Tutorium

1. Februar 2023-Solution

5.1 Stochastic Optimization

5.1.1 Setting

Let us consider a data set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \subset \mathbb{R}^{d} \times \mathbb{R}$ with $x_{i} \neq x_{j}$ for $i \neq j$. We have d-dimensional vectors as input values and outputs taking real values. We now assume this given data correlates to a linear mapping. Therefore we need to find $w \in \mathbb{R}^{d}$ such that

$$
\begin{equation*}
x_{i}^{\top} w \approx y_{i} \text { for } i=1, \ldots, n \tag{5.1}
\end{equation*}
$$

To obtain a classifier, we want to solve the following minimization problem

$$
\begin{equation*}
\min _{w \in \mathbb{R}^{d}} f(w)=\min _{w \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2}\left(x_{i}^{\top} w-y_{i}\right)^{2}+\frac{\lambda}{2}\|w\|_{2}^{2} \tag{5.2}
\end{equation*}
$$

with $\lambda>0$ the regularization parameter. With the matrix notation

$$
X=\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{R}^{d \times n}, y=\left[y_{1}, \ldots, y_{n}\right] \in \mathbb{R}^{n}
$$

we can rewrite the objective function in 5.2 as

$$
\begin{equation*}
f(w)=\frac{1}{2 n}\left\|X^{\top} w-y\right\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2} \tag{5.3}
\end{equation*}
$$

In order to be able to use stochastic gradient descent, a suitable representation of (5.2) must be found. Let

$$
A=\frac{1}{n} X X^{\top}+\lambda I \in \mathbb{R}^{d \times d} \text { and } b=\frac{1}{n} X y
$$

and rewrite the problem $A w=b$ as a linear least squares problem

$$
\begin{equation*}
\min _{w \in \mathbb{R}^{d}} g(w)=\min _{w \in \mathbb{R}^{d}} \frac{1}{2}\|A w-b\|_{2}^{2}=\min _{w \in \mathbb{R}^{d}} \sum_{j=1}^{d} p_{j} g_{j}(w) \tag{5.4}
\end{equation*}
$$

with $g_{j}(w)=\frac{1}{2 p_{j}}\left(A_{j}: w-b_{j}\right)^{2}$, where A_{j} : denotes the j-th row of A and $p_{j}=\frac{\left\|A_{j}:\right\|_{2}^{2}}{\|A\|_{F}^{2}}$ for $j=1, \ldots, d$ with $\|A\|_{F}^{2}=$ $\operatorname{tr}\left(A^{\top} A\right)$ denotes the Frobenius norm of A. Assume that \bar{w} is a solution of (5.2) and \hat{w} is a solution of (5.4). Note that $A \hat{w}=b$.

Exercise 1

Show that

$$
\begin{equation*}
\nabla g_{j}(w)=\frac{1}{p_{j}} A_{j:}^{\top} A_{j:}(w-\hat{w}) \tag{5.5}
\end{equation*}
$$

and that

$$
\begin{equation*}
\mathbb{E}_{j \sim p}\left[\nabla g_{j}(w)\right]:=\sum_{i=1}^{d} p_{i} \nabla g_{i}(w)=A^{\top} A(w-\hat{w}) \tag{5.6}
\end{equation*}
$$

thus $\nabla g_{j}(w)$ is an unbiased estimator of the full gradient of the objective function in (5.4). This justifies applying the stochastic gradient method.

Proof.

Exercise 2

Show that the solution \bar{w} of (5.2) and the solution \hat{w} of (5.4) are equal.
Proof.
From a given $w^{0} \in \mathbb{R}^{d}$, consider the iterates

$$
\begin{equation*}
w^{k+1}=w^{k}-\alpha_{k} \nabla g_{j}\left(w^{k}\right), \tag{5.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{k}=\frac{1}{\|A\|_{F}^{2}} \tag{5.8}
\end{equation*}
$$

with j is a random index chosen from $\{1, \ldots, d\}$ sampled with probability p_{j}. In other words, $\mathbb{P}(j=i)=p_{i}$ for $i=1, \ldots, d$.

Exercise 3

Define $\Pi_{j}=\frac{A_{j}^{\top} A_{j}}{\left\|A_{j}:\right\|_{2}^{2}}$ and show that

1. $\Pi_{j} \Pi_{j}=\Pi_{j}$
2. $\left(I-\Pi_{j}\right)\left(I-\Pi_{j}\right)=I-\Pi_{j}$
hold.
Proof.

Exercise 4

Show that the distance to the solution satisfies the following recurrence

$$
\left\|w^{k+1}-\bar{w}\right\|_{2}^{2}=\left\|w^{k}-\bar{w}\right\|_{2}^{2}-\left\langle\frac{A_{j:}^{\top} A_{j}:}{\left\|A_{j:}\right\|_{2}^{2}}\left(w^{k}-\bar{w}\right), w^{k}-\bar{w}\right\rangle .
$$

Proof.

