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1 The POD method in Rm

In this section we introduce the POD method in the Euclidean space Rm and study the close
connection to the SVD of rectangular matrices; see [KV99]. We also refer to the monograph
[HLBR12].

1.1 POD and SVD

Let Y = [y1, . . . , yn] be a real-valued m × n matrix of rank d ≤ min{m, n} with columns yj ∈ Rm,
1 ≤ j ≤ n. Consequently,

ȳ =
1

n

n∑
j=1

yj (1.1)

can be viewed as the column-averaged mean of the matrix Y .

Theorem 1.1 (Singular value decomposition (SVD)). There exist uniquely determined real numbers
σ1 ≥ σ2 ≥ . . . ≥ σd > 0 and orthogonal matrices U ∈ Rm×m with columns {ui}mi=1 and V ∈ Rn×n
with columns {vi}ni=1 such that

UT Y V =

(
D 0

0 0

)
=: Σ ∈ Rm×n, (1.2)

where D = diag (σ1, . . . , σd) ∈ Rd×d and the zeros in (1.2) denote matrices of appropriate
dimensions. Moreover the vectors {ui}di=1 and {vi}di=1 satisfy

Y vi = σiui and Y T ui = σivi for i = 1, . . . , d. (1.3)

Proof. We follow the arguments given in [DR08, pp. 144-145]. For Y = 0 the claim is clear.
Suppose that Y 6= 0 holds. Then,

σ1 = ‖Y ‖2 = max
‖v‖Rn=1

‖Y v‖Rn > 0.

Let v ∈ Rn be vector with ‖v‖Rm = 1, where the maximum is attained. We set u = Y v/σ1 ∈ Rm.
It follows that ‖u‖Rn = ‖Y v‖Rm/σ1 = 1. We extend u and v to orthonormal bases {u, ũ2, . . . , ũm}
and {v , ṽ2, . . . , ṽn} in Rm and Rn, respectively. Next we define the two orthogonal matrices U1 =

[u, ũ2, . . . , ũm] ∈ Rm×m and V1 = [v , ṽ2, . . . , ṽm] ∈ Rn×n. Since 〈ũ, Y v〉Rm = σ1 〈ũi , u〉Rm = 0 holds
for i = 2, . . . , m, we find that

Y1 = UT1 Y V1 =

(
σ1 wT

0 Ỹ

)
∈ Rm×n

with w ∈ Rn−1 and Ỹ ∈ R(m−1)×(n−1). We observe that∥∥∥∥Y1

(
σ1

w

)∥∥∥∥
Rm

=

∥∥∥∥( σ2
1 + wTw

Ỹ w

)∥∥∥∥
Rm
≥ σ2

1 + ‖w‖2
Rn−1 =

∥∥∥∥( σ1

w

)∥∥∥∥2

Rn
.

3



Moreover, ‖Y ‖2 = ‖Y1‖2 holds. Therefore, we have

σ1 = ‖Y1‖2 ≥

∥∥∥∥Y1

(
σ1

w

)∥∥∥∥
Rm∥∥∥∥( σ1

w

)∥∥∥∥
Rn

≥
√
σ2

1 + ‖w‖2
Rn−1 .

Consequently, w = 0 and

UT1 Y V1 =

(
σ1 0

0 Ỹ

)
∈ Rm×n.

Thus, the claim has been proved for m = 1 or n = 1. For the case m, n > 1 we apply an
induction argument. For that purpose we assume that UT2 Ỹ V2 = Σ2 with two orthogonal matrices
U2 ∈ R(m−1)×(m−1), V2 ∈ R(n−1)×(n−1) and with a matrix Σ2 ∈ R(m−1)×(n−1) of the same structure
as the marix Σ in (1.2). Then, we find

σ2 := ‖Ỹ ‖2 ≤ ‖Y1‖2 = ‖UT1 Y V1‖2 = ‖Y ‖2 = σ1.

Setting

U = U1

(
1 0

0 U2

)
∈ Rm×m and

(
1 0

0 V2

)
∈ Rn×n

we get the decomposition

UT Y V =

(
σ1 0

0 Σ2

)
which yields the claim by using the hypothesis of the induction. �

It follows directly from (1.3) that {ui}mi=1 ⊂ Rm and {vi}ni=1 ⊂ Rn are eigenvectors of Y Y T

and Y T Y , respectively, with eigenvalues λi = σ2
i > 0, i = 1, . . . , d . The vectors {ui}mi=d+1 and

{vi}ni=d+1 (if d < m respectively d < n) are eigenvectors of Y Y T and Y T Y with eigenvalue 0.
From (1.2) we deduce that

Y = UΣV T .

We infer (1.3) from the columnwise evaluation of (1.2). The follows It follows that Y can also be
expressed as

Y = UdD(V d)T , (1.4)

where Ud ∈ Rm×d and V d ∈ Rn×d are given by

Udij = Ui j for 1 ≤ i ≤ m, 1 ≤ j ≤ d,
V dij = Vi j for 1 ≤ i ≤ n, 1 ≤ j ≤ d.

Setting Bd = D(V d)T ∈ Rd×n we can write (1.4) in the form

Y = UdBd with Bd = D(V d)T ∈ Rd×n.

Thus, the column space of Y can be represented in terms of the d linearly independent columns
of Ud . The coefficients in the expansion for the columns yj , j = 1, . . . , n, in the basis {ui}di=1 are
given by the jth-column of Bd . Since U is orthogonal, we find that

yj =

d∑
i=1

BdijU
d
·,i =

d∑
i=1

(
D(V d)T

)
i j
ui =

d∑
i=1

(
(Ud)TUd︸ ︷︷ ︸
=Id∈Rd×d

D(V d)T
)
i j
ui

(1.4)
=

d∑
i=1

(
(Ud)T Y

)
i j
ui =

d∑
i=1

( m∑
k=1

UdkiYkj︸ ︷︷ ︸
=uTi yj

)
ui =

d∑
i=1

〈ui , yj〉Rm ui ,
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where 〈· , ·〉Rm denotes the canonical inner product in Rm. Thus,

yj =

d∑
i=1

〈yj , ui〉Rm ui for j = 1, . . . , n (1.5)

Let us now interprete SVD in terms of POD. One of the central issues of POD is the reduction
of data expressing their essential information by means of a few basis vectors. The problem of
approximating all spatial coordinate vectors yj of Y simultaneously by a single, normalized vector
as well as possible can be expressed as

max
u∈Rm

n∑
j=1

∣∣〈yj , u〉Rm ∣∣2 subject to (s.t.) ‖u‖2
Rm = 1, (P1)

where ‖u‖Rm =
√
〈u, u〉Rm for u ∈ Rm.

Note that (P1) is a constrained optimization problem that can be solved by considering first-order
necessary optimality conditions; cf. [DR11, Satz 11.43]. We introduce the function e : Rm → R by
e(u) = 1−‖u‖2

Rm for u ∈ Rm. Then, the equality constraint in (P1) can be expressed as e(u) = 0.
Notice that ∇e(u) = 2uT is linear independent if u 6= 0 holds. In particular, a solution to (P1)
satisfies u 6= 0. Thus, any solution to (P1) is a regular point. Let L : Rm×R→ R be the Lagrange
functional associated with (P1), i.e.,

L(u, λ) =

n∑
j=1

∣∣〈yj , u〉Rm ∣∣2 + λ
(

1− ‖u‖2
Rm
)

for (u, λ) ∈ Rm × R.

Suppose that u ∈ Rm is a solution to (P1). Since u is regular, there exists a Lagrange multiplier
satisfying the first-order necessary optimality condition

∇L(u, λ)
!

= 0 in Rm × R.

We compute the gradient of L with respect to u:

∂L
∂ui

(u, λ) =
∂

∂ui

(
n∑
j=1

∣∣∣∣ m∑
k=1

Ykjuk

∣∣∣∣2 + λ

(
1−

m∑
k=1

u2
k

))
= 2

n∑
j=1

( m∑
k=1

Ykjuk

)
Yi j − 2λui

= 2

m∑
k=1

( n∑
j=1

Yi jY
T
jk︸ ︷︷ ︸

=(Y Y T )ik

uk

)
− 2λui .

Thus,
∇uL(u, λ) = 2

(
Y Y T u − λu

) !
= 0 in Rm. (1.6)

Equation (1.6) yields the eigenvalue problem

Y Y T u = λu in Rm. (1.7a)

Notice that Y Y T ∈ Rm×m is a symmetric matrix satisfying

uT (Y Y T )u = (Y T u)T Y T u = ‖Y T u‖2

Rn ≥ 0 for all u ∈ Rm.

Thus, Y Y T is positive semi-definite. It follows that Y Y T possesses m non-negative eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0 and the corresponding eigenvectors can be chosen such that they are
pairwise orthonormal.

From ∂L
∂λ (u, λ)

!
= 0 in R we infer the constraint

‖u‖Rm = 1. (1.7b)
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Due to SVD the vector u1 solves (1.7) and
n∑
j=1

∣∣〈yj , u1〉Rm
∣∣2 =

n∑
j=1

〈yj , u1〉Rm〈yj , u1〉Rm =

n∑
j=1

〈
〈yj , u1〉Rmyj , u1

〉
Rm

=

〈 n∑
j=1

〈yj , u1〉Rmyj , u1

〉
Rm

=

〈 n∑
j=1

( m∑
k=1

Ykj(u1)k

)
yj , u1

〉
Rm

=

〈 m∑
k=1

( n∑
j=1

Y·,jY
T
jk (u1)k

)
, u1

〉
Rm

=
〈
Y Y T u1, u1

〉
Rm

= λ1

〈
u1, u1

〉
Rm = λ1 ‖u1‖2

Rm = λ1.

We next prove that u1 solves (P1). Suppose that ũ ∈ Rm is an arbitrary vector with ‖ũ‖Rm = 1.
Since {ui}mi=1 is an orthonormal basis in Rm, we have

ũ =

m∑
i=1

〈ũ, ui〉Rm ui .

Thus,

n∑
j=1

∣∣〈yj , ũ〉Rm ∣∣2 =

n∑
j=1

∣∣∣∣∣
〈
yj ,

m∑
i=1

〈ũ, ui〉Rm ui
〉
Rm

∣∣∣∣∣
2

=

n∑
j=1

m∑
i=1

m∑
k=1

(〈
yj , 〈ũ, ui〉Rm ui

〉
Rm
〈
yj , 〈ũ, uk〉Rm uk

〉
Rm
)

=

n∑
j=1

m∑
i=1

m∑
k=1

(
〈yj , ui〉Rm〈yj , uk〉Rm〈ũ, ui〉Rm〈ũ, uk〉Rm

)
=

m∑
i=1

m∑
k=1

(〈 n∑
j=1

〈yj , ui〉Rm yj︸ ︷︷ ︸
=λiui

, uk

〉
Rm
〈ũ, ui〉Rm〈ũ, uk〉Rm

)

=

m∑
i=1

m∑
k=1

(
〈λiui , uk〉Rm︸ ︷︷ ︸

=λiδik

〈ũ, ui〉Rm〈ũ, uk〉Rm
)

=

m∑
i=1

λi
∣∣〈ũ, ui〉Rm ∣∣2 ≤ λ1

m∑
i=1

∣∣〈ũ, ui〉Rm ∣∣2 = λ1 ‖ũ‖2
R = λ1 =

n∑
j=1

∣∣〈yj , u1〉Rm
∣∣2.

Consequently, u1 solves (P1) and argmax (P1) = σ2
1 = λ1.

If we look for a second vector, orthogonal to u1 that again describes the data set {yi}ni=1 as well
as possible then we need to solve

max
u∈Rm

n∑
j=1

∣∣〈yj , u〉Rm ∣∣2 s.t. ‖u‖Rm = 1 and 〈u, u1〉Rm = 0. (P2)

SVD implies that u2 is a solution to (P2) and argmax (P2) = σ2
2 = λ2. In fact, u2 solves the

first-order necessary optimality conditions (1.7) and for

ũ =

m∑
i=2

〈ũ, ui〉Rm ui ∈ span {u1}⊥

we have
n∑
j=1

∣∣〈yj , ũ〉Rm ∣∣2 ≤ λ2 =

n∑
j=1

∣∣〈yj , u2〉Rm
∣∣2.
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Clearly this procedure can be continued by finite induction. We summarize our results in the following
theorem.

Theorem 1.2. Let Y = [y1, . . . , yn] ∈ Rm×n be a given matrix with rank d ≤ min{m, n}. Further,
let Y = UΣV T be the singular value decomposition of Y , where U = [u1, . . . , um] ∈ Rm×m,
V = [v1, . . . , vn] ∈ Rn×n are orthogonal matrices and the matrix Σ ∈ Rm×n has the form as (1.2).
Then, for any ` ∈ {1, . . . , d} the solution to

max
ũ1,...,ũ`∈Rm

∑̀
i=1

n∑
j=1

∣∣〈yj , ũi〉Rm ∣∣2 s.t. 〈ũi , ũj〉Rm = δi j for 1 ≤ i , j ≤ ` (P`)

is given by the singular vectors {ui}`i=1, i.e., by the first ` columns of U. Moreover,

argmax (P`) =
∑̀
i=1

σ2
i =

∑̀
i=1

λi . (1.8)

Proof. Since (P`) is an equality constrained optimization problem, we introduce the Lagrangian

L : Rm × . . .× Rm︸ ︷︷ ︸
`-times

×R`×`

by

L(ψ1, . . . , ψ`,Λ) =
∑̀
i=1

n∑
j=1

∣∣〈yj , ψi〉Rm ∣∣2 +
∑̀
i ,j=1

λi j
(
δi j − 〈ψi , ψj〉Rm

)
for ψ1, . . . , ψ` ∈ Rm and Λ = ((λi j)) ∈ R`×`. First-order necessary optimality conditions for (P`)
are given by

∂L
∂ψk

(ψ1, . . . , ψ`,Λ)δψk = 0 for all δψk ∈ Rm and k ∈ {1, . . . , `}. (1.9)

From

∂L
∂ψk

(ψ1, . . . , ψ`,Λ)δψk = 2
∑̀
i=1

n∑
j=1

〈yj , ψi〉Rm〈yj , δψk〉Rmδik

−
∑̀
i ,j=1

λi j〈ψi , δψk〉Rmδjk −
∑̀
i ,j=1

λi j〈δψk , ψj〉Rmδki

= 2

n∑
j=1

〈yj , ψk〉Rm〈yj , δψk〉Rm −
∑̀
i=1

(λik + λki) 〈ψi , δψk〉Rm

=

〈
2

n∑
j=1

〈yj , ψk〉Rm yj −
∑̀
i=1

(λik + λki)ψi , δψk

〉
Rm

and (1.9) we infer that

n∑
j=1

〈yj , ψk〉Rm yj =
1

2

∑̀
i=1

(λik + λki)ψi in Rm and for all k ∈ {1, . . . , `}. (1.10)

Note that

Y Y Tψ =

n∑
j=1

〈yj , ψ〉Rm yj for ψ ∈ Rm.

1.1. POD AND SVD 7



Thus, condition (1.10) can be expressed as

Y Y Tψk =
1

2

∑̀
i=1

(λik + λki)ψi in Rm and for all k ∈ {1, . . . , `}. (1.11)

Now we proceed by induction. For ` = 1 we have k = 1. It follows from (1.11) that

Y Y Tψ1 = λ1ψ1 in Rm (1.12)

with λ1 = λ11. Next we suppose that for ` ≥ 1 the first-order optimality conditions are given by

Y Y Tψk = λkψk in Rm and for all k ∈ {1, . . . , `}. (1.13)

We want to show that the first-order necessary optimality conditions for a POD basis {ψi}`+1
i=1 of

rank `+ 1 are given by

Y Y Tψk = λkψk in Rm and for all k ∈ {1, . . . , `+ 1}. (1.14)

By assumption we have (1.13). Thus, we only have to prove that

Y Y Tψ`+1 = λ`+1ψ`+1 in Rm. (1.15)

Due to (1.11) we have

Y Y Tψ`+1 =
1

2

`+1∑
i=1

(λi ,`+1 + λ`+1,i)ψi in Rm. (1.16)

Since {ψi}`+1
i=1 is a POD basis we have 〈ψ`+1, ψj〉Rm = 0 for 1 ≤ j ≤ `. Using (1.13) and the

symmetry of Y Y T we have for any j ∈ {1, . . . , `}

0 = λj 〈ψ`+1, ψj〉Rm = 〈ψ`+1, Y Y
Tψj〉Rm = 〈Y Y Tψ`+1, ψj〉Rm

=
1

2

`+1∑
i=1

(λi ,`+1 + λ`+1,i) 〈ψi , ψj〉Rm =
(
λj,`+1 + λ`+1,j

)
.

This gives
λ`+1,i = −λi ,`+1 for any i ∈ {1, . . . , `}. (1.17)

Inserting (1.17) into (1.16) we obtain

Y Y Tψ`+1 =
1

2

∑̀
i=1

(λi ,`+1 + λ`+1,i)ψi + λ`+1,`+1 ψ`+1

=
1

2

∑̀
i=1

(λi ,`+1 − λi ,`+1)ψi + λ`+1,`+1 ψ`+1 = λ`+1,`+1 ψ`+1.

Setting λ`+1 = λ`+1,`+1 we obtain (1.15).
Summarizing, the necessary optimaity conditions for (P`) are given by the symmetric m × m
eigenvalue problem

Y Y T ui = λiui for i = 1, . . . , `. (1.18)

It follows from SVD that {ui}`i=1 solves (1.18). The proof that {ui}`i=1 is a solution to (P`) and
that argmax (P`) =

∑`
i=1 σ

2
i holds is analogous to the proof for (P1); see Exercise 1.2). �

Motivated by the previous theorem we give the next definition.

Definition 1.3. For ` ∈ {1, . . . , d} the vectors {ui}`i=1 are called POD basis of rank `.
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The following result states that for every ` ≤ d the approximation of the columns of Y by
the first ` singular vectors {ui}`i=1 is optimal in the mean among all rank ` approximations to the
columns of Y .

Corollary 1.4 (Optimality of the POD basis). Let all hypotheses of Theorem 1.2 be satisfied.
Suppose that Ûd ∈ Rm×d denotes a matrix with pairwise orthonormal vectors ûi and that the
expansion of the columns of Y in the basis {ûi}di=1 be given by

Y = ÛdCd , where Cdij = 〈ûi , yj〉Rm for 1 ≤ i ≤ d, 1 ≤ j ≤ n.

Then for every ` ∈ {1, . . . , d} we have

‖Y − U`B`‖F ≤ ‖Y − Û`C`‖F . (1.19)

In (1.19), ‖ · ‖F denotes the Frobenius norm given by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

∣∣Ai j ∣∣2 =

√
trace

(
ATA

)
for A ∈ Rm×n,

the matrix U` denotes the first ` columns of U, B` the first ` rows of B and similarly for Û` and
C`.

Remark 1.5. Notice that

‖Y − Û`C`‖2

F =

m∑
i=1

n∑
j=1

∣∣∣Yi j − ∑̀
k=1

Û`ikCkj

∣∣∣2 =

n∑
j=1

m∑
i=1

∣∣∣Yi j − ∑̀
k=1

〈ûk , yj〉Rm Û
`
ik

∣∣∣2
=

n∑
j=1

∥∥∥yj − ∑̀
k=1

〈yj , ûk〉Rm ûk
∥∥∥2

Rm
.

Analogously,

‖Y − U`B`‖2

F =

n∑
j=1

∥∥∥yj − ∑̀
k=1

〈yj , uk〉Rmuk
∥∥∥2

Rm
.

Thus, (1.19) implies that

n∑
j=1

∥∥∥yj − ∑̀
k=1

〈yj , uk〉Rmuk
∥∥∥2

Rm
≤

n∑
j=1

∥∥∥yj − ∑̀
k=1

〈yj , ûk〉Rm ûk
∥∥∥2

Rm

for any other set {ûi}`i=1 of ` pairwise orthonormal vectors. Hence, the POD basis of rank ` can
also be determined by solving

min
ũ1,...,ũ`∈Rm

n∑
j=1

∥∥∥yj − ∑̀
i=1

〈yj , ũi〉Rm ũi
∥∥∥2

Rm
s.t. 〈ũi , ũj〉Rm = δi j , 1 ≤ i , j ≤ `. (1.20)

♦

Proof of Corollary 1.3. Note that (see Exercise 1.3) in Section 1.4)

‖Y − Û`C`‖2

F = ‖Ûd(Cd − C`0)‖2

F = ‖Cd − C`0‖
2

F =

d∑
i=`+1

n∑
j=1

∣∣Cdij ∣∣2,

1.1. POD AND SVD 9



where C`0 ∈ Rd×n results from C ∈ Rd×n by replacing the last d − ` rows by 0. Similarly,

‖Y − U`B`‖2

F = ‖Uk(Bd − B`0)‖2

F = ‖Bd − B`0‖
2

F =

d∑
i=`+1

n∑
j=1

∣∣Bdij ∣∣2
=

d∑
i=`+1

n∑
j=1

∣∣〈yj , ui〉Rm ∣∣2 =

d∑
i=`+1

n∑
j=1

〈
〈yj , ui〉Rmyj , ui

〉
Rm

=

d∑
i=`+1

〈Y Y T ui , ui〉Rm =

d∑
i=`+1

σ2
i ,

(1.21)

By Theorem 1.2 the vectors u1, . . . , u` solve (P`). From (1.21),

‖Y ‖2
F = ‖ÛdCd‖2

F = ‖Cd‖2

F =

d∑
i=1

n∑
j=1

∣∣Cdij ∣∣2
and

‖Y ‖2
F = ‖UdBd‖2

F = ‖Bd‖2

F =

d∑
i=1

n∑
j=1

∣∣Bdij ∣∣2 =

d∑
i=1

σ2
i

we infer that

‖Y − U`B`‖2

F =

d∑
i=`+1

σ2
i =

d∑
i=1

σ2
i −

∑̀
i=1

σ2
i = ‖Y ‖2

F −
∑̀
i=1

n∑
j=1

∣∣〈yj , ui〉Rm ∣∣2
≤ ‖Y ‖2

F −
∑̀
i=1

n∑
j=1

∣∣〈yj , ûi〉Rm ∣∣2 =

d∑
i=1

n∑
j=1

∣∣Cdij ∣∣2 − ∑̀
i=1

n∑
j=1

∣∣Cdij ∣∣2
=

d∑
i=`+1

n∑
j=1

∣∣Cdij ∣∣2 = ‖Y − Û`C`‖2

F ,

which gives (1.19). �

Remark 1.6. It follows from Corollary 1.4 that the POD basis of rank ` is optimal in the sense
of representing in the mean the columns {yj}nj=1 of Y as a linear combination by an orthonormal
basis of rank `:

∑̀
i=1

n∑
j=1

∣∣〈yj , ui〉Rm ∣∣2 =
∑̀
i=1

σ2
i =

∑̀
i=1

λi ≥
∑̀
i=1

n∑
j=1

∣∣〈yj , ûi〉Rm ∣∣2
for any other set of orthonormal vectors {ûi}`i=1. ♦

The next corollary states that the POD coefficients are uncorrelated.

Corollary 1.7 (Uncorrelated POD coefficients). Let all hypotheses of Theorem 1.2 hold. Then.

n∑
j=1

〈yj , ui〉Rm〈yj , uk〉Rm =

n∑
j=1

B`i jB
`
kj = σ2

i δik for 1 ≤ i , k ≤ `.

Proof. The claim follows from (1.18) and 〈ui , uk〉Rm = δik for 1 ≤ i , k ≤ `:

n∑
j=1

〈yj , ui〉Rm〈yj , uk〉Rm =

〈 n∑
j=1

〈yj , ui〉Rmyj︸ ︷︷ ︸
=Y Y T ui

, uk

〉
Rm

= 〈σ2
i ui , uk〉Rm = σ2

i δik .

10 Prof. Dr. Stefan Volkwein



�
Next we turn to the practical computation of a POD-basis of rank `. If n < m then one can

determine the POD basis of rank ` as follows: Compute the eigenvectors v1, . . . , v` ∈ Rn by solving
the symmetric n × n eigenvalue problem

Y T Y vi = λivi for i = 1, . . . , ` (1.22)

and set, by (1.3),

ui =
1√
λi
Y vi for i = 1, . . . , `.

For historical reasons [Sir87] this method of determing the POD-basis is sometimes called the
method of snapshots. On the other hand, if m < n holds, we can obtain the POD basis by solving
the m ×m eigenvalue problem (1.18).
For the application of POD to concrete problems the choice of ` is certainly of central importance

for applying POD. It appears that no general a-priori rules are available. Rather the choice of ` is
based on heuristic considerations combined with observing the ratio of the modeled to the total
energy contained in the system Y , which is expressed by

E(`) =

∑`
i=1 λi∑d
i=1 λi

.

Let us mention that POD is also called Principal Component Analysis (PCA) and Karhunen-
Loève Decomposition.

1.2 The POD method with a weighted inner product

Let us endow the Euclidean space Rm with the weighted inner product

〈u, ũ〉W = uTWũ = 〈u,W ũ〉Rm = 〈Wu, ũ〉Rm for u, ũ ∈ Rm, (1.23)

where W ∈ Rm×m is a symmetric, positive-definite matrix. Furthermore, let ‖u‖W =
√
〈u, u〉W for

u ∈ Rm be the associated induced norm. For the choice W = I, the inner product (1.23) coincides
the Euclidean inner product.

Example 1.8. Let us motivate the weighted inner product by an example. Suppose that Ω =

(0, 1) ⊂ R holds. We consider the space L2(Ω) of square integrable functions on Ω:

L2(Ω) =

{
ϕ : Ω→ R

∣∣∣ ∫
Ω

|ϕ|2 dx <∞
}
.

Recall that L2(Ω) is a Hilbert space endowed with the inner product

〈ϕ, ϕ̃〉L2(Ω) =

∫
Ω

ϕϕ̃ dx for ϕ, ϕ̃ ∈ L2(Ω)

and the induced norm ‖ϕ‖L2(Ω) =
√
〈ϕ,ϕ〉L2(Ω) for ϕ ∈ L2(Ω). For the step size h = 1/(m − 1)

let us introduce a spatial grid in Ω by

xi = (i − 1)h for i = 1, . . . , m.

For any ϕ, ϕ̃ ∈ L2(Ω) we introduce a discrete inner product by trapezoidal approximation:

〈ϕ, ϕ̃〉L2
h(Ω) = h

(
ϕh1ϕ̃

h
1

2
+

m−1∑
i=2

(
ϕhi ϕ̃

h
i

)
+
ϕhmϕ̃

h
m

2

)
, (1.24)
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where

ϕhi =



2

h

∫ h/2

0

ϕ(x) dx for i = 1,

1

h

∫ xi+h/2

xi−h/2

ϕ(x) dx for i = 2, . . . , m − 1,

2

h

∫ 1

1−h/2

ϕ(x) dx for i = m

and the ϕ̃hi ’s are defined analogously. Setting W = diag (h/2, h, . . . , h, h/2) ∈ Rm×m, ϕh =

(ϕh1, . . . , ϕ
h
m)T ∈ Rm and ϕ̃h = (ϕ̃h1, . . . , ϕ̃

h
m)T ∈ Rm we find

〈ϕ, ϕ̃〉L2
h(Ω) = 〈ϕh, ϕ̃h〉W = (ϕh)TWϕ̃h.

Thus, the discrete L2-inner product can be written as a weighted inner product of the form (1.23).
♦

Now we replace (P1) by

max
u∈Rm

n∑
j=1

∣∣〈yj , u〉W ∣∣2 s.t. ‖u‖W = 1. (P1
W )

Analogously to Section 1.1 we treat (P1
W ) as an equality constrained optimization problem. The

Lagrangian L : Rm × R→ R for (P1
W ) is given by

L(u, λ) =

n∑
j=1

∣∣〈yj , u〉W ∣∣2 + λ
(

1− ‖u‖2
W

)
for (u, λ) ∈ Rm × R.

Suppose that u ∈ Rm is a solution to (P1
W ). Then, a first-order necessary optimality condition is

given by
∇L(u, λ)

!
= 0 in Rm × R;

cf. [DR11, Satz 11.43]. We compute the gradient of L with respect to u: Since W is symmetric,
we derive

∂L
∂ui

(u, λ) =
∂

∂ui

(
n∑
j=1

∣∣∣∣ m∑
k=1

m∑
ν=1

Y TjνWνkuk

∣∣∣∣2 + λ

(
1−

m∑
k=1

m∑
ν=1

uνWνkuk

))

= 2

n∑
j=1

( m∑
k=1

m∑
ν=1

Y TjνWνkuk

)( m∑
µ=1

Y TjµWµi

)

− λ
( m∑
ν=1

uνWνi +

m∑
k=1

Wikuk

)

= 2

m∑
k=1

m∑
ν=1

m∑
µ=1

Wiµ

n∑
j=1

YµjY
T
jνWνkuk − 2λ

( m∑
k=1

Wikuk

)

= 2

(
WY Y TWu − λWu

)
i

.

Thus,
∇uL(u, λ) = 2

(
WY Y TWu − λWu

) !
= 0 in Rm. (1.25)

Equation (1.25) yields the generalized eigenvalue problem

(WY )(WY )T u = λWu. (1.26)
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Since W is symmetric and positive definite, W possesses an eigenvalue decomposition of the form
W = QDQT , where D = diag (η1, . . . , ηm) contains the eigenvalues η1 ≥ . . . ≥ ηm > 0 of W and
Q ∈ Rm×m is an orthogonal matrix. We define

Wα = Qdiag (ηα1 , . . . , η
α
m)QT for α ∈ R.

Note that (Wα)−1 = W−α and Wα+β = WαW β for α, β ∈ R; see Exercise 1.4). Moreover, we
have

〈u, ũ〉W = 〈W 1/2u,W 1/2ũ〉Rm for u, ũ ∈ Rm

and ‖u‖W = ‖W 1/2u‖Rm for u ∈ Rm.
Setting ū = W 1/2u ∈ Rm and Ȳ = W 1/2Y ∈ Rm×n and multiplying (1.26) by W−1/2 from the

left we deduce the symmetric, m ×m eigenvalue problem

Ȳ Ȳ T ū = λū in Rm. (1.27a)

From ∂L
∂λ (u, λ)

!
= 0 in R we infer the constraint ‖u‖W = 1 that can be expressed as

‖ū‖Rm = 1. (1.27b)

Thus, the first-order optimality conditions (1.27) for (P1
W ) are – as for (P1) (compare (1.7)) –

an m×m eigenvalue problem, but the matrix Y as well as the vector u have to be weighted by the
matrix W 1/2.

It can be shown (see Exersice 1.4.1)) that

u1 = W−1/2ū1

solves (P1
W ), where ū1 is an eigenvector of Ȳ Ȳ T corresponding to the largest eigenvalue λ1 with

‖ū1‖Rm = 1. Due to SVD the vector u1 can be also determined by solving the symmetric n × n
eigenvalue problem

Ȳ T Ȳ v̄1 = λ1v̄1

where Ȳ T Ȳ = Y TWY , and setting

u1 = W−1/2ū1 =
1√
λ1
W−1/2Ȳ v̄1 =

1√
λ1
Y v̄1. (1.28)

As in Section 1.1 we can continue by looking at a second vector u ∈ Rm with 〈u, u1〉W = 0 that
maximizes

∑n
j=1 |〈yj , u〉W |2. Let us generalize Theorem 1.2 as follows.

Theorem 1.9. Let Y ∈ Rm×n be a given matrix with rank d ≤ min{m, n}, W a symmetric, positive
definite matrix, Ȳ = W 1/2Y and ` ∈ {1, . . . , d}. Further, let Ȳ = ŪΣV̄ T be the singular value
decomposition of Ȳ , where Ū = [ū1, . . . , ūm] ∈ Rm×m, V̄ = [v̄1, . . . , v̄n] ∈ Rn×n are orthogonal
matrices and the matrix Σ has the form

ŪT Ȳ V̄ =

(
D 0

0 0

)
= Σ ∈ Rm×n.

Then the solution to

max
ũ1,...,ũ`∈Rm

∑̀
i=1

n∑
j=1

∣∣〈yj , ũi〉W ∣∣2 s.t. 〈ũi , ũj〉W = δi j for 1 ≤ i , j ≤ ` (P`W )

is given by the vectors ui = W−1/2ūi , i = 1, . . . , `. Moreover,

argmax (P`W ) =
∑̀
i=1

σ2
i =

∑̀
i=1

λi . (1.29)
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Proof. Using similar arguments as in the proof of Theorem 1.2 one can prove that {ui}`i=1 solves
(P`W ); see Exersice 1.4). �

Remark 1.10. Due to SVD and Ȳ T Ȳ = Y TWY the POD basis {ui}`i=1 of rank ` can be determined
by the method of snapshots as follows: Solve the symmetric n × n eigenvalue problem

Y TWY v̄i = λi v̄i for i = 1, . . . , `,

and set
ui = W−1/2ūi =

1√
λi
W−1/2

(
Ȳ v̄i
)

=
1√
λi
W−1/2W 1/2Y v̄i =

1√
λi
Y v̄i

for i = 1, . . . , `. Notice that

〈ui , uj〉W = uTi Wuj =
δi jλj√
λiλj

for 1 ≤ i , j ≤ `.

For m � n the method of snapshots turns out to be faster than computing the POD basis via
(1.27). Notice that the matrix W 1/2 is also not required for the method of snapshots. ♦

1.3 Application to time-dependent systems

For T > 0 we consider the semi-linear initial value problem

ẏ(t) = Ay(t) + f (t, y(t)) for t ∈ (0, T ], (1.30a)

y(0) = y0, (1.30b)

where y0 ∈ Rm is a chosen initial condition, A ∈ Rm×m is a given matrix, f : [0, T ]×Rm → Rm is
continuous in both arguments and locally Lipschitz-continuous with respect to the second argument.
It is well known that there exists a time T◦ ∈ (, T ] such that (1.30) has a unique (classical) solution
y ∈ C1(0, T◦;Rm) ∩ C([0, T◦];Rm) given by the implicit integral representation

y(t) = etAy0 +

∫ t

0

e(t−s)Af (s, y(s)) ds, t ∈ [0, T◦],

with etA =
∑∞
i=0 t

nAn/(n!) (local existence in time; cf. [DR11, Satz 16.5]). Here we suppose that
we can choose T◦ = T (global existence in time; cf. [DR11, Satz 16.1]). Let 0 ≤ t1 < t2 < . . . <

tn ≤ T be a given time grid in the interval [0, T ]. For simplicity of the presentation, the time grid is
assumed to be equidistant with step-size ∆t = T/(n−1), i.e., tj = (j −1)∆t. We suppose that we
know the solution to (1.30) at the given time instances tj , j ∈ {1, . . . , n}. Our goal is to determine
a POD basis of rank ` ≤ n that desribes the ensemble

yj = y(tj) = etjAy0 +

∫ tj

0

e(tj−s)Af (s, y(s)) ds, j = 1, . . . , n,

as well as possible with respect to the weighted inner product:

min
ũ1,...,ũ`∈Rm

n∑
j=1

αj

∥∥∥yj − ∑̀
i=1

〈yj , ũi〉W ũi
∥∥∥2

W
s.t. 〈ũi , ũj〉W = δi j for 1 ≤ i , j ≤ `, (P̂n,`W )

where the αj ’s denote non-negative weights which will be specified later on. Note that for αj = 1

for j = 1, . . . , n and W = I problem (P̂n,`W ) coincides with (1.20).
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Example 1.11. Let us consider the following one-dimensional heat equation:

θt(t, x) = θxx(t, x) for all (t, x) ∈ Q = (0, T )×Ω, (1.31a)

θx(t, 0) = θx(t, 1) = 0 for all t ∈ (0, T ), (1.31b)

θ(0, x) = θ0(x) for all x ∈ Ω = (0, 1) ⊆ R, (1.31c)

where θ0 ∈ C(Ω) is a given initial condition. To solve (1.31) numerically we apply a classical finite
difference approximation for the spatial variable x . In Example 1.8 we have introduced the spatial
grid {xi}mi=1 in the interval [0, 1]. Let us denote by yi : [0, T ]→ R the numerical approximation for
θ(· , xi) for i = 1, . . . , m. The second partial derivative θxx in (1.31a) and the boundary conditions
(1.31b) are discretized by centered difference quotients of second-order so that we obtain the
following ordinary differential equations for the time-dependent functions yi :

ẏ1(t) =
−2y1(t) + 2y2(t)

h2
,

ẏi(t) =
yi−1(t)− 2yi(t) + yi+1(t)

h2
, i = 2, . . . , m − 1,

ẏm(t) =
−2ym(t) + 2ym−1(t)

h2

(1.32a)

for t ∈ (0, T ]. From (1.31c) we infer the initial condion

yi(0) = θ0(xi), i = 1, . . . , m. (1.32b)

Introducing the matrix

A =
1

h2


−2 2 0

1 −2 1
. . . . . . . . .

1 −2 1

0 2 −2

 ∈ Rm×m

and the vectors

y(t) =

 y1(t)
...

ym(t)

 for t ∈ [0, T ], y0 =

 θ0(x1)
...

θ0(xm)

 ∈ Rm
we can express (1.32) in the form

ẏ(t) = Ay(t) for t ∈ (0, T ],

y(0) = y0
(1.33)

Setting f ≡ 0 the linear initial-value problem coincides with (1.30). Note that now the vector y(t),
t ∈ [0, T ], represents a function in Ω evaluated at m grid points. Therefore, we should supply
Rm by a weighted inner product representing a discretized inner product in an appropriate function
space. Here we choose the inner product introduced in (1.24); see Example 1.8. Next we choose a
time grid {tj}nj=1 in the interval [0, T ] and define yj = y(tj) for j = 1, . . . , n. If we are interested in
finding a POD basis of rank ` ≤ n that desribes the ensemble {yj}nj=1 as well as possible, we end
up with (P̂n,`W ). ♦

To solve (P̂n,`W ) we apply the techniques used in Sections 1.1 and 1.1, i.e., we use the Lagrangian
framework. Thus, we introduce the Lagrange functional

L : Rm × . . .× Rm︸ ︷︷ ︸
`−times

×R`×` → R

1.3. APPLICATION TO TIME-DEPENDENT SYSTEMS 15



by

L(u1, . . . , u`,Λ) =

n∑
j=1

αj

∥∥∥yj − ∑̀
i=1

〈yj , ui〉W ui
∥∥∥2

W
+
∑̀
i=1

∑̀
j=1

Λi j
(

1− 〈ui , uj〉W
)

for u1, . . . , u` ∈ Rm and Λ ∈ R`×` with elements Λi j , 1 ≤ i , j ≤ `. It turns out that the solution to
(P̂n,`W ) is given by the first-order necessary optimality condions

∇uiL(u1, . . . , u`,Λ)
!

= 0 in Rm, 1 ≤ i ≤ `, (1.34a)

and
〈ui , uj〉W

!
= δi j , 1 ≤ i , j ≤ `. (1.34b)

From (1.34a) we derive
Y DY TWui = λiui for i = 1, . . . , `, (1.35)

where D = diag (α1, . . . , αn) ∈ Rn×n. Inserting ui = W−1/2ūi in (1.35) and multiplying (1.35) by
W 1/2 from the left yield

W 1/2Y DY TW 1/2ūi = λi ūi . (1.36a)

From (1.34b) we find

〈ūi , ūj〉Rm = ūTi ūj = uTi Wuj = 〈ui , uj〉W = δi j , 1 ≤ i , j ≤ `. (1.36b)

Setting Ȳ = W 1/2Y D1/2 ∈ Rm×n and using W T = W as well as DT = D we infer from (1.36)
that the solution {ui}`i=1 to (P̂n,`W ) is given by the symmetric m ×m eigenvalue problem

Ȳ Ȳ T ūi = λi ūi , 1 ≤ i ≤ ` and 〈ūi , ūj〉Rm = δi j , 1 ≤ i , j ≤ `.

Note that
Ȳ T Ȳ = D1/2Y TWY D1/2 ∈ Rn×n.

Thus, the POD basis of rank ` can also be computed by the methods of snapshots as follows: First
solve the symmetric n × n eigenvalue problem

Ȳ T Ȳ v̄i = λi v̄i , 1 ≤ i ≤ ` and 〈v̄i , v̄j〉Rn = δi j , 1 ≤ i , j ≤ `.

Then we set (by SVD)

ui = W−1/2ūi =
1√
λi
W−1/2Ȳ v̄i =

1√
λi
Y D1/2v̄i , 1 ≤ i ≤ `;

compare (1.28).
Note that

〈ui , uj〉W = uTi Wuj =
1√
λiλj

v̄Ti D
1/2Y TWY D1/2︸ ︷︷ ︸

=Ȳ T Ȳ

v̄j =
λi√
λiλj

v̄Ti v̄j =
λiδi j√
λiλj

for 1 ≤ i , j ≤ `, i.e., the POD basis vectors u1, . . . , u` are orthonormal in Rm with respect to the
inner product 〈· , ·〉W .
Of course, the snapshot ensemble {yj}nj=1 for (P̂

n,`
W ) and therefore the snapshot set span {y1, . . . , yn}

depend on the chosen time instances {tj}nj=1. Consequently, the POD basis vectors {ui}`i=1 and
the corresponding eigenvalues {λi}`i=1 depend also on the time instances, i.e.,

ui = uni and λi = λni , 1 ≤ i ≤ `.

Moreover, we have not discussed so far what is the motivation to introduce the non-negative
weights {αj}nj=1 in (P̂n,`W ). For this reason we proceed by investigating the following two questions:

- How to choose good time instances for the snapshots?
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- What are appropriate non-negative weights {αj}nj=1?
To address these two questions we will introduce a continuous version of POD. Let y : [0, T ]→ Rm
be the unique solution to (1.30). If we are interested to find a POD basis of rank ` that describes
the whole trajectory {y(t) | t ∈ [0, T ]} ⊂ Rm as good as possible we have to consider the following
minimization problem

min
ũ1,...,ũ`∈Rm

∫ T

0

∥∥∥y(t)−
∑̀
i=1

〈y(t), ũi〉W ũi
∥∥∥2

W
dt

s.t. 〈ũi , ũj〉W = δi j , 1 ≤ i , j ≤ `,

(P̂`W )

To solve (P̂`W ) we use similar arguments as in Sections 1.1 and 1.2. For ` = 1 we obtain instead
of (P̂`W ) the minimization problem

min
ũ∈Rm

∫ T

0

∥∥∥y(t)− 〈y(t), ũ〉W ũ
∥∥∥2

W
dt s.t. ‖ũ‖2

W = 1, (1.37)

Suppose that {ũi}mi=2 are chosen in such a way that {ũ, ũ2, . . . , ũm} is an orthonormal basis in Rm
with respect to the inner product 〈· , ·〉W . Then we have

y(t) = 〈y(t), ũ〉W ũ +

m∑
i=2

〈y(t), ũi〉W ũi for all t ∈ [0, T ].

Thus, ∫ T

0

∥∥∥y(t)− 〈y(t), ũ〉W ũ
∥∥∥2

W
dt =

∫ T

0

∥∥∥ m∑
i=2

〈y(t), ũ〉W ũi
∥∥∥2

W
dt

=

m∑
i=2

∫ T

0

∣∣〈y(t), ũi〉W
∣∣2 dt

we conclude that (1.37) is equivalent with the following maximization problem

max
ũ∈Rm

∫ T

0

∣∣〈y(t), ũ〉W
∣∣2 dt s.t. ‖ũ‖2

W = 1. (1.38)

The Lagrange functional L : Rm × R→ R associated with (1.38) is given by

L(u, λ) =

∫ T

0

∣∣〈y(t), u〉W
∣∣2 dt + λ

(
1− ‖u‖2

W

)
for (u, λ) ∈ Rm × R.

First-order necessary optimality conditions are given by

∇L(u, λ)
!

= 0 in Rm × R.

Therefore, we compute the partial derivative of L with respect to the ith component ui of the
vector u:

∂L
∂ui

(u, λ) =
∂

∂ui

(∫ T

0

∣∣∣ m∑
k=1

m∑
ν=1

yk(t)Wkνuν

∣∣∣2 dt + λ
(

1−
m∑
k=1

m∑
ν=1

ukWkνuν

))

= 2

∫ T

0

( m∑
k=1

m∑
ν=1

yk(t)Wkνuν

) m∑
µ=1

yµ(t)Wµi dt − 2λ

m∑
k=1

Wikuk

= 2

(∫ T

0

〈y(t), u〉WWy(t) dt − λWu
)
i
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for i ∈ {1, . . . , m}. Thus,

∇uL(u, λ) = 2

(∫ T

0

〈y(t), u〉WWy(t) dt − λWu
)

!
= 0 in Rm,

which gives ∫ T

0

〈y(t), u〉WWy(t) dt = λWu in Rm. (1.39)

Multiplying (1.39) by W−1 from the left yields∫ T

0

〈y(t), u〉W y(t) dt = λu in Rm. (1.40)

We define the operator R : Rm → Rm as

Ru =

∫ T

0

〈y(t), u〉W y(t) dt for u ∈ Rm. (1.41)

Lemma 1.12. The operator R is linear and bounded (i.e., continuous). Moreover,
1) R is non-negative:

〈Ru, u〉W ≥ 0 for all u ∈ Rm.

2) R is self-adjoint (or symmetric):

〈Ru, ũ〉W = 〈u,Rũ〉W for all u, ũ ∈ Rm.

Proof. For arbitrary u, ũ ∈ Rm and α, α̃ ∈ R we have

R
(
αu + α̃ũ

)
=

∫ T

0

〈y(t), αu + α̃ũ〉W y(t) dt

=

∫ T

0

(α 〈y(t), u〉W + α̃ 〈y(t), ũ〉W ) y(t) dt

= α

∫ T

0

〈y(t), u〉W y(t) dt + α̃

∫ T

0

〈y(t), ũ〉W y(t) dt = αRu + α̃Rũ,

so that R is linear. From the Cauchy-Schwarz inequality (cf. [DR11, Satz 5.49]) we derive

‖Ru‖W ≤
∫ T

0

∥∥〈y(t), u〉W y(t)
∥∥
W

dt =

∫ T

0

∣∣〈y(t), u〉W
∣∣ ‖y(t)‖W dt

≤
∫ T

0

‖y(t)‖2
W ‖u‖W dt =

(∫ T

0

‖y(t)‖2
W dt

)
‖u‖W = ‖y‖2

L2(0,T ;Rm)‖u‖W

for an arbitrary u ∈ Rm. Since y ∈ C([0, T ];Rm) ⊂ L2(0, T ;Rm) holds, the norm ‖y‖L2(0,T ;Rm) is
bounded. Therefore, R is bounded. Since

〈Ru, u〉W =

(∫ T

0

〈y(t), u〉W y(t) dt

)T
Wu =

∫ T

0

〈y(t), u〉W y(t)TWu dt

=

∫ T

0

∣∣〈y(t), u〉W
∣∣2 dt ≥ 0

for all u ∈ Rm holds, R is non-negative. Finally, we infer from

〈Ru, ũ〉W =

∫ T

0

〈y(t), u〉W 〈y(t), ũ〉W dt =

〈∫ T

0

〈y(t), ũ〉W y(t) dt, u

〉
W

= 〈Rũ, u〉W = 〈u,Rũ〉W
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for all u, ũ ∈ Rm that R is self-adjoint. �
Utilizing the operator R we can write (1.40) as the eigenvalue problem

Ru = λu in Rm.

It follows from Lemma 1.12 that R possesses eigenvectors {ui}mi=1 and associated real eigenvalues
{λi}mi=1 such that

Rui = λiui for 1 ≤ i ≤ m and λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0. (1.42)

Note that∫ T

0

∣∣〈y(t), ui〉W
∣∣2 dt =

∫ T

0

〈
〈y(t), ui〉W y(t), ui

〉
W

dt = 〈Rui , ui〉W = λi ‖ui‖2
W = λi

for i ∈ {1, . . . , m} so that u1 solves (1.37).
Proceeding as in Sections 1.1 and 1.2 we obtain the following result.

Theorem 1.13. Let y ∈ C([0, T ];Rm) be the unique solution to (1.30). Then the POD basis of
rank ` solving the minimization problem (P̂`W ) is given by the eigenvectors {ui}`i=1 of R correspon-
ding to the ` largest eigenvalues λ1 ≥ . . . ≥ λ`.

Remark 1.14 (Methods of snapshots). Let us introduce the linear and bounded operator Y :

L2(0, T )→ Rm by

Yv =

∫ T

0

v(t)y(t) dt for v ∈ L2(0, T ).

The adjoint Y? : Rm → L2(0, T ) satisfying

〈Y?u, v〉L2(0,T ) = 〈u,Yv〉W for all (u, v) ∈ Rm × L2(0, T )

is given as
(Y?u)(t) = 〈u, y(t)〉W for u ∈ Rm and almost all t ∈ [0, T ].

Then we have

YY?u =

∫ T

0

〈u, y(t)〉W y(t) dt =

∫ T

0

〈y(t), u〉W y(t) dt = Ru

for all u ∈ Rm, i.e., R = YY∗ holds. Furthermore,

(Y?Yv)(t) =

〈∫ T

0

v(s)y(s) ds, y(t)

〉
W

=

∫ T

0

〈y(s), y(t)〉W v(s) ds =: (Kv)(t)

for all v ∈ L2(0, T ) and almost all t ∈ [0, T ]. Thus, K = Y?Y. It can be shown that the operator
K is linear, bounded, non-negative and self-adjoint. Moreover, K is compact. Therefore, the POD
basis can also be computed as follows: Solve

Kvi = λivi for 1 ≤ i ≤ `, λ1 ≥ . . . ≥ λ` > 0,

∫ T

0

vi(t)vj(t) dt = δi j (1.43)

and set

ui =
1√
λi
Yvi =

1√
λi

∫ T

0

vi(t)y(t) dt for i = 1, . . . , `.

Note that (1.43) is a symmetric eigenvalue problem in the infinite-dimensional function space
L2(0, T ). For the functional analytic theory we refer, e.g., to [RS80]. ♦
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Let us turn back to the optimality conditions (1.35). For any u ∈ Rm and i ∈ {1, . . . , m} we
derive

(
Y DY TWu

)
i

=

m∑
ν=1

m∑
j=1

m∑
k=1

αjYi jYkjWkνuν =

n∑
j=1

αjYi j 〈yj , u〉W

=

n∑
j=1

αj 〈yj , u〉W (yj)i ,

where (yj)i stands for the ith component of the vector yj ∈ Rm. Thus,

Y DY TWu =

n∑
j=1

αj 〈yj , u〉W yj =: Rnu.

Note that the operator Rn : Rm → Rm is linear and bounded. Moreover,

〈Rnu, u〉W =

〈 n∑
j=1

αj 〈yj , u〉W yj , u
〉
W

=

n∑
j=1

αj
∣∣〈yj , u〉W ∣∣2 ≥ 0

holds for all u ∈ Rm so that Rn is non-negative. Further,

〈Rnu, ũ〉W =

〈 n∑
j=1

αj 〈yj , u〉W yj , ũ
〉
W

=

n∑
j=1

αj 〈yj , u〉W 〈yj , ũ〉W

=

〈 n∑
j=1

αj 〈yj , ũ〉W yj , u
〉
W

= 〈Rnũ, u〉W = 〈u,Rnũ〉W

for all u, ũ ∈ Rm, i.e., Rn is self-adjoint. Therefore, Rn has the same properties as the operator
R. Summarizing, we have

Rnuni = λni u
n
i , λn1 ≥ . . . λn` ≥ . . . λnd(n) > λnd(n)+1 = . . . = λnm = 0, (1.44a)

Rui = λiui , λ1 ≥ . . . λ` ≥ . . . λd > λd+1 = . . . = λm = 0. (1.44b)

Let us note that ∫ T

0

‖y(t)‖2
W dt =

d∑
i=1

λi =

m∑
i=1

λi . (1.45)

In fact,

Rui =

∫ T

0

〈y(t), ui〉W y(t) dt for every i ∈ {1, . . . , m}.

Taking the inner product with ui , using (1.44b) and summing over i we arrive at

d∑
i=1

∫ T

0

∣∣〈y(t), ui〉W
∣∣2 dt =

d∑
i=1

〈Rui , ui〉W =

d∑
i=1

λi =

m∑
i=1

λi .

Expanding y(t) ∈ Rm in terms of {ui}mi=1 we have

y(t) =

m∑
i=1

〈y(t), ui〉W ui

and hence ∫ T

0

‖y(t)‖2
W dt =

m∑
i=1

∫ T

0

∣∣〈y(t), ui〉W
∣∣2 dt =

m∑
i=1

λi ,
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which is (1.45). Analogously, we obtain

n∑
j=1

αj ‖y(tj)‖2
W =

d(n)∑
i=1

λni =

m∑
i=1

λni for every n ∈ N. (1.46)

For convenience we do not indicate the dependence of αj on n. Let y ∈ C([0, T ];Rm) hold. To
ensure

n∑
j=1

αj ‖y(tj)‖2
W →

∫ T

0

‖y(t)‖2
W dt as ∆t → 0 (1.47)

we have to choose the αj ’s appropriately. Here we take the trapezoidal weights

α1 =
∆t

2
, αj = ∆t for 2 ≤ j ≤ n − 1, αn =

∆t

2
. (1.48)

Suppose that we have

lim
n→∞

‖Rn −R‖L(Rm) = lim
n→∞

sup
‖u‖W=1

‖Rnu −Ru‖W = 0 (1.49)

provided y ∈ C1([0, T ];Rm) is satisfied. In (1.49) L(Rm) denotes the Banach space of all linear
and bounded operators mapping from Rm into itself. Combining (1.47) with (1.45) and (1.46) we
find

m∑
i=1

λni →
m∑
i=1

λi as n →∞. (1.50)

Now choose and fix
` such that λ` 6= λ`+1. (1.51)

Then by spectral analysis of compact operators ([Ka80, pp. 212–214]) and (1.49) it follows that

λni → λi for 1 ≤ i ≤ ` as n →∞. (1.52)

Combining (1.50) and (1.52) there exists n̄ ∈ N such that

m∑
i=`+1

λni ≤ 2

m∑
i=`+1

λi for all n ≥ n̄, (1.53)

if
∑m
i=`+1 λi 6= 0. Moreover, for ` as above, n̄ can also be chosen such that

d(n)∑
i=`+1

∣∣〈y0, u
n
i 〉W

∣∣2 ≤ 2

m∑
i=`+1

∣∣〈y0, ui〉W
∣∣2 for all n ≥ n̄, (1.54)

provided that
∑m
i=`+1 |〈y0, ui〉W |2 6= 0 (1.49) hold. Recall that the vector y0 ∈ Rm stands for the

initial condition in (1.30b). Then we have

‖y0‖2
W =

m∑
i=1

∣∣〈y0, ui〉W
∣∣2. (1.55)

If t1 = 0 holds, we have y0 ∈ span {yj}nj=1 for every n and

‖y0‖2
W =

d(n)∑
i=1

∣∣〈y0, u
n
i 〉W

∣∣2. (1.56)
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Therefore, for ` < d(n) by (1.55) and (1.56)

d(n)∑
i=`+1

∣∣〈y0, u
n
i 〉W

∣∣2 =

d(n)∑
i=1

∣∣〈y0, u
n
i 〉W

∣∣2 − ∑̀
i=1

∣∣〈y0, u
n
i 〉W

∣∣2 +
∑̀
i=1

∣∣〈y0, ui〉W
∣∣2

+

m∑
i=`+1

∣∣〈y0, ui〉W
∣∣2 − m∑

i=1

∣∣〈y0, ui〉W
∣∣2

=
∑̀
i=1

(∣∣〈y0, ui〉W
∣∣2 − ∣∣〈y0, u

n
i 〉W

∣∣2)+

m∑
i=`+1

∣∣〈y0, ui〉W
∣∣2.

As a consequence of (1.49) and (1.51) we have limn→∞ ‖uni −ui‖W = 0 for i = 1, . . . , ` and hence
(1.54) follows.
Summarizing we have the following theorem.

Theorem 1.15. Assume that y ∈ C1([0, T ];Rm) is the unique solution to (1.30). Let {(uni , λni )}mi=1

and {(ui , λi)}mi=1 be the eigenvector-eigenvalue pairs given by (1.44). Suppose that ` ∈ {1, . . . , m}
is fixed such that (1.51) and

m∑
i=`+1

λi 6= 0,

m∑
i=`+1

∣∣〈y0, ui〉W
∣∣2 6= 0

hold. Then we have
lim
n→∞

‖Rn −R‖L(Rm) = 0. (1.57)

This implies

lim
n→∞

∣∣λni − λi ∣∣ = lim
n→∞

‖uni − ui‖W = 0 for 1 ≤ i ≤ `,

lim
n→∞

m∑
i=`+1

(
λni − λi

)
= 0 and lim

n→∞

m∑
i=`+1

∣∣〈y0, u
n
i 〉W

∣∣2 =

m∑
i=`+1

∣∣〈y0, ui〉W
∣∣2.

Proof. We only have to verify (1.57). For that purpose we choose an arbitrary u ∈ Rm with
‖u‖W = 1 and introduce fu : [0, T ]→ Rm by

fu(t) = 〈y(t), u〉W y(t) for t ∈ [0, T ].

Then, we have fu ∈ C1([0, T ];Rm) with

ḟu(t) = 〈ẏ(t), u〉W y(t) + 〈y(t), u〉W ẏ(t) for t ∈ [0, T ]

By Taylor expansion there exist τj1(t), τj2(t) ∈ [tj , tj+1] depending on t∫ tj+1

tj

fu(t) dt =
1

2

∫ tj+1

tj

fu(tj) + ḟu(τj1(t))(t − tj) dt

+
1

2

∫ tj+1

tj

fu(tj+1) + ḟu(τj2(t))(t − tj+1) dt

=
∆t

2

(
fu(tj) + fu(tj+1)

)
+

1

2

∫ tj+1

tj

ḟu(τj1(t))(t − tj) dt

+
1

2

∫ tj+1

tj

ḟu(τj2(t))(t − tj+1) dt.
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Hence,

∥∥Rnu −Ru∥∥
W

=

∥∥∥∥∥
n∑
j=1

αj fu(tj)−
∫ T

0

fu(t) dt

∥∥∥∥∥
W

=

∥∥∥∥∥
n−1∑
j=1

(
∆t

2

(
fu(tj) + fu(tj+1)

)
−
∫ tj+1

tj

fu(t) dt

)∥∥∥∥∥
W

≤
1

2

n−1∑
j=1

∫ tj+1

tj

∥∥ḟu(τj1(t))
∥∥
W

∣∣t − tj ∣∣+
∥∥ḟu(τj2(t))

∥∥
W

∣∣t − tj+1

∣∣ dt

≤
1

2
max
t∈[0,T ]

∥∥ḟu(t)
∥∥
W

n−1∑
j=1

(
(t − tj)2

2
−

(tj+1 − t)2

2

∣∣∣∣t=tj+1

t=tj

)

=
∆t

2
max
t∈[0,T ]

∥∥ḟu(t)
∥∥
W

n−1∑
j=1

∆t =
∆t T

2
max
t∈[0,T ]

∥∥ḟu(t)
∥∥
W

≤
∆t T

2
max
t∈[0,T ]

∥∥ḟu(t)
∥∥
W

=
∆t T

2
max
t∈[0,T ]

∥∥〈ẏ(t), u〉W y(t) + 〈y(t), u〉W ẏ(t)
∥∥
W

= ∆t T max
t∈[0,T ]

‖ẏ(t)‖W ‖y(t)‖W ≤ ∆t T ‖y‖2
C1([0,T ];Rm).

Consequently,

‖Rn −R‖L(Rm) = sup
‖u‖W=1

‖Rnu −Ru‖W ≤ 2∆t ‖y‖2
C1([0,T ];Rm)

∆t→0−→ 0

which is (1.57). �

1.4 Exercises

1.1) Show that any optimal solution to (P`) is a regular point.

1.2) Verify the claim in Theorem 1.2 that argmax (P`) =
∑`
i=1 σ

2
i holds true.

1.3) Show that the Frobenius norm is a matrix norm and that

‖AB‖F ≤ ‖A‖F ‖B‖F for any A, B ∈ Rn×n

is valid. Suppose that Ud ∈ Rm×d is a matrix with pairwise orthonormal vectors ui ∈ Rm,
1 ≤ i ≤ d . Prove that

‖UA‖F = ‖A‖F for any matrix A ∈ Rd×n.

1.4) Suppose that W ∈ Rm×m is symmetric and positive definite. Let η1 ≥ . . . ≥ ηm > 0 denote
the eigenvalues of W and Wα = Qdiag (ηα1 , . . . , η

α
m)QT be the eigenvalue decomposition of

W . We define
Wα = Qdiag (ηα1 , . . . , η

α
m)QT for α ∈ R.

Show that (Wα)−1 exists and (Wα)−1 = W−α. Prove that Wα+β = WαW β holds for
α, β ∈ R.

1.5) Verify the claims of Theorem 1.9.

1.5.1) Prove that ui = W−1/2ūi , 1 ≤ i ≤ `, solves (P`W ), where the matrix W and the
vectors ū1, . . . , ūm are introduced in Theorem 1.9.
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1.5.2) Show that (1.29) holds.

1.6) Prove that u1 given by (1.42) is a global solution to (1.37).

1.7) Verify (1.46).
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2 Reduced-order modeling (ROM)

In Chapter 1 we have introduced the POD basis of rank ` in Rm and discussed its application
to initial-value problems. If the POD basis is computed, it can be used to derive a so-called low-
dimensional approximation or a reduced-order model for (1.30). This is the focus of this section.

2.1 ROM for time-dependent systems

Suppose that we have determined a POD basis {uj}`j=1 of rank ` ∈ {1, . . . , m} in Rm. Then we
make the ansatz

y `(t) =
∑̀
j=1

〈y `(t), uj〉W︸ ︷︷ ︸
=:y`j (t)

uj for all t ∈ [0, T ], (2.1)

where the Fourier coefficients y`j , 1 ≤ j ≤ `, are functions mapping [0, T ] into R. Since

y(t) =

m∑
j=1

〈y(t), uj〉W uj for all t ∈ [0, T ]

holds, y `(t) is an approximation for y(t) provided ` < m. Inserting (2.1) into (1.30) yields

∑̀
j=1

ẏ`j (t)uj =
∑̀
j=1

y`j (t)Auj + f (t, y `(t)), t ∈ (0, T ], (2.2a)

∑̀
j=1

y`j (0)uj = y0 (2.2b)

Note that (2.2) is an initial-value problem in Rm for ` ≤ m coefficient functions y`j (t), 1 ≤ j ≤ `
and t ∈ [0, T ], so that the coefficients are overdetermined. Therefore, we assume that (2.2) holds
after projection on the ` dimensional subspace V ` = span {uj}`j=1. From (2.2a) and 〈uj , ui〉W = δi j
we infer that

ẏ`i (t) =
∑̀
j=1

y`j (t) 〈Auj , ui〉W + 〈f (t, y `(t)), ui〉W (2.3)

for 1 ≤ i ≤ ` and t ∈ (0, T ]. Let us introduce the matrix

A = ((ai j
))
∈ R`×` with ai j = 〈Auj , ui〉W ,

the vector-valued mapping

y` =

 y
`
1
...
y``

 : [0, T ]→ R`

and the non-linearity F = (F1, . . . ,F`)
T : [0, T ]× R` → R` by

Fi(t, y) =

〈
f

(
t,
∑̀
j=1

yjuj

)
, ui

〉
W

for t ∈ [0, T ] and y = (y1, . . . , y`) ∈ R`.
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Then, (2.3) can be expressed as

ẏ`(t) = Ay`(t) + F(t, y`(t)) for t ∈ (0, T ] (2.4a)

From (2.2b) we derive
y`(0) = y0, (2.4b)

where

y0 =

 〈y0, u1〉W
...

〈y0, u`〉W

 ∈ R`
holds. System (2.4) is called the POD-Galerkin projection for (1.30). In case of ` � m the
`-dimensional system (2.4) is a low-dimensional approximation for (1.30). Therefore, (2.4) is a
reduced-order model for (1.30).

2.2 Error analysis for the reduced-order model

In this section we focus on error analysis for POD Galerkin approximations. For a more detailed
presentation we refer the reader to [KV01, KV02a, KV02b] and [KV07].

Let us suppose that y ∈ C([0, T ];Rm) ∩ C1(0, T ;Rm) is the unique solution to (1.30) and
{ui}`i=1 the POD basis of rank ` solving

min

∫ T

0

∥∥∥y(t)−
∑̀
i=1

〈y(t), ui〉W ui
∥∥∥2

W
dt s.t. 〈uj , ui〉W = δi j , 1 ≤ i , j ≤ `. (2.5)

The reduced-order model for (1.30) is given by (2.4). We are interested in estimating the error∫ T

0

‖y(t)− y `(t)‖2

W dt.

Let us introduce the finite-dimensional space

V ` = span {u1, . . . , u`} ⊂ Rm

and the projection P` : Rm → V ` by

P`u =
∑̀
i=1

〈u, ui〉W ui for u ∈ Rm.

Then,

P`
(
αu + α̃ũ

)
=
∑̀
i=1

〈αu + α̃ũ, ui〉W ui =
∑̀
i=1

(
α 〈u, ui〉W + α̃ 〈ũ, ui〉W

)
ui

= αP`u + α̃P`ũ

for all α, α̃ ∈ R and u, ũ ∈ Rm so that P` is linear. Further,

‖P`‖2
L(Rm) = sup

‖u‖W=1
‖P`u‖2

W = sup
‖u‖W=1

∑̀
i=1

∣∣〈u, ui〉W ∣∣2
≤ sup
‖u‖W=1

m∑
i=1

∣∣〈u, ui〉W ∣∣2 = sup
‖u‖W=1

‖u‖2
W = 1,

(2.6)
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i.e., P` is bounded and therefore continuous. In particular, (2.6) and ‖P`u‖W = ‖u‖W for any
u ∈ V ` imply ‖P`‖L(Rm) = 1.
Throughout we shall use the decomposition

y(t)− y `(t) = y(t)− P`y(t) + P`y(t)− y `(t) = %`(t) + ϑ`(t), (2.7)

where %`(t) = y(t)− P`y(t) and ϑ`(t) = P`y(t)− y `(t). Note that∫ T

0

∥∥∥y(t)−
∑̀
i=1

〈y(t), ui〉W ui
∥∥∥2

W
dt =

∫ T

0

‖y(t)− P`y(t)‖2

W dt =

∫ T

0

‖%`(t)‖2

W dt.

Since {ui}`i=1 is a POD basis of rank ` we have∫ T

0

‖%`(t)‖2

W dt =

m∑
i=`+1

λi . (2.8)

Next we estimate the term ϑ`(t). Utilizing (1.30a) and (2.4) we obtain for every u` ∈ V ` and
t ∈ (0, T ]

〈ϑ̇`(t), u`〉W = 〈P`ẏ(t)− ẏ(t), u`〉W + 〈ẏ(t)− ẏ `(t), u`〉W
= 〈P`ẏ(t)− ẏ(t), u`〉W

+〈A(y(t)− y `(t)) + f (t, y(t))− f (t, y `(t)), u`〉W

(2.9)

We choose u` = ϑ`(t) ∈ V `. Let
‖A‖ = max

‖u‖W=1
‖Au‖W

the matrix norm induced by the vector norm ‖ · ‖W . Further,

1

2

d

dt
‖ϑ`(t)‖2

W = 〈ϑ̇`(t), ϑ`(t)〉W for every t ∈ (0, T ].

holds. Then, we infer from (2.9)

1

2

d

dt
‖ϑ`(t)‖2

W ≤ ‖A‖
(
‖%`(t)‖W + ‖ϑ`(t)‖W

)
‖ϑ`(t)‖W

+‖f (t, y(t))− f (t, y `(t))‖W ‖ϑ`(t)‖W
+‖P`ẏ(t)− ẏ(t)‖W ‖ϑ`(t)‖W .

(2.10)

Suppose that f is Lipschitz-continuous with respect to the second argument, i.e., there exists a
constant Lf ≥ 0 satisfying

‖f (t, u)− f (t, ũ)‖W ≤ Lf ‖u − ũ‖W for all u, ũ ∈ Rm and t ∈ [0, T ].

Moreover, we have

‖P`ẏ(t)− ẏ(t)‖2

W =

∥∥∥∥ m∑
i=`+1

〈ẏ(t), ui〉W ui
∥∥∥∥2

W

=

m∑
i=`+1

∣∣〈ẏ(t), ui〉W
∣∣2
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for all t ∈ (0, T ). Consequently, (2.10) and (2.7) imply

1

2

d

dt
‖ϑ`(t)‖2

W ≤
‖A‖

2

(
‖%`(t)‖2

W + ‖ϑ`(t)‖2

W

)
+ ‖A‖ ‖ϑ`(t)‖2

W

+ Lf ‖%`(t) + ϑ`(t)‖W ‖ϑ`(t)‖W

+
1

2

(
‖P`ẏ(t)− ẏ(t)‖2

W + ‖ϑ`(t)‖2

W

)
≤
‖A‖

2
‖%`(t)‖2

W +

(
3

2

(
‖A‖+ Lf

)
+

1

2

)
‖ϑ`(t)‖2

W

+ Lf ‖%`(t)‖W ‖ϑ`(t)‖W +

m∑
i=`+1

∣∣〈ẏ(t), ui〉W
∣∣2

≤
‖A‖+ Lf

2
‖%`(t)‖2

W +

(
3

2

(
‖A‖+ Lf

)
+

1

2

)
‖ϑ`(t)‖2

W

+

m∑
i=`+1

∣∣〈ẏ(t), ui〉W
∣∣2.

Consequently,

d

dt
‖ϑ`(t)‖2

W ≤
(

3
(
‖A‖+ Lf

)
+ 1
)
‖ϑ`(t)‖2

W +
(
‖A‖+ Lf

)
‖%`(t)‖2

W

+

m∑
i=`+1

∣∣〈ẏ(t), ui〉W
∣∣2.

Using Gronwall’s lemma (see Exercise 2.1)) and (2.8) we arrive at

‖ϑ`(t)‖2
W ≤ c1

(
‖ϑ`(0)‖2

W +
(
‖A‖+ Lf

) ∫ t

0

‖%`(s)‖2

W ds

)
+c1

m∑
i=`+1

∫ t

0

∣∣〈ẏ(s), ui〉W
∣∣2 ds

≤ c2

(
‖ϑ`(0)‖2

W +

m∑
i=`+1

(
λi +

∫ T

0

∣∣〈ẏ(t), ui〉W
∣∣2 dt

)) (2.11)

where c1 = exp(3(‖A‖+ Lf ) + 1)T ) and c2 = c1 max{‖A‖+ Lf , 1}.

Theorem 2.1. Let y ∈ C([0, T ];Rm) ∩ C1(0, T ;Rm) be the unique solution to (1.30), ` ∈
{1, . . . , m} be fixed and {ui}`i=1 a POD basis of rank ` solving (2.5). Let y ` be the unique solution
to the reduced-order model (2.4). Then∫ T

0

‖y(t)− y `(t)‖2

W dt ≤ C
m∑

i=`+1

(
λi +

∫ T

0

∣∣〈ẏ(t), ui〉W
∣∣2 dt

)
for a constant C > 0.

Proof. From (2.8), (2.11) and ϑ`(0) = P`y0 − y `(0) = 0 we find∫ T

0

‖y(t)− y `(t)‖2

W dt =

∫ T

0

‖%`(t) + ϑ`(t)‖2

W dt

≤ 2

∫ T

0

‖%`(t)‖2

W + ‖ϑ`(t)‖2

W dt

≤ 2

m∑
i=`+1

λi + c3

m∑
i=`+1

(
λi +

∫ T

0

∣∣〈ẏ(t), ui〉W
∣∣2 dt

)
with c3 = 2c2. Setting C = 2 + c3 the claim follows directly. �
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Remark 2.2. The term
m∑

i=`+1

∫ T

0

∣∣〈ẏ(t), ui〉W
∣∣2 dt

can not be estimated by the sum over the eigenvalues λ`+1, . . . , λm. If we replace (2.5) by

min

∫ T

0

∥∥∥y(t)−
∑̀
i=1

〈y(t), ui〉W ui
∥∥∥2

W
+
∥∥∥ẏ(t)−

∑̀
i=1

〈ẏ(t), ui〉W ui
∥∥∥2

W
dt (2.12a)

subject to
〈uj , ui〉W = δi j for 1 ≤ i , j ≤ `, (2.12b)

we end up with the estimate ∫ T

0

‖y(t)− y `(t)‖2

W dt ≤ C̃
m∑

i=`+1

λ̃i

for a constant C̃ > 0. In this case the time derivatives are also included in the snapshot ensemble.
Of course, the operator R defined in (1.41) has to be replaced. It turns out that the POD basis
{ui}`i=1 is given by the eigenvalue problem

R̃ũi = λ̃i ũi for 1 ≤ i ≤ m and λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃m ≥ 0 (2.13)

where the operator R̃ : Rm → Rm is defined by

R̃u =

∫ T

0

〈y(t), u〉W y(t) + 〈ẏ(t), u〉W ẏ(t) dt

for u ∈ Rm. ♦

Remark 2.3. Suppose that we build the matrix Y ∈ Rm×(2n) using the column vectors yj ≈ y(tj),
1 ≤ j ≤ n, and yj ≈ ẏ(tj−n), n + 1 ≤ j ≤ 2n. Then, the discrete variant R̃n of the operator R̃
introduced in Remark 2.2 is given by

R̃nu =

n∑
j=1

αj 〈yj , u〉W yj + αj 〈yn+j , u〉W yn+j

=

n∑
j=1

αj

(( m∑
k=1

m∑
ν=1

YkjWkνuν

)
Y·,j +

( m∑
k=1

m∑
ν=1

Yk,n+jWkνuν

)
Y·,m+j

)

=

n∑
j=1

m∑
k=1

m∑
ν=1

((
Y·,jDj jY

T
jk + Y·,m+jDj jY

T
m+j,k

)
Wkνuν

)

= Y

(
D 0

0 D

)
︸ ︷︷ ︸
=:D̃∈R2n×2n

Y TWu = Y D̃Y TWu

with non-negative weights introduced in (P̂n,`W ) and the diagonal matrix D = diag (α1, . . . , αn) ∈
Rn×n. Thus, we have R̃ = Y D̃Y TW ∈ Rm×m, which is of the same form as in (1.35). The discrete
version to (2.13) is

Y D̃Y TWũi = λ̃i ũi for 1 ≤ i ≤ m and λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃m ≥ 0 (2.14)

Setting ũi = W−1/2ūi in (2.14) and multiplying by W 1/2 from the left yield

W 1/2Y D̃Y TW 1/2ūi = λi ūi . (2.15)
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Let Ȳ = W 1/2Y D̃1/2 ∈ Rm×2n. Using W T = W as well as D̃T = D̃ we infer from (2.15) that the
solution {ũi}`i=1 is given by the symmetric m ×m eigenvalue problem

Ȳ Ȳ T ūi = λi ūi , 1 ≤ i ≤ ` and 〈ūi , ūj〉Rm = δi j , 1 ≤ i , j ≤ `

and ũi = W−1/2ūi . Note that

Ȳ T Ȳ = D̃1/2Y TWY D̃1/2 ∈ R2n×2n.

Thus, the POD basis of rank ` can also be computed by the methods of snapshots as follows: First
solve the symmetric 2n × 2n eigenvalue problem

Ȳ T Ȳ v̄i = λi v̄i , 1 ≤ i ≤ ` and 〈v̄i , v̄j〉R2n = δi j , 1 ≤ i , j ≤ `.

Then we set (by SVD)

ũi = W−1/2ūi =
1√
λi
W−1/2Ȳ v̄i =

1√
λi
Y D̃1/2v̄i

for 1 ≤ i ≤ `. ♦

From a practical point of view we do not have the information on the whole trajectory in [0, T ].
Therefore, let ∆t = T/(n − 1) be a fixed time step size and tj = (j − 1)∆t for 1 ≤ j ≤ n a
given time grid in [0, T ]. To simplify the presentation we choose an equidistant grid. Of course,
non-equidistant meshes can be treated analogously [KV02a]. We compute a POD basis {uni }`i=1

of rank ` by solving the constrained minimization problem (P̂n,`W ). After the POD basis has been
determined, we derive the reduced-order model as described in Section 2.2. Thus,

y `(t) =
∑̀
i=1

y`j (t)u
n
i , t ∈ [0, T ],

solves the POD Galerkin projection of (1.30)

〈ẏ `(t), uni 〉W = 〈Ay `(t) + f (t, y `(t)), uni 〉W for i = 1 . . . , ` and t ∈ (0, T ], (2.16a)

〈y `(0), uni 〉W = 〈y0, u
n
i 〉W for i = 1 . . . , `. (2.16b)

To solve (2.16) we apply the implicit Euler method. By Yj we denote an approximation for y ` at the
time tj , 1 ≤ j ≤ n. Then, the discrete system for the sequence {Yj}nj=1 in V `n = span {un1 , . . . , un` }
looks like〈

Yj − Yj−1

∆t
, uni

〉
W

= 〈AYj + f (t, Yj), u
n
i 〉W for i = 1 . . . , `, 2 ≤ j ≤ n, (2.17a)

〈Y1, u
n
i 〉W = 〈y0, u

n
i 〉W for i = 1 . . . , `. (2.17b)

We are interested in estimating
n∑
j=1

αj ‖y(tj)− Yj‖2
W .

Let us introduce the projection P`n : Rm → V `n by

P`n =
∑̀
i=1

〈u, uni 〉W u
n
i for u ∈ Rm. (2.18)

It follows that P`n is linear and bounded (and therefore continuous). In particular, ‖P`n‖L(Rm) = 1.
We shall make use of the decomposition

y(tj)− Yj = y(tj)− P`ny(tj) + P`ny(tj)− Yj = %`j + ϑ`j ,
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where %`j = y(tj)− P`ny(tj) and ϑ`j = P`ny(tj)− Yj . Note that

n∑
j=1

αj

∥∥∥y(tj)−
∑̀
i=1

〈y(tj), u
n
i 〉W u

n
i

∥∥∥2

W
=

n∑
j=1

αj ‖y(tj)− P`ny(tj)‖
2

W =

n∑
j=1

αj ‖%`j ‖
2

W
.

Since {uni }`i=1 is the POD basis of rank `, we have

n∑
j=1

αj ‖%`j ‖
2

W
=

m∑
i=`+1

λni . (2.19)

Next we estimate the terms ϑ`j . Using the notation ∂ϑ`j = (ϑ`j −ϑ`j−1)/∆t for 2 ≤ j ≤ n we obtain
by (1.30a) and (2.17a)

〈∂ϑ`j , uni 〉 =

〈
P`n
(
y(tj)− y(tj−1)

∆t

)
−
Yj − Yj−1

∆t
, uni

〉
W

= 〈ẏ(tj)− (AYj + f (tj , Yj))), uni 〉W

+

〈
P`n
(
y(tj)− y(tj−1)

∆t

)
− ẏ(tj), u

n
i

〉
W

= 〈A(y(tj)− Yj) + f (tj , y(tj))− f (tj , Yj), u
n
i 〉W (2.20)

+

〈
P`n
(
y(tj)− y(tj−1)

∆t

)
−
y(tj)− y(tj−1)

∆t
, uni

〉
W

+

〈
y(tj)− y(tj−1)

∆t
− ẏ(tj), u

n
i

〉
W

= 〈A(y(tj)− Yj) + f (tj , y(tj))− f (tj , Yj) + z `j + w `j , u
n
i 〉W

for 1 ≤ i ≤ ` and 2 ≤ j ≤ n, where

z `j = P`n
(
y(tj)− y(tj−1)

∆t

)
−
y(tj)− y(tj−1)

∆t
, w `j =

y(tj)− y(tj−1)

∆t
− ẏ(tj).

Multiplying (2.20) by 〈ϑ`j , uni 〉W and adding all ` equations we arrive at

〈∂ϑ`j , ϑ`j 〉 = 〈A(y(tj)− Yj) + f (tj , y(tj))− f (tj , Yj) + z `j + w `j , ϑ
`
j 〉W (2.21)

for j = 2, . . . , n. Note that

2 〈u − ũ, u〉W = 2 ‖u‖2
W − 2 〈ũ, u〉W = ‖u‖2

W + ‖u‖2
W − 2 〈ũ, u〉W + ‖ũ‖2

W − ‖ũ‖
2
W

= ‖u‖2
W − ‖ũ‖

2
W + ‖u − ũ‖2

W

for all u, ũ ∈ Rm. Choosing u = ϑ`j and ũ = ϑ`j−1 we infer from (2.21)

2 〈∂ϑ`j , ϑ`j 〉 =
1

∆t

(
‖ϑ`j ‖

2

W
− ‖ϑ`j−1‖

2

W
+ ‖ϑ`j − ϑ`j−1‖

2

W

)
. (2.22)

Inserting (2.22) into (2.21) and using the Cauchy-Schwarz inequality we obtain

‖ϑ`j ‖
2

W
≤ ‖ϑ`j−1‖

2

W
+ ∆t ‖A‖

(
‖%`j ‖W + ‖ϑ`j ‖W

)
‖ϑ`j ‖W

+ ∆t
(
‖f (tj , y(tj))− f (tj , Yj)‖W + ‖z `j ‖W + ‖w `j ‖W

)
‖ϑ`j ‖W .

Suppose that f is Lipschitz-continuous with respect to the second argument. Then there exists a
constant Lf ≥ 0 such that

‖f (tj , y(tj))− f (tj , Yj)‖W ≤ Lf ‖y(tj)− Yj‖W for j = 2, . . . , n.
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Hence, by Young’s inequality we find

‖ϑ`j ‖
2

W
≤ ‖ϑ`j−1‖

2

W
+ ∆t

(
c1 ‖%`j ‖

2

W
+ c2 ‖ϑ`j ‖

2

W
+ ‖z `j ‖

2

W
+ ‖w `j ‖

2

W

)
for j = 2, . . . , n,

where c1 = max{‖A‖, Lf } and c2 = max{3 ‖A‖, 3Lf , 2}. Suppose that

0 < ∆t ≤
1

2c2
(2.23)

holds. With (2.23) holding we have

0 ≤ 1− 2c2∆t < 1− c2∆t and 1− c2∆t ≥ 1−
1

2
=

1

2
.

Thus,
1

1− c2∆t
=

1− c2∆t + c2∆t

1− c2∆t
= 1 +

c2∆t

1− c2∆t
. ≤ 1 + 2c2∆t (2.24)

Using (2.24) we infer that

‖ϑ`j ‖
2

W
≤ (1 + 2c2∆t)

(
‖ϑ`j−1‖

2

W
+ ∆t

(
‖z `j ‖

2

W
+ ‖w `j ‖

2

W
+ c1 ‖%`j ‖

2

W

))
for j = 2, . . . , n.

Summation on j yields

‖ϑ`j ‖
2

W
≤ (1 + 2c2∆t)j−1

(
‖ϑ`1‖

2

W + ∆t

j∑
k=2

(
‖z `k‖

2

W + ‖w `k‖
2

W + c1 ‖%`k‖
2

W

))
for j = 2, . . . , n.

Note that

(1 + 2c2∆t)j−1 =

(
1 +

2c2(j − 1)∆t

j − 1

)j−1

≤ e2c2(j−1)∆t for j = 2, . . . , n.

Thus,

‖ϑ`j ‖
2

W
≤ e2c2(j−1)∆t

(
‖ϑ`1‖

2

W + ∆t

j∑
k=2

(
‖z `k‖

2

W + ‖w `k‖
2

W + c1 ‖%`k‖
2

W

))
for j = 2, . . . , n.

We next estimate the term involving w `k :

∆t

j∑
k=2

‖w `k‖
2

W = ∆t

j∑
k=1

∥∥∥∥y(tk)− y(tk−1)

∆t
− ẏ(tk)

∥∥∥∥2

W

=
1

∆t

j∑
k=2

‖y(tk)− y(tk−1)− ∆tẏ(tk)‖2
W

=
1

∆t

j∑
k=2

∥∥∥∥∫ tk

tk−1

(tk−1 − s)ÿ(s) ds

∥∥∥∥2

W

≤
1

∆t

j∑
k=2

(∫ tk

tk−1

|tk−1 − s|2 ds

∫ tk

tk−1

‖ÿ(s)‖2
W ds

)

≤
(∆t)2

3

j∑
k=2

‖ÿ‖2
L2(tk−1,tk ;Rm) =

(∆t)2

3
‖ÿ‖2

L2(0,tj ;Rm)
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for j = 2, . . . , n. The term z `k can be estimated as follows:

‖z `k‖
2

W =

∥∥∥∥P`n(y(tk)− y(tk−1)

∆t

)
−
y(tk)− y(tk−1)

∆t

∥∥∥∥2

W

=

∥∥∥∥P`n(y(tk)− y(tk−1)

∆t

)
− P`nẏ(tk) + P`nẏ(tk)−

y(tk)− y(tk−1)

∆t

∥∥∥∥2

W

≤ 2 ‖P`n‖
2

L(Rm)

∥∥∥∥y(tk)− y(tk−1)

∆t
− ẏ(tk)

∥∥∥∥2

W

+ 2

∥∥∥∥P`nẏ(tk)− ẏ(tk) + ẏ(tk)−
y(tk)− y(tk−1)

∆t

∥∥∥∥2

W

≤ 2 ‖w `k‖
2

W + 4 ‖P`nẏ(tk)− ẏ(tk)‖2

W + 4

∥∥∥∥ẏ(tk)−
y(tk)− y(tk−1)

∆t

∥∥∥∥2

W

= 4 ‖P`nẏ(tk)− ẏ(tk)‖2

W + 6 ‖w `k‖
2

W .

Recall that ∆t ≤ 2αk for 1 ≤ k ≤ n. Hence,

∆t

j∑
k=2

‖z `k‖
2

W ≤ 8

n∑
k=1

αk ‖P`nẏ(tk)− ẏ(tk)‖2

W + 2(∆t)2 ‖ÿ‖2
L2(0,tj ;Rm) for j = 2, . . . , n.

Further, ϑ`1 = P`ny1 − Y1 = 0 and 0 ≤ (j − 1)∆t ≤ T for j = 2, . . . , n. Summarizing

‖ϑ`j ‖
2

W
≤ c3

( n∑
k=1

8αk

(
‖P`nẏ(tk)− ẏ(tk)‖2

W + 2c1 ‖%`k‖
2

W

)
+

7

3
(∆t)2 ‖ÿ‖2

L2(0,tj ;Rm)

)
,

where c3 = e2c2T max{7/3, 2c1, 8} is independent of ` and {tj}nj=1. From
∑n
k=1 αk = T and (2.19)

we infer
n∑
j=1

αj ‖ϑ`j ‖
2

W
≤ c3T

( n∑
j=1

αj

(
‖P`nẏ(tj)− ẏ(tj)‖

2

W + ‖%`j ‖
2

W

)
+(∆t)2 ‖ÿ‖2

L2(0,T ;Rm)

)
≤ c4

(
m∑

i=`+1

(
λni +

n∑
j=1

αj
∣∣〈ẏ(tj), u

n
i 〉W

∣∣2)+ (∆t)2

) (2.25)

with c4 = c3T max{1, ‖ÿ‖2
L2(0,T ;Rm)

}.

Theorem 2.4. Let y ∈ C([0, T ];Rm) ∩ C1(0, T ;Rm) be the unique solution to (1.30) satisfying
ÿ ∈ L2(0, T ;Rm) and ` ∈ {1, . . . , m} be fixed. Suppose that {uni }`i=1 is a POD basis of rank
` solving (P̂n,`W ). Assume that (2.17) possesses a unique solution {Yj}nj=1. Then there exists a
constant C > 0 such that

n∑
j=1

αj ‖y(tj)− Yj‖2
W ≤ C

(
(∆t)2 +

m∑
i=`+1

(
λni +

n∑
j=1

αj
∣∣〈ẏ(tj), u

n
i 〉W

∣∣2))
provided ∆t is sufficiently small and f is Lipschitz-continuous with respect to the second argument.

Proof. The claim follows directly from (2.19), (2.25), and

n∑
j=1

αj ‖y(tj)− Yj‖2
W ≤ 2

n∑
j=1

αj

(
‖ϑ`j ‖

2

W
+ ‖%`j ‖

2

W

)

≤ 2c4

(
m∑

i=`+1

(
λni +

n∑
j=1

∣∣〈ẏ(tj), u
n
i 〉W

∣∣2)+ (∆t)2

)
+ 2

m∑
i=`+1

λni

provided ∆t > 0 is sufficiently small and f is Lipschitz-continuous with respect to the second
argument. �
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Remark 2.5. Compared to the estimate in Theorem 2.1 we observe the term
n∑
j=1

αj
∣∣〈ẏ(tj), u

n
i 〉W

∣∣2 (2.26)

instead of the term ∫ T

0

∣∣〈ẏ(t), ui〉W
∣∣2 dt. (2.27)

Note that (2.26) is the trapezoidal approximation of (2.27). Furthermore, the error O((∆t)2)

appears in the estimate of Theorem 2.4 due to the Euler method. ♦

Next we address the fact that the eigenvalues {λni }mi=1 and the associated eigenvectors {uni }
(i.e., the POD basis) depend on the chosen time grid {tj}nj=1. We apply the asymptotic theory
presented in Section 1.3. Then, it follows from Theorem 1.15 that there exists a number n̄ ∈ N
satisfying

m∑
i=`+1

λni ≤ 2

m∑
i=`+1

λi ,

m∑
i=`+1

n∑
j=1

αj
∣∣〈ẏ(tj), u

n
i 〉W

∣∣2 ≤ 2

m∑
i=`+1

∫ T

0

∣∣〈ẏ(t), ui〉W
∣∣2 dt

for n ≥ n̄ provided
∑m
i=`+1 λi 6= 0 and

∫ T
0

∣∣〈ẏ(t), ui〉W
∣∣2 dt 6= 0 hold. Thus, we infer from Theo-

rems 2.1 and 2.4 the following result.

Theorem 2.6. Let all hypothesis of Theorems 1.15, (2.1) and (2.4) be satisfied. If
∫ T

0

∣∣〈ẏ(t), ui〉W
∣∣2 dt 6=

0, then there exists a constant C > 0 and a number n̄ ∈ N such that
n∑
j=1

αj ‖y(tj)− Yj‖2
W ≤ C

(
(∆t)2 +

m∑
i=`+1

(
λi +

∫ T

0

∣∣〈ẏ(t), ui〉
∣∣2dt

))
for all n ≥ n̄.

2.3 Exercises

2.1) Prove the Gronwall lemma: For T > 0 let η : [0, T ] → R be a non-negative, differentiable
function satisfying

η′(t) ≤ ϕ(t)η(t) + ψ(t) for all t ∈ [0, T ],

where ϕ and ψ are real-valued, non-negative, integrable functions on [0, T ]. Then

η(t) ≤ exp

(∫ t

0

ϕ(s) ds

)(
η(0) +

∫ t

0

ψ(s) ds

)
for all t ∈ [0, T ].

In particular, if
η′ ≤ ϕη in [0, T ] and η(0) = 0

show that η = 0 holds in [0, T ].

2.2) Show that the operator P`n defined in (2.18) is linear, bounded and satisfies ‖P`n‖L(Rm) = 1.

2.3) Prove that the first-order necessary optimality condition for (2.12) is given by R̃ũi = λ̃i ũi ,
1 ≤ i ≤ `.

2.4) Show that R̃ is linear, bounded, self-adjoint and non-negative provided y ∈ H1(0, T ;Rm),
i.e., ∫ T

0

‖y(t)‖2
W + ‖ẏ(t)‖2

W dt <∞

holds.
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3 The linear-quadratic control problem

In this section we introduce the optimal state-feedback and the linear-quadratic regulator (LQR)
problem. Utilizing dynamic programming necessary optimality conditions are derived. It turns out
that for the LQR problem the state-feedback solution can be determined by solving a differential
matrix Riccati equation. The presented theory is taken from the book [DAC95].

3.1 The LQR problem

The goal is to find a state-feedback control law of the form

u(t) = −Kx(t) for t ∈ [0, T ]

with u : [0, T ] → Rmu , x : [0, T ] → Rmx , K ∈ Rmu×mx so that u minimizes the quadratic cost
functional

J(x, u) =

∫ T

0

x(t)TQx(t) + u(t)TRu(t) dt + x(T )TMx(T ), (3.1a)

where the state x and the control u are related by the linear initial value problem

ẋ(t) = Ax(t) + Bu(t) for t ∈ (0, T ] and x(0) = x0. (3.1b)

In (3.1a) the matrices Q, M ∈ Rmx×mx are symmetric, positive semi-definite, R ∈ Rmu×mu is
symmetric, positive definite and in (3.1b) we have A ∈ Rmx×mx , B ∈ Rmx×mu and x0 ∈ Rmx .
The final time T is fixed, but the final state x(T ) is free. Thus, we aim to track the state to the
state x̄ = 0 as good as possible. The terms x(t)TQx(t) and x(T )TMx(T ) are measures for the
control accuracy and the term u(t)TRu(t) measures the control effort. Problem (3.1) is called the
linear-quadratic regulator problem (LQR problem).

3.2 The Hamilton-Jacobi-Bellman equation

In this section we derive first-order necessary optimality conditions for the LQR problem. Since
generalizing the problem to a non-linear problem does not cause more difficulties in the deviation,
we consider the problem to find a state-control feedback control law

u(t) = Φ(x(t), t), t ∈ [0, T ],

such that the cost-functional

Jt(x, u) =

∫ T

t

L(x(s), u(s), s) ds + g(x(T )) (3.2a)

is minimized subject to the non-linear system dynamics

ẋ(s) = F (x(s), u(s), s) for s ∈ (0, T ] and x(t) = xt . (3.2b)

We suppose that the functions L : Rmx × Rmu × [0, T ]→ [0,∞) and g : Rmx → [0,∞) satisfy

L(0, 0, s) = 0 for s ∈ [0, T ] and g(0) = 0
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Moreover, let F : Rmx × Rmu × [0, T ]→ Rmx be continuous and locally Lipschitz-continuous with
respect to the variable x . Moreover, xt ∈ Rmx holds. To derive optimality conditions we use the so-
called Bellman principle (or dynamic programming principle). The essential assumption is that the
system can be characterized by its state x(t) at the time t ∈ [0, T ] which completely summarizes
the effect of all u(s) for 0 ≤ s ≤ t. The dynamic programming principle was first proposed by
Bellman [Bel52].

Theorem 3.1 (Bellman principle). Let t ∈ [0, T ]. If u∗(s) is optimal for s ∈ [t, T ] and x∗ is
the associated optimal state, starting at the state xt ∈ Rmx , then u∗(s) is also optimal over the
subinterval [t + ∆t, T ] for any ∆t ∈ [0, T − t] starting at xt+∆t = x∗(t + ∆t).

Proof. We show Theorem 3.1 by contradiction. Suppose that there exists a control u∗∗ so that∫ T

t+∆t

L(x∗∗(s), u∗∗(s), s) ds + g(x∗∗(T ))

<

∫ T

t+∆t

L(x∗(s), u∗(s), s) ds + g(x∗(T )),

(3.3)

where
ẋ∗(s) = F (x∗(s), u∗(s), s) and ẋ∗∗(s) = F (x∗∗(s), u∗∗(s), s)

hold for s ∈ [t + ∆t, T ]. We define the control

u(s) =

{
u∗(s) if s ∈ [t, t + ∆t],

u∗∗(s) if s ∈ (t + ∆t, T ].
(3.4)

By x(s) we denote the state satisfying ẋ(s) = F (x(s), u(s), s) for s ∈ [t, T ] and x(t) = xt . Then
we derive from (3.3) and (3.4) that∫ T

t

L(x(s), u(s), s) ds + g(x(T ))

=

∫ t+∆t

t

L(x∗(s), u∗(s), s) ds +

∫ T

t+∆t

L(x∗∗(s), u∗∗(s), s) ds + g(x∗∗(T ))

<

∫ t+∆t

t

L(x∗(s), u∗(s), s) ds +

∫ T

t+∆t

L(x∗(s), u∗(s), s) ds + g(x∗(T ))

=

∫ T

t

L(x∗(s), u∗(s), s) ds + g(x∗(T )).

(3.5)

Recall that u∗(s) is optimal for s ∈ [t, T ] by assumption. From (3.5) it follows that the control u
given by (3.4) yields a smaller value of the cost functional. This is a contradiction. �
Next we derive the Hamilton-Jacobi-Bellman equation for (3.2). Let V ∗ : Rmx × [0, T ] → R

denote the minimal value function given by

V ∗(xt , t)

= min
u:[t,T ]→Rmu

{
Jt(x, u)

∣∣ ẋ(s) = F (x(s), u(s), s), s ∈ (t, T ] and x(t) = xt

} (3.6)

for (xt , t) ∈ Rmx × [0, T ], where

Jt(x, u) =

∫ T

t

L(x(s), u(s), s) ds + g(x(T )).

From the linearity of the integral and (3.6) we conclude

V ∗(xt , t)

= min
u:[t,t+∆t]→Rmu

{∫ t+∆t

t

L(x(s), u(s), s) ds + V ∗(x(t + ∆t), t + ∆t)
∣∣

ẋ(s) = F (x(s), u(s), s), s ∈ (t, t + ∆t] and x(t) = xt

} (3.7)
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for (xt , t) ∈ Rmx×[0, T−∆t], where we have used the Bellman principle. Thus, by using the Bellman
principle the problem of finding an optimal control over the interval [t, T ] has been reduced to the
problem of finding an optimal control over the interval [t, t + ∆t].
Now we replace the integral in (3.7) by L(x(t), u(t), t)∆t, perform a Taylor approximation for

V ∗(x(t + ∆t), t + ∆t) about the point (xt , t) = (x(t), t) and approximatex(t + ∆t) − x(t) by
F (x(t), u(t), t)∆t. Then we find

V ∗(xt , t) = min
ut∈Rmu

{
L(xt , ut , t)∆t + V ∗(xt , t) +

∂V ∗

∂t
(xt , t) ∆t

+∇V ∗(xt , t)TF (xt , ut , t)∆t + O(∆t)

}
= V ∗(xt , t) +

∂V ∗

∂t
(xt , t)∆t

+ ∆t min
ut∈Rmu

{
L(xt , ut , t) +∇V ∗(xt , t)TF (xt , ut , t) +

O(∆t)

∆t

}
for any ∆t > 0. Thus,

−
∂V ∗

∂t
(xt , t) = min

ut∈Rmu

{
L(xt , ut , t) +∇V ∗(xt , t)TF (xt , ut , t) +

O(∆t)

∆t

}
.

Taking the limit ∆t → 0 and using V ∗(xt , T ) = g(xt) we obtain

−
∂V ∗

∂t
(xt , t) = min

ut∈Rmu

{
L(xt , ut , t) +∇V ∗(xt , t)TF (xt , ut , t)

}
(3.8a)

for all (xt , t) ∈ Rmx × [0, T ) and
V ∗(xt , T ) = g(xt) (3.8b)

for all xt ∈ Rmx . System (3.8) is called the Hamilton-Jacobi-Bellman (HJB) equations.
To solve (3.8) we proceed in two steps. First we compute a solution ut to

u∗(t) = argmin
ut∈Rmu

{
L(xt , ut , t) +∇V ∗(xt , t)TF (xt , ut , t)

}
and set

Ψ(∇V ∗(xt , t), xt , t) = u∗(t), (3.9)

which gives us a control law. Then we insert (3.9) into (3.8a) and solve

−
∂V ∗

∂t
(xt , t) = L(xt ,Ψ(∇V ∗(xt , t), xt , t), t)

+∇V ∗(xt , t)TF (xt ,Ψ(∇V ∗(xt , t), xt , t), t)

for all (xt , t) ∈ Rmx × [0, T ). Finally, we can compute the gradient ∇V ∗(xt , t) and deduce the
state-feedback law

u∗(t; xt) = Φ(xt , t) = Ψ(∇V ∗(xt , t), xt , t) for all (xt , t) ∈ Rmx × [0, T ).

Remark 3.2. 1) In general, it is not possible to solve (3.8) analytically. However, for the LQR
problem we can derive an explicit solution for the state-feedback law.

2) Note that the HJB equation are only necessary optimality conditions. ♦
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3.3 The state-feedback law for the LQR problem

For the LQR problem we have

L(xt , ut , t) = xTt Qxt + uTt Rut , g(xt) = xTt Mxt , F (xt , ut , t) = Axt + But

for (xt , u, t) ∈ Rmx ×Rmu × [0, T ]. For brevity, we focus on the situation, where the matrices A, B,
Q, M, R are time-invariant. However, most of the presented theory also holds for the time-varying
case.

First we minimize
xTt Qxt + uTt Rut +∇V ∗(xt , t)T

(
Axt + But

)
with respect to ut . First-order necessary optimality conditions are given by

uTt Rũt + ũTt Rut +∇V ∗(xt , t)TBũt = 0 for all ũt ∈ Rmu and (xt , t) ∈ Rmx × [0, T ).

By assumption, R is symmetric and positive definite. Then we find(
2Rut + BT∇V ∗(xt , t)

)T
ũt = 0 for all ũt ∈ Rmu and (xt , t) ∈ Rmx × [0, T )

and
ūt = −

1

2
R−1BT∇V ∗(xt , t) for all (xt , t) ∈ Rmx × [0, T ). (3.10)

For the minimal value function V ∗ we make the quadratic ansatz

V ∗(xt , t) = xTt P (t)xt for (xt , t) ∈ Rmx × [0, T ), P (t) ∈ Rmx×mx symmetric. (3.11)

Then, we have ∇V ∗(xt , t) = 2P (t)x so that

ūt = −R−1BTP (t)xt for all (xt , t) ∈ Rmx × [0, T ).

Note that for all (xt , t) ∈ Rmx × [0, T )

∂V ∗

∂t
(xt , t) = xTt Ṗ (t)xt ,

L(xt ,−R−1BTP (t)xt , t) = xTt Qxt + xTt P (t)BR−1BTP (t)xt

= xTt
(
Q+ P (t)BR−1BTP (t)

)
xt ,

F (xt ,−R−1BTP (t)xt , t) = Axt − BR−1BTP (t)xt =
(
A− BR−1BTP (t)

)
xt ,

∇V ∗(xt , t) = 2P (t)xt .

Consequently,

− xTt Ṗ (t)xt = −
∂V ∗

∂t
(xt , t)

= xTt
(
Q+ P (t)BR−1BTP (t)

)
xt +

(
2P (t)xt

)T (
A− BR−1BTP (t)

)
xt

for all (xt , t) ∈ Rmx × [0, T ), which yields

− xTt Ṗ (t)xt

= xTt
(
Q+ P (t)BR−1BTP (t) + 2P (t)A− 2P (t)BR−1BTP (t)

)
xt

= xTt
(

2P (t)A+Q− P (t)BR−1BTP (t)
)
xt

for all (xt , t) ∈ Rmx × [0, T ). From P (t) = P (t)T we deduce that

2xTt P (t)Axt = xTt P (t)Axt + xTt A
TP (t)xt = xTt

(
ATP (t) + P (t)A

)
xt .
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Using V ∗(xt , T ) = xTt P (T )xt and (3.8b) we get

−xTt Ṗ (t)xt = xTt
(
ATP (t) + P (t)A+Q− P (t)BR−1BTP (t)

)
xt , t ∈ [0, T ), (3.12a)

xTt P (T )xt = xTt Mxt . (3.12b)

Since (3.12) holds for all xt ∈ Rmx we obtain the following matrix Riccati equation

−Ṗ (t) = ATP (t) + P (t)A+Q− P (t)BR−1BTP (t), t ∈ [0, T ), (3.13a)

P (T ) = M. (3.13b)

Finally, the optimal state-feedback is given by

ū(t) = −K(t)x(t) and K(t) = R−1BTP (t) for all t ∈ [0, T ).

Example 3.3. Let us consider the problem

min

∫ T

0

|x(t)|2 + |u(t)|2 dt s.t. ẋ(t) = u(t) for t ∈ (0, T ].

Choosing mx = mu = 1, A = M = 0 and B = Q = R = 1 the matrix Riccati equation has the
form

−Ṗ (t) = 1− P (t)2 for t ∈ [0, T ) and P (T ) = 0.

This scalar ordinary differential equation can be solved by separation of variables. Its solution is

P (t) =
1− e−2(T−t)

1 + e−2(T−t) for t ∈ [0, T )

with the optimal control ū(t) = −P (t)x(t). ♦

3.4 Balanced truncation

Let us consider the linear time-invariant system

ẋ(t) = Ax(t) + Bu(t) for t ∈ (0,∞) and x(0) = x0, (3.14a)

y(t) = Cx(t) for t ∈ [0,∞), (3.14b)

where x(t) ∈ Rmx is called the system state, x0 ∈ Rmx is the initial condition of the system,
u(t) ∈ Rmu is said to be the system input and y(t) ∈ Rmy is called the system output. The
matrices A, B and C are assumed to have appropriate sizes.

It is helpful to analyze the linear system (3.14) through the Laplace transform.

Definition 3.4. Let f (t) be a time-varying vector. Then its Laplace transform is defined by

L[f ](s) =

∫ ∞
0

e−st f (t) dt for s ∈ R. (3.15)

The Laplace transform is defined for those values of s, for which (3.15) converges.

The Laplace transforms of u(t) and y(t) are given by

L[u](s) =

∫ ∞
0

e−stu(t) dt and L[y ](s) =

∫ ∞
0

e−sty(t) dt = CL[x ](s),

where we have used (3.14b). Note that

L[ẋ ](s) =

∫ ∞
0

e−st ẋ(t) dt = −
∫ ∞

0

(−s)e−stx(t) dt +
(
e−stx(t)

)∣∣∣s=∞

s=0

= sL[x ](s)− x0.
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Therefore, the Laplace transform of the dynamical system (3.14a) yields

sL[x ](s)− x(0) = AL[x ](s) + BL[u](s),

which gives
L[x ](s) = (sI − A)−1x(0) + (sI − A)−1BL[u](s).

Thus,
L[y ](s) = CL[x ](s) = C(sI − A)−1x(0) + C(sI − A)−1BL[u](s). (3.16)

For x(0) = 0 the expression (3.16) reduces to

L[y ](s) = G(s)L[u](s) (3.17)

where
G(s) = C(sI − A)−1B (3.18)

is called the transfer matrix of the system.
Given the initial state x0 and the input u(t), the dynamical system response x(t) and y(t) for

t ∈ [0, T ] satisfy

x(t) = etAx0 +

∫ t

0

e(t−s)ABu(s) ds and y(t) = Cx(t).

If u(t) = 0 holds for all t ∈ [0, T ], we infer that

x(t) = e(t−t1)Ax(t1)

for any t1, t ∈ [0, T ]. The matrix e(t−t1)A acts as a transformation from one state to another.
Therefore, Φ(t, t1) = e(t−t1)A is often called the state transition matrix.

Definition 3.5. The dynamical system (3.14a) or the pair (A,B) are called controllable if for any
x0 ∈ Rmx and final state xT ∈ Rmx there exists a (piecewise continuous) input u such that the
solution to (3.14a) satisfies x(T ) = xT . Otherwise, (A,B) is said to be uncontrollable.

Controllability can be verified as stated in the next theorem. For a proof we refer to [ZDG96].

Theorem 3.6. The following claims are equivalent:
1) (A,B) are controllable.

2) The controllability gramian

Wc(t) =

∫ t

0

esABBT esA
T

ds

is positive definite for every t > 0.

3) The controllability matrix

C =
[
B AB A2B . . . Amx−1B

]
∈ Rmx×(mxmu)

has full rank.

Definition 3.7. 1) The unforced system ẋ(t) = Ax(t) is called stable, if the eigenvalues of A
are in the open left half plane, i.e., <eλ < 0 for every eigenvalue λ . A matrix with this
property is said to be stable or Hurwitz.

2) The dynamical system (3.14a) or (A,B) are called stabilizable if there exists a state-feedback
u(t) = −Kx(t) so that A− BK is stable.

The next result, which is proved in [ZDG96], is a consequence of Theorem 3.6.

40 Prof. Dr. Stefan Volkwein



Theorem 3.8. The following claims are equivalent:
1) (A,B) are stabilizable.

2) The matrix [A − λI B] ∈ Rmx×(mx+mu) has full row rank for all λ ∈ C with a negative real
part, i.e., <eλ < 0.

Let us now consider the dual notions of observability.

Definition 3.9. The dynamical system (3.14) or (A,C) are called observable if for any t1 ∈ (0, T ],
the initial condition x0 ∈ Rmx can be determined from the time history of the input u(t) and
the output y(t) in the interval [0, t1] ⊂ [0, T ]. Otherwise, the system or (A,C) is said to be
unobservable.

For a proof of the next theorem we refer the reader to [ZDG96].

Theorem 3.10. The following claims are equivalent:
1) (A,C) is observable.

2) The observability gramian

Wo(t) =

∫ t

0

esA
T

CTCesA ds

is positive definite for every t > 0.

(3) The observability matrix

O =


C

CA
...

CAmx−1

 ∈ R(mxmy )×mx

has full rank.

We set

Wc =

∫ ∞
0

esABBT esA
T

ds and Wo =

∫ ∞
0

esA
T

CTCesA ds.

It can be proved that Wc and Wo can be determined numerically by solving the Lyapunov equations

AWc +WcA
T + BBT = 0 ∈ Rnx×nx , (3.19a)

ATWo +WoA+ CTC = 0 ∈ Rnx×nx . (3.19b)

The controllability gramian is a measure to what degree each state is excited by an input. Suppose
that x1, x2 ∈ Rnx are two states with ‖x1‖Rnx = ‖x2‖Rnx . If xT1 Wcx1 > xT2 Wcx2 holds, then we say
that the state x1 is more controllable than x2. This means, it takes a smaller input to drive the
system from x0 to x1 than to x2. It can be proved that the gramian Wc is positive definite if and
only if all states are reachable with some input u. On the other hand, the observability gramian
Wo is a measure to what degree each state excites future outputs y . Let x0 be an initial state. If
u = 0 holds, we have

‖y‖2
L2(0,∞;Rmy ) =

∫ ∞
0

y(s)T y(s) ds =

∫ ∞
0

x(s)TCTCx(s) ds

=

∫ ∞
0

xT0 e
sATCTCesAx0 ds = xT0 Wox0.

We say that the state x1 is more observable than another state x2 if the corresponding output
y1 = Cx1 yields a larger value of the L2-norm than for y2 = Cx2

The gramians depend on the coordinates. Suppose that

x = T z (3.20)
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where T ∈ Rnx×nx is a regular matrix. Then we obtain instead of (3.14) the system

ż(t) = Ãz(t) + B̃u(t) for t ∈ (0,∞) and z(0) = z0, (3.21a)

y(t) = C̃z(t) for t ∈ [0,∞) (3.21b)

with
Ã = T −1AT , B̃ = T −1B, C̃ = CT , z0 = T −1x0.

Let Wc solve (3.19a). The controllability gramian W̃c for (3.21) satisfies

ÃW̃c + W̃c Ã
T + B̃B̃T = 0

i.e.,
T −1AT W̃c + W̃cT TATT −T + T −1BBTT −T = 0. (3.22)

Multiplying (3.22) by T from the left and by T T from the right yields

AT W̃cT T + T W̃cT TAT + BBT = 0. (3.23)

From (3.19a) and (3.23) we infer that Wc = T W̃cT T holds. Thus, the coordinate transformation
(3.20) implies that the controllability gramian Wc is transformed as

Wc 7→ W̃c = T −1WcT −T .

Now we suppose that Wo solves (3.19b). The observability gramian W̃o for (3.21) satisfies

ÃT W̃o + W̃oÃ+ C̃T C̃ = 0

i.e.,
T TATT −T W̃o + W̃oT −1AT + T TCTCT = 0. (3.24)

Multiplying (3.22) by T −T from the left and by T −1 from the right yields

ATT −T W̃oT −1 + T −T W̃oT −1A+ CTC = 0. (3.25)

From (3.19b) and (3.25) we infer that Wo = T −T W̃oT −1 holds. Thus, the coordinate transfor-
mation (3.20) implies that the observability gramian Wo is transformed as

Wo 7→ W̃o = T TWoT .

The goal is to find a transformation T such that

T −1WcT −T = T TWoT = Σ = diag (σ1, . . . , σmx ). (3.26)

The elements σ1 ≥ σ2 ≥ . . . ≥ σmx are called Hankel singular values of the system. They are
independent of the coordinate system. It can be shown that a regular matrix T which satisfies
(3.26) exists if the system is controllable and observable, i.e., the matrices Wc and Wo are positive
definite. The coordinate transformation T is said to be a balancing transformation. Computing
appropriately scaled eigenvalues of the product WcWo , the matrix T can be determined. In the
balanced coordinates, the states which are least influenced by the input u also have least influence
on the output y . In balanced truncation the least controllable and observable states having little
effect on the input-output performance are truncated.

Instead of (3.21) we only consider the system for the first ` ∈ {1, . . . , mx} components of z :

ż`(t) = Ã`z`(t) + B̃`u(t) for t ∈ (0,∞) and z`(0) = z0`, (3.27a)

y`(t) = C̃`z`(t) for t ∈ [0,∞), (3.27b)
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where

Ã =

(
Ã` ∗
∗ ∗

)
, B̃ =

(
B̃`
∗

)
, C̃ =

(
C̃` ∗

)
, z0` =

(
z̃0`

∗

)
,

and Ã` ∈ R`×`, B̃` ∈ R`×mu , C̃` ∈ Rmy×` and z0` ∈ R`.
One big advantage of balanced truncation is that a-priori error bounds are known. These bounds

are formulated for the transfer function. Suppose that G(s) = C(sI − A)−1B ∈ Rmy×mu is the
transfer function of the system (3.14) and G`(s) = C`(sI − A`)−1B` ∈ Rmy×mu is the transfer
function of the reduced system (3.27). Then we have

‖G − G`‖ = max
{
‖(G − G`)u‖L2(0,∞;Rmy ) : ‖u‖L2(0,∞;Rmu ) = 1

}
> σ`+1

and

‖G − G`‖ < 2

mx∑
i=`+1

σi .

3.5 Exercises

Let us consider the one-dimensional heat equation

θt(t, x) = θxx(t, x) + u(t)χ(x) for all (t, x) ∈ Q = (0, T )×Ω, (3.28a)

θx(t, 0) = θx(t, 1) = 0 for all t ∈ (0, T ), (3.28b)

θ(0, x) = θ0(x) for all x ∈ Ω = (0, 1) ⊂ R, (3.28c)

where θ = θ(t, x) is the temperature, u = u(t) the control input, χ = χ(x) a given control shape
function and θ0 = θ0(x) a given initial condition.
3.1) Apply a classical finite difference approximation for the spatial variable x (compare Exam-

ple 1.11) and derive the finite-dimensional initial value problem for the finite difference ap-
proximations.

3.2) Utilizing the trapezoidal rule deduce a discretization for the quadratic cost functional

J(θ, u) =
1

2

∫
Ω

|θ(T, x)− θT (x)|2 dx +
κ

2

∫ T

0

|u(t)|2 dt,

where θT = θT (x) is a given desired terminal state and κ > 0 denotes a fixed regularization
parameter.

3.3) Formulate the matrix Riccati equation for the discretized quadratic cost functional — see
part 3.2) — and the discretized heat equation — see part 3.1).

3.4) What is the matrix Riccati equation in the case if we apply a POD Galerkin approximation
instead of a finite difference discretization? How can we solve the matrix Riccati equation
numerically?

3.5. EXERCISES 43



Literaturverzeichnis

[Bel52] R.E. Bellman. The theory of dynamic programming. Proc. Nat. Acad. Sci., USA,
38:716-719, 1952.

[DR08] W. Dahmen and A. Reusken. Numerik für Ingenieure und Naturwissenschaftler. 2nd
edition, Springer-Verlag Berlin, 2008.

[DR11] R. Denk und R. Racke. Kompendium der Analysis. Band 1: Differential- und Inte-
gralrechnung, Gewöhnliche Differentialgleichungen. Vieweg+Teubner Verlag, Springer
Fachmedien Wiesbaden GmbH, 2011.

[DAC95] P. Dorato, C. Abdallah, and V. Cerone. Linear-Quadratic Control. An Introduction.
Prentice Hall, Englewood Cliffs, New Jersey 07632, 1995.

[HLBR12] P. Holmes, J.L. Lumley, G. Berkooz and C.W. Rowley. Turbulence, Coherent Struc-
tures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics,
Cambridge University Press, 1996.

[KV07] M. Kahlbacher and S. Volkwein. Galerkin proper orthogonal decomposition methods
for parameter dependent elliptic systems. Discussiones Mathematicae: Differential
Inclusions, Control and Optimization, 27:95-117, 2007.

[Ka80] T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1980.

[KV99] K. Kunisch and S. Volkwein. Control of Burgers’ equation by a reduced order ap-
proach using proper orthogonal decomposition. Journal on Optimization Theory and
Applications, 102, 345–371, 1999.

[KV01] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for
parabolic problems. Numerische Mathematik, 90:117–148, 2001.

[KV02a] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for a
general equation in fluid dynamics. SIAM Journal on Numerical Analysis, 40:492–515,
2002.

[KV02b] K. Kunisch and S. Volkwein. Crank-Nicolson Galerkin proper orthogonal decomposition
approximations for a general equation in fluid dynamics. Proceedings of the 18th
GAMM Seminar on Multigrid and related methods for optimization problems, Leipzig,
97–114, 2002.

[RS80] M. Reed and B. Simon. Methods of Modern Mathematical Physics I: Functional
Analysis. Academic Press, New York, 1980.

[Row05] C.W. Rowley. Model reduction for fluids, using balanced proper orthogonal decompo-
sition. Int. J. on Bifurcation and Chaos, 15:997-1013, 2005.

[Sir87] L. Sirovich. Turbulence and the dynamics of coherent structures, parts I-III. Quarterly
of Applied Mathematicss, XLV:561-590, 1987.

[ZDG96] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall,

44 Prof. Dr. Stefan Volkwein



Upper Saddle River, New Jersey, 07458, 1996.

Literaturverzeichnis 45


	The POD method in Rm
	POD and SVD
	The POD method with a weighted inner product
	Application to time-dependent systems
	Exercises

	Reduced-order modeling (ROM)
	ROM for time-dependent systems
	Error analysis for the reduced-order model
	Exercises

	The linear-quadratic control problem
	The LQR problem
	The Hamilton-Jacobi-Bellman equation
	The state-feedback law for the LQR problem
	Balanced truncation
	Exercises

	Literaturverzeichnis
	The POD method in Rm
	POD and SVD
	The POD method with a weighted inner product
	Application to time-dependent systems
	Exercises

	Reduced-order modeling (ROM)
	ROM for time-dependent systems
	Error analysis for the reduced-order model
	Exercises

	The linear-quadratic control problem
	The LQR problem
	The Hamilton-Jacobi-Bellman equation
	The state-feedback law for the LQR problem
	Balanced truncation
	Exercises

	Literaturverzeichnis
	Stichwortverzeichnis

