Lecture 27

Finite-Dimensional Optimal Control
Problems — Optimality Conditions

Some basic concepts in optimal control theory can be illustrated very well in the context of finite-dimensional
optimization. In particular, we do not have to deal with partial differential equations and several aspects from
functional analysis.

27.1 Finite-dimensional optimal control problem

Let us consider the minimization problem
min J(y,u) subject to (s.t.) Ay = Bu and u € Uy (27.1)

where J : R™ x R™ — R denotes the cost functional, A € R™*™ B € R™*"™ and () # U,q C R™ is the set of
admissible controls. Moreover, we set n = m + n, > m.
We look for vectors y € R™ and u € R™ which solve ll

Example 27.1.1. Often the cost functional is quadratic, e.g.,

J(y,u) = 9 lly — yd”g + 95 Hqua
where yg € R™ and A > 0 hold. O

Problem (27.1) has the form of an optimization problem. Now we assume that A is an invertible matrix. Then
we have
y=A"1'Bu. (27.2)

In this case there exists a unique vector y € R™ for any u € R™. Hence, y is a dependent variable. We call u the
control and y the state. In this way, becomes a finite-dimensional optimal control problem.

We define the matrix S € R™*™« by S = A~'B. Then, S is the solution matrix of our control system: y = Su.
Utilizing the matrix S we introduce the so-called reduced cost functional

J(u) = J(Su,u).

This leads to the reduced problem .
minJ(u) st. w € Ugq. (27.3)

In ll the state variable is eliminated.

27.2 Existence of optimal controls

Definition 27.2.1. The vector @ € Uyq is called an optimal control for (27.1) provided
J(@) < J(u)  for all u € Uyg.

The vector y = Su is the associated optimal state.
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Theorem 27.2.2. Suppose that J is continuous on R™ X Uuq, that Uuq is nonempty, bounded, closed and that A is
invertible. Then, there exists at least one optimal control for ll

Proof. Since the cost functional J is continuous on R™ x U4, the reduced cost J is continuous on Ugyq. Furthermore,
Uaa € R™ is bounded and closed. This implies that U,q is compact. Due to the theorem of Weierstrass (cf. [11]

Folgerung 10.9]) J has a minimum @ € Uug # 0, i.e., J(@) = mingep,, J(u). O

In the case of an infinite-dimensional problem the proof for the existence of optimal controls is more complicated.
The reason for this fact is that bounded and closed sets in infinite-dimensional linear spaces need not to be compact.

27.3 First-order necessary optimality conditions

To compute solutions to optimal control problems we make use of optimality conditions. For that purpose we study
first-order conditions for optimality.
We use the following notation for a function J : R™ — R:

J'(u)=VJ(u)" forueR™.

For the directional derivative in direction h € R™* we have

Throughout we assume that all partial derivatives of J exist and are continuous. From the chain rule it follows that
J(u) = J(Su,u) is continuously differentiable.

Example 27.3.1. Let us consider the cost functional

. 1 A
J(u) = 5 15u = yall; + 5 Ilull,

see Examplem We obtain V.J(u) = ST (Su — ya) + Au, J'(u) = (ST (Su — yq) + M) and J'(u)h = (ST (Su —
Yda) + M, h)gnw at u € R™ and for h € R™. O

The next result is proved in [8] Theorem 22.1.2].

Theorem 27.3.2. Suppose that @ is an optimal control for (27.1) and Uaq convex. Then the variational inequality

J(@)(u—a)=VJ@ (u—a)>0  foralluc Uy (27.4)
holds.

It follows from Theorem [27.3.2|that at @ the cost functional J can not decrease in any feasible direction. The
proof follows from a more general result (see [30] page 63]).
From the chain rule we derive

J'(@)h = J,(Sa,a)Sh + J,(Su, a)h = (V,J(§,@), A" BR), + (V. J(F,@), h),

] y
(27.5)
= (BTATTV,J(7,3) + VuJ(F,0), h),,

where (AT)™! = (A™1)T := A~T holds and, e.g., J, stands for the partial derivative of J with respect to the
argument y. Thus, we derive from

(BTA™TV,J(g,0) + VuJ (7, 0),u — @), >0 (27.6)

for all u € U,q. In the following subsection we will introduce the so-called adjoint or dual variable. Then, we can
express 1» in a simpler way.
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27.4 Adjoint variable and reduced gradient

In a numerical realization the computation of A~! is avoided. The same holds for the matrix AT. Thus, we replace
the term A~TV,J(7,ua) by p = —A~ "V, J(y, @), which is equivalent with

ATp=-V,J(y, ). (27.7)

Definition 27.4.1. Equation (27.7) is called the adjoint or dual equation. Its solution p is the adjoint or dual variable
associated with (7, a).

Example 27.4.2. For the quadratic cost functional J(y,u) = (|ly — vall2 + A ||u]|3)/2 with y,y4 € R™ and A > 0 we
derive the adjoint equation
ATp=ya—7.

Here we have used V,J(y,u) =y — yaq. O
The introduction of the dual variable yields two advantages:
1) We obtain an expression for (27.6) without the matrix A~ T.

2) The expression ([27.6) can be written in a more readable form.

Utilizing § = S in (27.5) we find that
VJ(@) = -B"p+ V,J(7,a).

The vector V.J (@) is called the reduced gradient. The directional derivative of the reduced cost functional J at an
arbitrary u € U,q in direction h is given by

J'(u)h = (=B p+V,J(y,u),h)y,

where y = Su and p = —ATV,J(y,u) hold. From Theorem [27.3.2 and (27.6) we derive directly the following
theorem.

Theorem 27.4.3. Suppose that A is invertible, @ is an optimal control for (27.1) and § = Su the associated optimal
state. Then, there exists a unique dual variable p satisfying (27.7). Moreover, the variational inequality

(=B"p+ Vo, J(@,a),u—1)y >0 forallu€ Uuyg (27.8)
holds true.

We have derived an optimality system for the unknown variables g, @ and p:

ATp= —Vyj(g,ﬂ), (279)
(=BTp+ Vo, J(F,0),v—a)y, >0 for all v € Upg.

Every solution (g, ) to (27.1) must satisfy, together with the dual variable p, the necessary conditions (27.9).
If Uy,g = R™ holds, then the term u — @ can attain any value h € R™. Therefore, the variational inequality
(27.8) implies the equation
~B'p+ V., J(y,a) =0.
Example 27.4.4. We consider the cost functional

1 2 A 2
J(y,u) = 3 ICy — yall5 + 3 flull3

with C € R&*™ 4 € R™, yg € R, A > 0 and u € R™. Then,

VyJ(y,u) =CT(Cy —ya),  VuJ(y,u) = Iu.
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Thus, we obtain the optimality system

Ay = Bu, u € Uy,
ATp=CT(ya—Cp),
(=BTp+ Ni,v— @)y, >0 for all v € Uyg.

If Uyq = R™ holds, we find —BTp + A = 0. For A > 0 we have

Inserting (27.10]) into the state equation, we obtain a linear system in the state and dual variables:

1
Ag=+BB'p, A'p=CT(ya=C).
If (g,p) is computed, @ is given by (27.10).

We have derived an optimality system for the unknown variables ¢, @ and p:

Ay=Bua, A'p=-V,J(g,a), u€ Uy,
(=B"p+ V., J(@,0),v—a), >0 for all v € Uyg.

(27.10)

(27.11)

Every solution (7, %) to (27.1) must satisfy, together with the dual variable p, the necessary conditions (27.11).



Lecture 28

Finite-Dimensional Optimal Control
Problems — KKT System

28.1 The Lagrange function

We have derived an optimality system for the unknown variables 3, @ and p:
Ay =Bu, A'p=-V,J(5,4), € U, (281)
(=BTp+V,J(,a),v—a), >0 forall v € Uy '

Every solution (g, @) to must satisfy, together with the dual variable p, the necessary conditions (27.9).

If Uyq = R™ holds, then the term v — u can attain any value h € R™. Therefore, the variational inequality

(27.8) implies the equation

—B"p+V,J(g,a) =0.
Example 28.1.1. We consider the cost functional
Tou) = 1 10y~ alls + 5 ol
with C € R&*™ 4 € R™, yg € R, A > 0 and u € R™. Then,
Vyd(y.u) =CT(Cy—ya),  Vud(y,u) = M.

Thus, we obtain the optimality system

Ay = Ba, u € Uy,

ATp=CT(ya - Cp),

(=B"p+ Mi,v—a), >0 forall v € Uyg.
If Uy = R™ holds, we find —BTp+ Aa = 0. For A > 0 we have

1
= XBTﬁ. (28.2)

Inserting (28.2) into the state equation, we obtain a linear system in the state and dual variables:
1 _ _ _
Aj=BB'p, ATp=C"(ya—Cp).

If (g, p) is computed, @ is given by (28.2). O
The optimality condition can be expressed by utilizing the Lagrange function £ : R?™+"« — R which is defined

as
L(y,u,p) = J(y,u) + (Ay — Bu,p),, (y,u,p) € R™ x R™ x R™.

It follows that the second and third conditions of (27.11) can be expressed as
VyL(y,u,p) =0, (V.L(Y,U,D),u—Ugn, >0 forall ue Uy.

9
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Remark 28.1.2. The adjoint equation (27.7) is equivalent to V,L(y,@,p) = 0. Thus, (27.7) can be derived from
the derivative of the Lagrange functional with respect to the state variable y. Analogously, the variational inequality
follows from the gradient V,L(7, @, p). O

It follows from Remark|28.1.2[that (g, @) satisfies the necessary optimality conditions of the minimization problem
min £(y,u,p) s.t. (y,u) € R™ x Upgq. (28.3)

Notice that (28.3) has no equality constraints (in contrast to (27.1)). In most applications p is not known a-priori.
Thus, (§,) can not be computed from (28.3).

28.2 Discussion of the variational inequality

In many applications the set of admissible controls has the form
Usa = {u € R™ |uy <u < up}, (28.4)

where u, < up are given vectors in R™ and “<” means less or equal in each component: u,; < u; < up; for

i=1,...,ny. From (27.8) it follows that
(=B p+ Vi J(g,u),a), < (=B p+ V., J(y,u),u),

for all u € Uyq. This implies that @ solves the minimization problem

an

. T o _ .  pT= I )
urglild( B'p+ V., J(y,u),u), uIélzljfd i,l( B p+VuJ(y,u))iul.

If Ugq is of the form (28.4)), then the minimization of a component w; is independent of uj, i # j:

(-B"p+VuJ(gu),u= mn (=B p+V.J(yu)u

Uq,i Sui<up,;
for 1 <7 < ny. Thus,
wp; if (~BTp+ V. J(5,1)); <O,
g J ( Tp (7, u)) (28.5)
Uq; if (=B'p+ V,J(g,1)); > 0.
If (—B"p+ V,J(7,4)); = 0 holds, we have no information from the variational inequality. In many cases we can
use the equation (—BTp 4 V., J(7,4)); = 0 to obtain an explicit equation for one of the components of .

28.3 The Karush—Kuhn—Tucker system

Define the two vectors
Ha = [_BTﬁ+vuJ(gvﬂ)]+v My = [_BT13+ vuJ(gaa)],v (28'6)

where p,; = (=B"p+ V,J(y,u)); if the right-hand side is positive and p,; = 0 otherwise. Analogously, p,; =
|(=BTp+ V.J(y,1));| if the right-hand side is negative and y;,; = 0 otherwise. Utilizing (28.5) we have

,ua>07 uafﬂgoa <ua7aa,ua>2:O Mb207 ﬂfub§07 <ﬁ7ub7ub>2:0~

These conditions are called complementarity conditions. The inequalities are clear. We prove (uq — @, fiq)rre = 0.
Suppose that u,; < @; holds. Due to we have (=BTp + V. J(7,4)); < 0. Thus, ta,; = 0 which gives
(Ui — U;)fha,; = 0. Now we assume jiq; > 0. Using we derive (—BTp+V,J(y,u)); > 0. It follows from
that uq; = 4; holds. Again, we have (uq; — U;)ta,; = 0. Summation over ¢ = 1,...,m yields (uq, — @, fg)2 = 0.
Notice that
Ha — Kb = 7BT]3 + V11,J(g7 a)

Hence,
VuJ(@,1) — B"p+ pp — pra = 0. (28.7)

Let us consider an augmented Lagrange functional

Ly, u,p, pa, ) = J(y,u) + (Ay — Bu,p)y + (Ua — U, fla)y + (4 — up, t16)
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Then, (28.7) can be written as .
VL (Y, U, P fra, i) = 0.

Moreover, the adjoint equation is equivalent with
vyﬁ(gv ’FL, pv Ha, ;ub) =0.

Here, we have used that V,L = Vy/j. The vectors p, and pp are the Lagrange multipliers for the inequality
constraints u, — 4 < 0 and u — up < 0.

Theorem 28.3.1. Suppose that u is an optimal control for || A is invertible and Uyq has the form l|
Then, there exist Lagrange multipliers p € R™ and pq, pp € R™ satisfying

Vyﬁ(g»ﬂ:ﬁ: Ha,s Nb) = 07 vu‘é(ga u, p, Ha,s Nb) = O’ Ag = Bav

: i (28.8)
U —u <0, e >0, u—up <0, >0, (Uqg—1Upa)y = (T — up,tp)y =0.

The optimality system (28.8) is called the Karush-Kuhn-Tucker (KKT) system.
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