left\|y(T)-y_{\Omega}\right\|_{H}^{2}}{\|u\|_{\mathcal{U}}^{2}}
$$

the multiobjective optimal control problem (MOCP) reads (P) $\quad \min J(y, u) \quad$ subject to (s.t.) $\quad(y, u) \in \mathcal{F}(\mathbf{P})$ with the feasible set

$$
\mathcal{F}(\mathbf{P})=\left\{(y, u) \in y \times \mathcal{U}_{\mathrm{ad}} \mid y \text { solves }(2)\right\} .
$$

Next we define the reduced cost function $\hat{J}=\left(\hat{J}_{1}, \hat{J}_{2}\right)$: $\mathcal{U} \rightarrow \mathbb{R}^{2}$ by $\hat{J}(u)=J(\hat{y}+\mathcal{S} u, u)$ for $u \in \mathcal{U}$. Then, (\mathbf{P}) can be equivalently formulated as
($\hat{\mathbf{P}}$)

$$
\min \hat{J}(u) \quad \text { s.t. } \quad u \in \mathcal{U}_{\mathrm{ad}} .
$$

Problem ($(\hat{\mathbf{P}})$ involves the minimization of a vector-valued objective. This is done by using the concepts of order relation and Pareto optimality; see, e.g., Ehrgott (2005). In \mathbb{R}^{2} we make use of the following order relation: For all $z^{1}, z^{2} \in \mathbb{R}^{2}$ we have
$z^{1} \leq z^{2} \Leftrightarrow z^{2}-z^{1} \in \mathbb{R}_{+}^{2}=\left\{z \in \mathbb{R}^{2} \mid z_{i} \geq 0\right.$ for $\left.i=1,2\right\}$.
Definition 1. The point $\bar{u} \in \mathcal{U}_{\text {ad }}$ is called Pareto optimal for $(\hat{\mathbf{P}})$ if there is no other control $u \in \mathcal{U}_{\text {ad }} \backslash\{\bar{u}\}$ with $\hat{J}_{i}(u) \leq \hat{J}_{i}(\bar{u}), i=1,2$, and $\hat{J}_{j}(u)<\hat{J}_{j}(\bar{u})$ for at least one $j \in\{1,2\}$.

2. THE REFERENCE POINT METHOD

2.1 The reference point problem

The theoretical and numerical challenge is to present the decision maker with an approximation of the Pareto front

$$
\mathcal{P}=\left\{\hat{J}(u) \mid u \in \mathcal{U}_{\mathrm{ad}} \text { is Pareto optimal }\right\} \subset \mathbb{R}^{2}
$$

In order to do so, we follow the ideas laid out in Peitz et al. (2015) and make use of the reference point method: Given a reference point $z=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ that satisfies

$$
\begin{equation*}
z<\hat{J}(u) \quad \text { for all } u \in \mathcal{U}_{\mathrm{ad}} \tag{4}
\end{equation*}
$$

we introduce the distance function $F_{z}: \mathcal{U} \rightarrow \mathbb{R}$ by
$F_{z}(u)=\frac{1}{2}|\hat{J}(u)-z|^{2}=\frac{1}{2}\left(\hat{J}_{1}(u)-z_{1}\right)^{2}+\frac{1}{2}\left(\hat{J}_{2}(u)-z_{2}\right)^{2}$.
The mapping F_{z} measures the geometrical distance between $\hat{J}(u)$ and z.

Lemma 2. The mapping F_{z} is strictly convex.
Proof. The mapping F_{z} is of the form $F_{z}=\sum_{i=1}^{2} g_{i} \circ \hat{J}_{i}$ where, because of (4), we have $g_{i}:\left(z_{i}, \infty\right) \rightarrow \mathbb{R}_{0}^{+}$with $g_{i}(\xi)=\left(\xi-z_{i}\right)^{2} / 2$. Because of the affine linearity of $u \mapsto y(u), \hat{J}_{1}$ is convex and \hat{J}_{2} strictly convex. Further, g_{i} is strictly convex and monotone increasing for $i=1,2$. Altogether, F_{z} itself is strictly convex.

Suppose that z is componentwise strictly smaller than every objective value which we can achieve within $\mathcal{U}_{\mathrm{ad}}$. The goal is that - by approximating z as best as possible - we get a Pareto optimal point for $(\hat{\mathbf{P}})$. Therefore, we have to solve the reference point problem
$\left(\hat{\mathbf{P}}_{z}\right)$
$\min F_{z}(u) \quad$ s.t. $\quad u \in \mathcal{U}_{\mathrm{ad}}$
which is a scalar-valued minimization problem.
Theorem 3. For any $z \in \mathbb{R}^{2}$ the reference point problem admits a unique solution $\bar{u}_{z} \in \mathcal{U}_{\text {ad }}$.

Proof. By Lemma 2 the mapping F_{z} is strictly convex. Now, the proof follows by standard arguments utilizing that $\mathcal{U}_{\mathrm{ad}}$ is bounded and closed in \mathcal{U}.

Theorem 4. Let (4) hold and $\bar{u}_{z} \in \mathcal{U}_{\text {ad }}$ be an optimal solution to $\left(\hat{\mathbf{P}}_{z}\right)$ for a given $z \in \mathbb{R}^{2}$. Then \bar{u}_{z} is Pareto optimal for $(\hat{\mathbf{P}})$.
Proof. We follow along the lines of Theorem 4.20 in Ehrgott (2005): Assume that $\bar{u}_{z} \in \mathcal{U}_{\mathrm{ad}}$ is not Pareto optimal, then there exists a point $u \in \mathcal{U}_{\text {ad }}$ with $\hat{J}(u) \leq$ $\hat{J}\left(\bar{u}_{z}\right)$ and $\hat{J}_{j}(u)<\hat{J}_{j}\left(\bar{u}_{z}\right)$ for $j \in\{1,2\}$. Using (4) we get
(5) $0<\hat{J}_{i}(u)-z_{i} \leq \hat{J}_{i}\left(\bar{u}_{z}\right)-z_{i} \quad$ for $i=1,2$
and strictly smaller for $i=j$. Together, this yields $F_{z}(u)<$ $F_{z}\left(\bar{u}_{z}\right)$ which is a contradiction to the assumption that \bar{u}_{z} is optimal for $\left(\hat{\mathbf{P}}_{z}\right)$.

By solving ($\hat{\mathbf{P}}_{z}$) consecutively with an adaptive variation of z, we are able to move along the Pareto front in a uniform manner. This way, we get a sequence $\left\{z^{k}\right\}_{k \in \mathbb{N}} \subset \mathbb{R}^{2}$ of reference points along with optimal controls $\left\{u^{k}\right\}_{k \in \mathbb{N}} \subset$ $\mathcal{U}_{\text {ad }}$ that solve $\left(\hat{\mathbf{P}}_{z}\right)$ with $z=z^{k}$ as well as $\left\{\hat{J}^{k}\right\}_{k \in \mathbb{N}} \subset \mathbb{R}^{2}$ with $\hat{J}^{k}=\hat{J}\left(u^{k}\right)$. To be more precise, the next reference point z^{k+1} is chosen as
(6) $z^{k+1}=\hat{J}^{k}+h_{J} \frac{\hat{J}^{k}-\hat{J}^{k-1}}{\left|\hat{J}^{k}-\hat{J}^{k-1}\right|}+h_{z} \frac{\hat{J}^{k}-z^{k}}{\left|\hat{J}^{k}-z^{k}\right|}$ for $k \geq 2$,
where $h_{J}, h_{z} \geq 0$ are chosen to control the coarseness of the approximation to the Pareto front. The algorithm is initialized by applying the weighted sum method to $(\hat{\mathbf{P}})$; Zadeh (1963). This yields the first iterates $\hat{J}^{1}, \hat{J}^{2} \in \mathcal{P}$. We therefore do not require z^{1}, z^{2} and compute z^{3} by setting $h_{z}=0$ in (6). Note that the algorithm only moves in one direction: If $\hat{J}_{1}^{1}>\hat{J}_{1}^{2}$, then it turns to the upper left in the \mathbb{R}^{2}-plane. Therefore, we perform the algorithm twice, the second time with switched roles of \hat{J}^{1}, \hat{J}^{2} to cover the other direction as well.

2.2 Optimality conditions

Applying the chain rule, we get for any $u \in \mathcal{U}$

$$
\frac{\partial F_{z}}{\partial u_{j}}(u)=\sum_{k=1}^{2}\left(\hat{J}_{k}(u)-z_{k}\right) \frac{\partial \hat{J}_{k}}{\partial u_{j}}(u), \quad \text { for } j=1, \ldots, m
$$

and

$$
\nabla F_{z}(u)=\sum_{k=1}^{2}\left(\hat{J}_{k}(u)-z_{k}\right) \nabla \hat{J}_{k}(u)
$$

The first-order necessary optimality condition for an optimal $\bar{u}_{z} \in \mathcal{U}_{\text {ad }}$ now reads as the variational inequality

$$
\begin{align*}
0 & \leq\left\langle\nabla F_{z}\left(\bar{u}_{z}\right), u-\bar{u}_{z}\right\rangle_{u} \\
& =\nabla F_{z}\left(\bar{u}_{z}\right)^{\top}\left(u-\bar{u}_{z}\right) \quad \text { for all } u \in \mathcal{U}_{\mathrm{ad}} . \tag{7}
\end{align*}
$$

Next, we investigate second-order derivatives: Note that for $1 \leq i, j \leq m$ we find

$$
\begin{aligned}
& \frac{\partial^{2} F_{z}}{\partial u_{i} \partial u_{j}}(u)=\frac{\partial}{\partial u_{i}}\left(\frac{\partial F_{z}}{\partial u_{j}}(u)\right) \\
& =\frac{\partial}{\partial u_{i}}\left(\sum_{k=1}^{2}\left(\hat{J}_{k}(u)-z_{k}\right) \frac{\partial \hat{J}_{k}}{\partial u_{j}}(u)\right) \\
& =\sum_{k=1}^{2}\left(\left(\hat{J}_{k}(u)-z_{k}\right) \frac{\partial^{2} \hat{J}_{k}}{\partial u_{i} \partial u_{j}}(u)+\frac{\partial \hat{J}_{k}}{\partial u_{i}}(u) \frac{\partial \hat{J}_{k}}{\partial u_{j}}(u)\right) .
\end{aligned}
$$

Now we choose an arbitrary vector $v=\left(v_{i}\right)_{1 \leq i \leq m}$ in \mathcal{U}. Then, $w=\nabla^{2} F_{z}(u) v$ is a vector in \mathcal{U} and

$$
\begin{aligned}
\left(\nabla^{2} F_{z}(u) v\right)_{i}= & \sum_{j=1}^{m}\left(\frac{\partial^{2} F_{z}}{\partial u_{i} \partial u_{j}}(u) v_{j}\right) \\
= & \sum_{k=1}^{2}\left(\left(\hat{J}_{k}(u)-z_{k}\right) \sum_{j=1}^{m}\left(\frac{\partial^{2} \hat{J}_{k}}{\partial u_{i} \partial u_{j}}(u) v_{j}\right)\right) \\
& +\sum_{k=1}^{2}\left(\frac{\partial \hat{J}_{k}}{\partial u_{i}}(u) \sum_{j=1}^{m}\left(\frac{\partial \hat{J}_{k}}{\partial u_{j}}(u) v_{j}\right)\right) \\
= & \sum_{k=1}^{2}\left(\left(\hat{J}_{k}(u)-z_{k}\right)\left(\nabla^{2} \hat{J}_{k}(u) v\right)_{i}\right) \\
& +\sum_{k=1}^{2}\left(\left(\nabla \hat{J}_{k}(u)\right)_{i}\left(\nabla \hat{J}_{k}(u)^{\top} v\right)\right)
\end{aligned}
$$

Consequently, we have

$$
\begin{aligned}
\nabla^{2} F_{z}(u) v= & \sum_{k=1}^{2}\left(\left(\hat{J}_{k}(u)-z_{1}\right)\left(\nabla^{2} \hat{J}_{k}(u) v\right)\right) \\
& +\sum_{k=1}^{2}\left(\left\langle\nabla \hat{J}_{k}(u), v\right\rangle_{u} \nabla \hat{J}_{k}(u)\right) \in \mathcal{U}
\end{aligned}
$$

We are interested in whether the second derivative of F_{z} is coercive at the optimal solution $\bar{u}_{z} \in \mathcal{U}_{\text {ad }}$. We set $\kappa=\min \left\{\hat{J}_{1}-z_{1}, \hat{J}_{2}-z_{2}\right\}>0$; cf. (5). Let $v \in \mathcal{U}$ be chosen arbitrarily. Then we estimate

$$
\begin{aligned}
& \left\langle\nabla^{2} F_{z}(u) v, v\right\rangle_{u} \\
& =\sum_{k=1}^{2}(\left(\hat{J}_{k}(u)-z_{k}\right)\left\langle\nabla^{2} \hat{J}_{k}(u) v, v\right\rangle_{u}+\underbrace{\left|\left\langle\nabla \hat{J}_{k}(u), v\right\rangle_{u}\right|^{2}}_{\geq 0}) \\
& \geq \kappa \sum_{i=1}^{2}\left\langle\nabla^{2} \hat{J}_{k}(u) v, v\right\rangle_{u} .
\end{aligned}
$$

Thus, if for $k=1,2$ the Hessians $\nabla^{2} \hat{J}_{k}\left(\bar{u}_{z}\right)$ are positive semidefinite and at least one of them postive definite, we obtain that $\nabla F_{z}\left(\bar{u}_{z}\right)$.

REFERENCES

R. Dautray and J.-L. Lions: Mathematical Analysis and Numerical Methods for Science and Technology. Volume 5: Evolution Problems I. Springer-Verlag, Berlin, 2000.
M. Ehrgott: Multicriteria Optimization. Springer, Berlin, 2005.
S. Peitz, S. Oder-Blöbaum and M. Dellnitz: Multiobjective optimal control methods for fluid flow using reduced order modeling. http://arxiv.org/pdf/1510.05819v2.pdf, 2015.
L. Zadeh. Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control, 8, 1963.

