
Chapter 2.

Stochastic gradient descent

In this section we will take a closer look at the stochastic gradient method for strongly
convex objective functions. We will analyse its behaviour regarding convergence and its
convergence rate. Our goal is to determine convergence properties and give inequalities
for worst case complexity bounds. The structure of this chapter is based on [BCN18,
Sec. 4]. Two main results including some additional information will be shown below.
Additional proofs can be found in [BCN18, Sec. 4].

2.1. Generic stochastic gradient descent algorithm

To make the analysis of the algorithm more general, we will define a generic objective
function.

Definition 2.1.1 (Generic objective function). For analysing both, expected and
empirical risk, let us define the generic objective function F as

F : Rd ! R, w 7!

8
>>><

>>>:

R(w) = E [f(w; ⇠)]

or

Rn(w) = 1
n

P
n

i=1 fi(w)

. (2.1)

No, we will specify a generic version of the stochastic gradient descent algorithm
and take a closer look on the components of the algorithm in Remark 2.1.2.
Except for the stochastic part included in the gradient calculation, this generic algo-
rithm is close to the original generic algorithm for general descent methods, which we
analysed in the lecture Optimization 1.

Remark 2.1.2 (Interpretation of Algorithm 1). By analysing Algorithm 1, we can
remark a few important characteristics.
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Algorithm 1 Stochastic gradient descent method (SGD method)
Require: initial guess w1 2 Rd

1: for k = 1, 2, . . . do
2: generate realization of the random variable ⇠k

3: compute the stochastic vector g(wk; ⇠k) 2 Rd

4: choose a step size ↵k

5: wk+1  wk � ↵k · g(wk; ⇠k)
6: end for

(i) The generation of the realization of the random variable ⇠k directly corresponds
to the risk measure we use. If we uniformly choose ⇠k over the finite training
set, this corresponds to the empirical risk Rn. Alternatively selecting samples
according to the distribution P, we obtain the expected risk R. Furthermore, we
assume that the random variable sequence {⇠k}k2N, generated by the algorithm,
is independent.

(ii) The computation of the stochastic vector in line 3 is also very generic. This
computation could represent SGD or a (mixed) batch approach

g(wk, ⇠k) =

8
>>><

>>>:

rf(wk; ⇠k)

1
nk

P
nk

i=1rf(wk; ⇠k,i)

Hk · 1
nk

P
nk

i=1rf(wk; ⇠k,i)

, (2.2)

with Hk 2 Rd⇥d being a symmetric positive definite matrix.

(iii) The choice of ↵k in line 4 allows us to use a fixed step size as well as a sequence
of diminishing step sizes. In the following analysis, we will take a closer look on
both options for the step size and its effect on convergence.

2.2. Two fundamental lemmas

The following two fundamental lemmas are build on the smoothness of the objective
function. Hence, we need some assumptions regarding the first and second moments.

Assumption 2.2.1 (Lipschitz continuity of the objective functions gradient). In the
following report, we assume that the objective function F : Rd ! R is continuously
differentiable and the gradient function rF : Rd ! Rd is Lipschitz continuous with
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Lipschitz constant L > 0. In particular, for all w, w̄ 2 Rd it holds

krF (w)�rF (w̄)k2  L · kw � w̄k2 .

Recalling the convergence proof of the gradient descent method in Optimization
1, we can see that Assumption 2.2.1 is typical for a gradient based descent method.
Otherwise, the gradient would not be a good indicator for how far to move to achieve
a decrease in F . We obtain the following proposition.

Proposition 2.2.2. In the setting of Assumption 2.2.1, we obtain for all w, w̄ 2 Rd

the inequality

F (w)  F (w̄) +rF (w̄)T(w � w̄) +
L

2
kw � w̄k22 . (2.3)

Proof. See [BCN18, Appendix B].

Before stating the first of two fundamental lemmas, we need some more notations.
We use E⇠k

[·] to denote the expected value with respect to the distribution of the
random variable ⇠k given by wk. As a consequence, the expression E⇠k

[F (wk+1)] makes
sense because wk+1 depends on ⇠k (cf. Algorithm 1).

Lemma 2.2.3. Under Assumption 2.2.1, the iterates generated by Algorithm 1 satisfy
for all k 2 N the inequality

E⇠k
[F (wk+1)]� F (wk)  �↵krF (wk)

TE⇠k
[g(wk, ⇠k)] +

↵
2
k
L

2
E⇠k

[kg(wk, ⇠k)k22]. (2.4)

Proof. See [BCN18, Lemma 4.2].

Lemma 2.2.3 shows that Algorithm 1 behaves similarly to a Markov chain. Regard-
less of how the iterates arrived at the step wk, the expected descent just depends on
two properties:

(i) the expected directional derivative of F at wk along the direction g(wk, ⇠k), and

(ii) the second moment1 of g(wk, ⇠k).
1If we recall (1.8) and assume that g(wk, ⇠k) is an unbiased estimate of rF (wk), Lemma 2.2.3 yields

E⇠k [F (wk+1)]� F (wk)  �↵k krF (wk)k22 +
1

2
↵
2
kLE⇠k [kg(wk, ⇠k)k22].
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If we could ensure that the right-hand side of the inequality in (2.4) is negative and
bounded from above by a deterministic quantity, this would lead to an asymptotically
sufficient descent in F . Therefore, we need more assumptions regarding the first and
second moments of the stochastic directions. But first of all, we define the variance
with respect to the distribution of ⇠k as

Var⇠k [g(w, ⇠k)] := E⇠k

⇥
(g(w, ⇠k)� E⇠k

[g(w, ⇠k)])
2⇤

(⇤)
= E⇠k

⇥
kg(w, ⇠k)k22

⇤
� kE⇠k

[g(w, ⇠k)]k22 , (2.5)

for w 2 Rd. The equality (⇤) was proven in the course Probability Theory [Kle13, p.
103] and is a basic property of the variance.

Assumption 2.2.4 (Limits for first and second moments). We assume that the ob-
jective function F : Rd ! R satisfies the following quantities:

(i) {wk}k ✓ O, for an open set O ✓ Rd, in which the objective function is bounded
from below. In particular: for all w 2 O it holds F (w) � Finf .

(ii) There exist constants µG � µ > 0, such that

rF (wk)
TE⇠k

[g(wk, ⇠k)] � µ krF (wk)k22 (2.6a)

kE⇠k
[g(wk, ⇠k)]k2  µG krF (wk)k2 (2.6b)

hold for all k 2 N.

(iii) There are constants M,MV � 0, such that the inequality

Var⇠k [g(wk, ⇠k)] M +MV krF (wk)k22 (2.7)

is satisfied for all k 2 N.

We want to briefly interpret Assumption 2.2.4:

(i) The first assumption states, that the objective function F is bounded from below
in the area explored by the algorithm. Basically, we had the same assumption
in the analysis of a generic descent algorithm in Optimization 1.

(ii) This point is also similar to a condition of the full gradients analysis. We want
to make sure that, in expectation, the algorithm’s directions are of sufficient
descent. We will see this in Lemma 2.2.5.
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(iii) The last assumption restricts the variance in a minor way. If, for example F is a
convex quadratic function, the inequality (2.7) allows the variance to be non-zero
in every stationary point of F and to grow quadratically in each direction.

Combining Assumption 2.2.4 and Eq. (2.5) lead to

E⇠k

⇥
kg(wk, ⇠k)k22

⇤
= Var⇠k [g(wk, ⇠k)] + kE⇠k

[g(wk, ⇠k)]k22
M +MG krF (wk)k22 , (2.8)

for a constant

MG := MV + µ
2
G
� µ

2
> 0. (2.9)

Lemma 2.2.5. Under Assumptions 2.2.1 and 2.2.4, the iterates {wk}k2N of SGD
produced by Algorithm 1 satisfy

E⇠k
[F (wk+1)]� F (wk)  �µ↵k krF (wk)k22 +

1

2
↵
2
k
LE⇠k

⇥
kg(wk, ⇠k)k22

⇤
(2.10a)

 �
✓
µ� 1

2
↵kLMG

◆
↵k krF (wk)k22 +

1

2
↵
2
k
LM (2.10b)

for all k 2 N.

Proof. See [BCN18, Lemma 4.4].

If we take a closer look at the inequalities above and reconsider the interpretation of
Lemma 2.2.3, we can see again how SGD behaves in a Markovian manner. No matter
how SGD arrived at wk, the random variable wk+1 only depends on wk and ⇠k and not
on past iterates.

Notice that the difference on the left-hand side is bounded from above by a deter-
ministic quantity.

2.3. SGD for strongly convex objective functions

In this section, we will proceed our analysis of Lemma 2.2.5, by assuming that our
objective function is strongly convex. In a first observation, we will see that in expec-
tation the difference of the left-hand side will converge to a deterministic (in general
non-zero) quantity, while using SGD with a fixed step size.
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Naturally, we will try to refine this result by using a diminishing step size sequence
to achieve convergence in expectation2.

Assumption 2.3.1 (Strongly convex objective function). We assume that for our
generic objective function F : Rd ! R there exists a constant c > 0 (the so-called
modulus), such that for all (w̄, w) 2 Rd ⇥ Rd the inequality

F (w̄) � F (w) +rF (w)T(w̄ � w) +
1

2
c kw̄ � wk22 (2.11)

is satisfied. In particular, in that case F has a unique minimizer w⇤ 2 R; compare
Optimization 1. Furthermore, we will define F⇤ := F (w⇤). Taking a look at Eq. (2.3),
we can also see, that c  L has to hold.

The following proposition provides a useful result, which relates the minimal value
F⇤ with any other value F (w), using the Euclidean-Norm of the gradient.

Proposition 2.3.2. Using Assumption 2.3.1, the inequality

2c (F (w)� F⇤)  krF (w)k22 (2.12)

follows for all w 2 Rd.

Proof. See [BCN18, Appendix B].

As mentioned above, in the following first convergence theorem we will not get con-
vergence towards a solution. Instead, we will only get convergence to a neighbourhood
of the optimal value.

Remark 2.3.3 (Total expectation). In step k 2 N of the algorithm, we will write
E[·] to denote the expected value with respect to the joint distribution of all random
variables. Particularly, the total expectation of F (wk) can be written as

E[F (wk)] := E⇠1

⇥
E⇠2

⇥
. . .
⇥
E⇠k�1

[F (wk)]
⇤
. . .
⇤⇤
,

because wk is completely determined by the independent random variables {⇠1, . . . ⇠k�1}.
The goal of our analysis is to achieve convergence in expectation for the sequence
{F (wk)}k2N towards a local minimizer. As usual, the choice of the step size is crucial

2It is also possible to achieve almost sure convergence, but this requires way more work and a change
of perspective, using martingale techniques; cf. [BCN18, Inset 4.1].
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to obtain convergence. As we will see in the numerical analysis, due to the stochastic
approach, SGD methods are more sensitive to the step size sequence than the (exact)
gradient method.

Now we are able to prove our first convergence result.

Theorem 2.3.4 (Strongly convex objective function, fixed step size). Suppose that
Assumption 2.2.1, 2.2.4 and 2.3.1 holds, and Finf = F⇤. For the SGD algorithm with
the fixed step size ↵k = ↵̄ for all k 2 N, satisfying

0 < ↵̄  µ

LMG

, (2.13)

the following (contraction) inequality holds

E [F (wk)� F⇤] 
↵̄LM

2cµ
+ (1� ↵̄cµ)k�1

✓
F (w1)� F⇤ �

↵̄LM

2cµ

◆
k!1�! ↵̄LM

2cµ
. (2.14)

Proof. This proof is strongly based on the proof of [BCN18, Theorem 4.6]. As this
result one of the main theoretical statements, we include the proof with some additional
steps.

Using Lemma 2.2.5, Proposition 2.3.2 and Eq. (2.13), we infer

E⇠k
[F (wk+1)� F (wk)]

(2.10b)
 �

✓
µ� 1

2
↵̄LMG

◆
↵̄ krF (wk)k22 +

1

2
↵̄
2
LM

(2.13)
 �1

2
µ↵̄ krF (wk)k22 +

1

2
↵̄
2
LM

(2.12)
 �1

2
µ↵̄2c (F (wk)� F⇤) +

1

2
↵̄
2
LM

for all k 2 N. We now subtract F⇤ from both sides, take the total expectation and
shift E[F (wk)] around, to get

E [F (wk+1)� F⇤]  (1� µ↵̄c)E [F (wk)� F⇤] +
1

2
↵̄
2
LM

) E [F (wk+1)� F⇤]�
↵̄LM

2cµ
 (1� µ↵̄c)E [F (wk)� F⇤] +

1

2
↵̄
2
LM � ↵̄LM

2cµ

= (1� µ↵̄c)

✓
E [F (wk)� F⇤]�

↵̄LM

2cµ

◆

) E [F (wk+1)� F⇤]�
↵̄LM

2cµ
 (1� µ↵̄c)

✓
E [F (wk)� F⇤]�

↵̄LM

2cµ

◆
. (2.15)
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Eq. (2.15) is a contraction inequality, since we have

0 < ↵̄cµ

(2.13)
 cµ

2

LMG

(2.9)
 c

L

µ
2

µ2
 c

L
 1.

We obtain c  L from Eq. (2.11). Now, we can apply the inequality (2.15) repeatedly,
to obtain

E [F (wk)� F⇤] 
↵̄LM

2cµ
+ (1� ↵̄cµ)k�1

✓
F (w1)� F⇤ �

↵̄LM

2cµ

◆
.

The convergence result easily follows using the fact that the factor 1� ↵̄cµ is smaller
than one and F (w1) is just a scalar, which can be factored out of the expected value,
as it is independent of the joint distribution.

Let us remark a few things, regarding the results of Theorem 2.3.4. First of all, as-
sume g(wk, ⇠k) being an unbiased estimate of rF (wk) and having no noise in g(wk, ⇠k),
e.g. µ = 1 and MG = 1. In this case, the process of selecting a fixed step size reduces
to ↵ 2

�
0, 1

L

⇤
– a classical step size for SGD. Furthermore, Theorem 2.3.4 indicates the

important interplay between the step size and the bound of the variance. If we have
no noise in the computation of the gradient, Theorem 2.3.4 states a linear convergence
rate of SGD. But, if the computation is too noisy, the fixed step size only leads to a
neighbourhood of the optimum.

Consequently, we will now consider SGD methods with descending step size se-
quences.

Remark 2.3.5 (SGD in practice). Let us assume running SGD with an initial step
size ↵1 2

⇣
0, µ

LMG

i
for the iterations k1 = 1 to k2, whereas wk2 is the first iterate to

satisfy

E[F (wk2)� F⇤]  2 · F↵1 ,

with F↵ := ↵LM

2cµ . Recalling Theorem 2.3.4, we obtain that F↵ is the limit of the
expected optimality gap, if we run SGD with fixed step size ↵̄ = ↵1. Now, we cut
the step size in half, meaning ↵2 :=

↵1
2 . This results in a step size sequence {↵r+1} =

{↵12�r} with an index sequence {kr}r2N. Now we can see that the sequence

{F↵r
}r2N =

⇢
↵rLM

2cµ

�

r2N
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satisfies

lim
r!1

F↵r
= 0,

as the diminishing step size sequence converges to zero.

We will now analyse the behaviour of the optimality gap with respect to the new
step size sequence {↵r}r2N more closely. For all r 2 N�2, we have

E[F (wkr+1)� F⇤]  2 · F↵r
. (2.16)

Due to our choice of the step size sequence, we can assume that

E[F (wkr
)� F⇤] ⇡ 2 · F↵r�1 = 4F↵r

.

Next, we want to calculate the effective rate of step size decrease we need in order to
obtain the inequality (2.16). Therefore, we can invoke Theorem 2.3.4 to calculate the
difference kr+1 � kr as

E[F (wkr+1)� F⇤]
(2.14)
 ↵rLM

2cµ
+ (1� ↵rcµ)

kr+1�kr

✓
E [F (wkr

)� F⇤]�
↵rLM

2cµ

◆
!
 2F↵r

)(1� ↵rµc)
kr+1�kr (4F↵r

� F↵r
)  F↵r

.

As a consequence, we get

kr+1 � kr �
log
�
1
3

�

log (1� ↵rµc)
⇡ log(3)

↵rµc
= O(2r),

where we used that the Taylor expansion of log at x0 = 1 has the form

log(x) = (x� 1) +O(kx� 1k2)

and

log

✓
1

3

◆
= log(1)� log(3) = � log(3)

holds. This result is essential because it states that cutting the step size in half, leads
to a doubled number of iterations – a sublinear rate of convergence. An example of
this behaviour is illustrated in Fig. 2.1.
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Figure 2.1.: Exemplary sublinear convergence behaviour, with a step size choice stated
in Remark 2.3.5. One can see, the overall effective rate is at the order of
O( 1

k
). Source: [BCN18, Figure 4.1].

In the next theorem, we will analyse SGD methods with general diminishing step size
sequences of the form

1X

k=1

↵k =1 and
1X

k=1

↵
2
k
<1. (2.17)

The rate of convergence will stay the same, but one has more flexibility to choose the
step size sequence.

Theorem 2.3.6 (Strongly convex objective function, diminishing step sizes). Under
Assumptions 2.2.1, 2.2.4, 2.3.1 and Finf = F⇤, we consider the iterates {wk}k2N,
generated by SGD with a step size sequence satisfying

{↵k}k2N =

⇢
�

� + k

�

k2N
with ↵1 =

�

� + 1
 µ

LMG

, (2.18)

for some constants

� >
1

cµ
, � > 0.

Then, we get for all iterations k 2 N

E[F (wk)� F⇤] 
⌫

� + k
, (2.19)
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as an expected optimality gap, where

⌫ := max

⇢
�
2
LM

2(�cµ� 1)
, (� + 1) (F (w1)� F⇤)

�
. (2.20)

Proof. This proof is strongly based on the proof of [BCN18, Theorem 4.7]. As this
one of the main theoretical results, we include the proof with some additional steps.
Using ↵k =

�

�+k
, we get for all k 2 N

↵kLMG  ↵1LMG  µ. (⇤)

Now, we can use Lemma 2.2.5 and Proposition 2.3.2 and obtain

E⇠k
[F (wk+1)]� F (wk)]

(2.10b)
 �

✓
µ� 1

2
↵kLMG

◆
↵k krF (wk)k22 +

1

2
↵
2
k
LM

(⇤)

 �1

2
µ↵k krF (wk)k22 +

1

2
↵
2
k
LM

(2.12)
 �↵kcµ (F (wk)� F (w⇤)) +

1

2
↵
2
k
LM.

If we subtract F⇤ from both sides, take the expected value and rearrange the inequality,
like in the proof of Theorem 2.3.4, it follows that

E[F (wk+1)]� F⇤]  (1� ↵kcµ)E [F (wk)� F (w⇤)] +
1

2
↵
2
k
LM (2.21)

holds. Now we can prove the statement of the theorem by induction.
k = 1: We have to show the inequality

E[F (w1)]� F⇤] = F (w1)� F⇤ 
⌫

� + 1
,

which is a direct consequence of the definition of ⌫.
k ! k + 1: We assume Eq. (2.19) holds for a k � 1, using (2.21), k̂ := � + k and
↵k =

�

�+k
, we obtain

E[F (wk+1)]� F⇤]
(2.21)
 (1� ↵kcµ)E [F (wk)� F (w⇤)] +

1

2
↵
2
k
LM


✓
1� �

k̂
cµ

◆
⌫

k̂
+

�
2
LM

2k̂2
=

 
k̂ � �cµ

k̂2

!
⌫ +

�
2
LM

2k̂2
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=

 
k̂ � 1

k̂2

!
⌫ �

✓
�cµ� 1

k̂2

◆
⌫ +

�
2
LM

2k̂2


 
k̂ � 1

k̂2

!
⌫. (2.22)

The last inequality in (2.22) holds, because by the definition of ⌫ we have

⌫ � �
2
LM

2(�cµ� 1)
,

which implies
✓
�cµ� 1

k̂2

◆
⌫ � �

2
LM

2k̂2

) �
✓
�cµ� 1

k̂2

◆
⌫ +

�
2
LM

2k̂2
 0.

Using k̂
2 � k̂

2 � 1 = (k̂ � 1)(k̂ + 1), we get

k̂ � 1

k̂2
 1

k̂ + 1
. (2.23)

Combing the inequalities (2.22) and (2.23) leads to

E[F (wk+1)]� F⇤] 
⌫

� + (k + 1)
,

which is our stated result.

Finally, we want to interpret the results of Theorem 2.3.4 and Theorem 2.3.6.

Role of the strong convexity The parameter c > 0, gained by Assumption 2.3.1,
occurs in both convergence theorems to achieve a contraction inequality. The
impact of c on the step size differs between the strategies. While running SGD
with a fixed step size, the interval to choose ↵̄ is independent of c, but for SG with
a diminishing step size, the condition � >

1
cµ

is crucial to obtain a convergence
rate of O

�
1
k

�
.

Role of the initial guess In both theorems 2.3.4 and 2.3.6, the term F (w1)� F⇤ oc-
curs. For a fixed step size, we get the initial gap with an exponentially decreasing
factor.
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For a diminishing step size sequence, one can spot the initial gap in the second
term of the value ⌫. In [BCN18, p. 29] it is shown, that the first term of ⌫

dominates the asymptotic behaviour. We will create a small example, which will
illustrate this behaviour.

Assume running SGD with a fixed step size ↵̄ until step k1, where

F (wk1)� F⇤ 
↵̄LM

2cµ
,

as in Remark 2.3.5. Then choosing �, �, as in Theorem 2.3.6 and ↵̄ = ↵1, we get

(� + 1)E [F (wk1)� F⇤] =
�

↵1
E [F (wk1)� F⇤] 

�

↵1

↵1LM

2cµ
=

�LM

2cµ
<

�
2
LM

2(�cµ� 1)
.

Therefore, the first term of ⌫ in (2.20) asymptotically dominates.

We should always try to choose the initial step size as big as possible, e.g.
↵1 = µ

LMG

. We obtain the best asymptotic behaviour, if the first value of ⌫ is
as small as possible, e.g. � = 2

cµ
(since only the first term is asymptotically

relevant). In this case we get

⌫ =
�
2
LM

2(�cµ� 1)
=

⇣
2
cµ

⌘2
LM

2
⇣

2
cµ
cµ� 1

⌘ =
2

µ2

L

c

M

c
.

The last two ratios are essential, as they set the Lipschitz constant and the lower
noise bound in proportion to the modulus of convexity.
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2.4. Outlook: SGD for general objective functions

In this section we want to expand our analysis of SGD to non-convex objective func-
tions. As we see in most practical application fields (e.g. the majority of machine
learning models), the objective function is in general non-convex and therefore, fur-
ther analysis of the SGD algorithm is needed. The analysis for non-convex objective
functions is more challenging, as such functions can possess multiple local minima and
other stationary points. The main result of this section will be the generalization of
both of the previous theorems, but at the expense of the convergence factor in the
case of a diminishing step size sequence. We want to make the same assumptions as
before, except for the strong convexity of the objective function.

First, we want to take a look at the sequence of gradients of F when running SGD
with fixed step sizes and hence try to generalize Lemma 2.2.3 for the non-convex case.

Theorem 2.4.1 (Non-convex objective function, fixed step size). Suppose that As-
sumptions 2.2.1 and 2.2.4 hold. Further, assume running SGD with a fixed step size,
↵k = ↵̄, for all k 2 N, satisfying the usual condition

0 < ↵̄  µ

LMG

. (2.24)

Then, the expected sum-of-squares and average-squared gradients of the objective func-
tion F generated by the SGD iterates, satisfy the following inequalities for all K 2 N:

E
"

KX

k=1

krF (wk)k22

#
K↵̄LM

µ
+

2 · (F (w1)� Finf)

µ↵̄
(2.25a)

and therefore E
"
1

K

KX

k=1

krF (wk)k22

#
 ↵̄LM

µ
+

2 · (F (w1)� Finf)

Kµ↵̄
(2.25b)

K!1�! ↵̄LM

µ
.

Proof. See [BCN18, Theorem 4.8].

As in the result of Theorem 2.3.4, the right-hand side of the inequality contains the
fixed step size ↵̄, a Lipschitz constant of the objective functions gradient, as well as
the constants obtained by the assumptions regarding the first and second moments
of the stochastic directions g(wk, ⇠k). The case of M = 0, meaning there is no noise
or the noise reduces proportionally to krF (wk)k22, is also similar to Theorem 2.3.4.
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Here, the sum of the squared gradients remains finite, implying {krF (wk)k2}! 0 for
k !1.

In the situation of M > 0, Theorem 2.4.1 illustrates the interplay between the step
size ↵̄ and the variance of the stochastic directions. While we lose the upper bound
for the expected optimality gap due to the non-convexity of the objective function,
inequality (2.25b) bounds the average of the objective functions gradient observed
on {wk}k during the first K iteration steps. The quantity on the right-hand side
gets smaller when K increases, indicating that SGD spends increasingly more time in
regions where the objective function has a (relatively) small gradient. This problem
arises in most practical machine learning projects (a so-called learning plateau).

As we have already seen in the convex case, noise in the gradients delays further
progress. One can decrease the upper bound for the average norm of the gradients to
an arbitrarily small value by reducing the step size. However, Remark 2.3.5 illustrates
that this tremendously reduces the speed of approaching this limit.

Now, we want to expand our result to the case with a diminishing step size sequence.
We first state the next theorem and will later prove it as a corollary.

Theorem 2.4.2 (Non-convex objective function, diminishing step sizes). Under As-
sumptions 2.2.1 and 2.2.4, suppose running the SGD method with a step size sequence
{↵k}k2N, satisfying

1X

k=1

↵k =1 and
1X

k=1

↵
2
k
<1. (2.26)

Then we obtain

lim inf
k!1

E
⇥
krF (wk)k22

⇤
= 0 (2.27)

for the sequence of gradients generated by SGD.

The proof of this theorem is a direct consequence of the next stated theorem. A
“ lim inf” result of this type is typical in the context of stochastic.

Theorem 2.4.3 (Non-convex objective function, diminishing step sizes). We again
assume running the SGD method under Assumptions 2.2.1 and 2.2.4 with a diminish-
ing step size sequence satisfying the conditions in (2.26). Then, with AK :=

P
K

k=1 ↵k,
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for K 2 N, we obtain

lim
K!1

E
"

KX

k=1

↵k krF (wk)k22

#
<1 (2.28a)

and therefore E
"

1

Ak

KX

k=1

↵k krF (wk)k22

#
K!1�! 0. (2.28b)

Proof. See [BCN18, Theorem 4.10].

In contrast to Theorem 2.4.1, the result of Theorem 2.4.3 states that the weighted
average norm of the square gradients converges to zero – even under the presence of
noise.

We can see now, why Theorem 2.4.2 is a direct consequence of Theorem 2.4.3. If
Eq. (2.26) would not hold, it would contradict Theorem 2.4.3.

This also negates the fact that (2.28b) only specifies a property of a weighted aver-
age, as we can still conclude that the expected gradient norms cannot asymptotically
stay far away from zero (cf. Theorem 2.4.2).

We can improve the “ lim inf” convergence to a stronger convergence in probability,
at the expense of only showing this property at randomly selected iterates of the
objective functions gradient.

Corollary 2.4.4 (Convergence in probability for randomly selected iterates). We
assume the conditions of Theorem 2.4.3 hold. For any K 2 N, let k(K) 2 {1, . . . , K}
represent a randomly chosen index with probabilities proportional to {↵k}Kk=1. Then��rF (wk(K))

��2
2
! 0 converges in probability as K !1.

Proof. The proof is a direct consequence of the Markov inequality (cf. Lemma A.2.2)
and the result given in Eq. (2.28a). For arbitrary " > 0, we can write

P
���rF (wk(K))

��
2
� "
�
= P

⇣��rF (wk(K))
��2
2
� "

2
⌘

Markov


E
h
Ek

h��rF (wk(K))
��2
2

ii

"2

K!1�! 0.

This is exactly the definition of convergence in probability (cf. Definition A.2.1).

Assuming additional regularity conditions, we can show a stronger convergence re-
sult.
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Corollary 2.4.5. We assume the conditions of Theorem 2.4.3 hold. Furthermore,
let the objective function F be twice differentiable and we assume that the mapping
w 7! krF (w)k22 has a Lipschitz continuous derivative. Then,

lim
k!1

E
⇥
krF (wk)k22

⇤
= 0.

Proof. See [BCN18, Appendix B].

In the next section we will analyse concrete implementations of various SGD varia-
tions and compare their behaviour using different objective functions.
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