Lecture 34

Linear-Quadratic Optimal Control

In this lecture we introduce the optimal state-feedback and the linear-quadratic regulator (LQR) problem. Utilizing dynamic programming necessary optimality conditions are derived. It turns out that for the LQR problem the state-feedback solution can be determined by solving a differential matrix Riccati equation. The presented theory is taken from the book [12].

34.1 The problem formulation

The goal is to find a state-feedback control law of the form

$$
u(t)=-K x(t) \quad \text { for } t \in[0, T]
$$

with $u:[0, T] \rightarrow \mathbb{R}^{m_{u}}, x:[0, T] \rightarrow \mathbb{R}^{m_{x}}, K \in \mathbb{R}^{m_{u} \times m_{x}}$ so that u minimizes the quadratic cost functional

$$
\begin{equation*}
J(x, u)=\int_{0}^{T} x(t)^{\top} Q x(t)+u(t)^{\top} R u(t) \mathrm{d} t+x(T)^{\top} M x(T) \tag{34.1a}
\end{equation*}
$$

where the state x and the control u are related by the linear initial value problem

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t) \text { for } t \in(0, T] \quad \text { and } \quad x(0)=x_{0} . \tag{34.1b}
\end{equation*}
$$

In (34.1a) the matrices $Q, M \in \mathbb{R}^{m_{x} \times m_{x}}$ are symmetric, positive semi-definite, $R \in \mathbb{R}^{m_{u} \times m_{u}}$ is symmetric, positive definite and in 34.1b we have $A \in \mathbb{R}^{m_{x} \times m_{x}}, B \in \mathbb{R}^{m_{x} \times m_{u}}$ and $x_{0} \in \mathbb{R}^{m_{x}}$. The final time T is fixed, but the final state $x(T)$ is free. Thus, we aim to track the state to the state $\bar{x}=0$ as good as possible. The terms $x(t)^{T} Q x(t)$ and $x(T)^{T} M x(T)$ are measures for the control accuracy and the term $u(t)^{T} R u(t)$ measures the control effort. Problem (34.1) is called the linear-quadratic regulator problem (LQR problem).

34.2 The Hamilton-Jacobi-Bellman equation

In this section we derive first-order necessary optimality conditions for the LQR problem. Since generalizing the problem to a non-linear problem does not cause more difficulties in the deviation, we consider the problem to find a state-control feedback control law

$$
u(t)=\Phi(x(t), t), \quad t \in[0, T]
$$

such that the cost-functional

$$
\begin{equation*}
J_{t}(x, u)=\int_{t}^{T} \ell(x(s), u(s), s) \mathrm{d} s+g(x(T)) \tag{34.2a}
\end{equation*}
$$

is minimized subject to the non-linear system dynamics

$$
\begin{equation*}
\dot{x}(s)=f(x(s), u(s), s) \text { for } s \in(0, T] \quad \text { and } \quad x(t)=x_{t} . \tag{34.2b}
\end{equation*}
$$

We suppose that the functions $\ell: \mathbb{R}^{m_{x}} \times \mathbb{R}^{m_{u}} \times[0, T] \rightarrow[0, \infty)$ and $g: \mathbb{R}^{m_{x}} \rightarrow[0, \infty)$ satisfy

$$
\ell(0,0, s)=0 \text { for } s \in[0, T] \quad \text { and } \quad g(0)=0
$$

Moreover, let $f: \mathbb{R}^{m_{x}} \times \mathbb{R}^{m_{u}} \times[0, T] \rightarrow \mathbb{R}^{m_{x}}$ be continuous and locally Lipschitz-continuous with respect to the variable x. Moreover, $x_{t} \in \mathbb{R}^{m_{x}}$ holds. To derive optimality conditions we use the so-called Bellman principle (or dynamic programming principle). The essential assumption is that the system can be characterized by its state $x(t)$ at the time $t \in[0, T]$ which completely summarizes the effect of all $u(s)$ for $0 \leq s \leq t$. The dynamic programming principle was first proposed by Bellman [5].

Theorem 34.2.1 (Bellman principle). Let $t \in[0, T]$. If $u^{*}(s)$ is optimal for $s \in[t, T]$ and x^{*} is the associated optimal state, starting at the state $x_{t} \in \mathbb{R}^{m_{x}}$, then $u^{*}(s)$ is also optimal over the subinterval $[t+\Delta t, T]$ for any $\Delta t \in[0, T-t]$ starting at $x_{t+\Delta t}=x^{*}(t+\Delta t)$.

Proof. We show Theorem 34.2 .1 by contradiction. Suppose that there exists a control $u^{* *}$ so that

$$
\begin{align*}
& \int_{t+\Delta t}^{T} \ell\left(x^{* *}(s), u^{* *}(s), s\right) \mathrm{d} s+g\left(x^{* *}(T)\right) \tag{34.3}\\
&<\int_{t+\Delta t}^{T} \ell\left(x^{*}(s), u^{*}(s), s\right) \mathrm{d} s+g\left(x^{*}(T)\right)
\end{align*}
$$

where

$$
\dot{x}^{*}(s)=f\left(x^{*}(s), u^{*}(s), s\right) \quad \text { and } \quad \dot{x}^{* *}(s)=f\left(x^{* *}(s), u^{* *}(s), s\right)
$$

hold for $s \in[t+\Delta t, T]$. We define the control

$$
u(s)= \begin{cases}u^{*}(s) & \text { if } s \in[t, t+\Delta t] \tag{34.4}\\ u^{* *}(s) & \text { if } s \in(t+\Delta t, T]\end{cases}
$$

By $x(s)$ we denote the state satisfying $\dot{x}(s)=F(x(s), u(s), s)$ for $s \in[t, T]$ and $x(t)=x_{t}$. Then we derive from 34.3) and (34.4) that

$$
\begin{align*}
& \int_{t}^{T} \ell(x(s), u(s), s) \mathrm{d} s+g(x(T)) \\
& =\int_{t}^{t+\Delta t} \ell\left(x^{*}(s), u^{*}(s), s\right) \mathrm{d} s+\int_{t+\Delta t}^{T} \ell\left(x^{* *}(s), u^{* *}(s), s\right) \mathrm{d} s+g\left(x^{* *}(T)\right) \\
& <\int_{t}^{t+\Delta t} \ell\left(x^{*}(s), u^{*}(s), s\right) \mathrm{d} s+\int_{t+\Delta t}^{T} \ell\left(x^{*}(s), u^{*}(s), s\right) \mathrm{d} s+g\left(x^{*}(T)\right) \tag{34.5}\\
& =\int_{t}^{T} \ell\left(x^{*}(s), u^{*}(s), s\right) \mathrm{d} s+g\left(x^{*}(T)\right)
\end{align*}
$$

Recall that $u^{*}(s)$ is optimal for $s \in[t, T]$ by assumption. From 34.5 it follows that the control u given by 34.4 yields a smaller value of the cost functional. This is a contradiction.

Next we derive the Hamilton-Jacobi-Bellman equation for 34.2 . Let $V^{*}: \mathbb{R}^{m_{x}} \times[0, T] \rightarrow \mathbb{R}$ denote the minimal value function given by

$$
\begin{align*}
& V^{*}\left(x_{t}, t\right) \\
& =\min _{u:[t, T] \rightarrow \mathbb{R}^{m_{u}}}\left\{J_{t}(x, u) \mid \dot{x}(s)=f(x(s), u(s), s), s \in(t, T] \text { and } x(t)=x_{t}\right\} \tag{34.6}
\end{align*}
$$

for $\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T]$, where

$$
J_{t}(x, u)=\int_{t}^{T} \ell(x(s), u(s), s) \mathrm{d} s+g(x(T))
$$

From the linearity of the integral and (34.6) we conclude

$$
\begin{align*}
& V^{*}\left(x_{t}, t\right) \\
& =\min _{u:[t, t+\Delta t] \rightarrow \mathbb{R}^{m_{u}}}\left\{\int_{t}^{t+\Delta t} \ell(x(s), u(s), s) \mathrm{d} s+V^{*}(x(t+\Delta t), t+\Delta t) \mid\right. \tag{34.7}\\
& \\
& \left.\quad \dot{x}(s)=f(x(s), u(s), s), s \in(t, t+\Delta t] \text { and } x(t)=x_{t}\right\}
\end{align*}
$$

for $\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T-\Delta t]$, where we have used the Bellman principle. Thus, by using the Bellman principle the problem of finding an optimal control over the interval $[t, T]$ has been reduced to the problem of finding an optimal control over the interval $[t, t+\Delta t]$.

Now we replace the integral in 34.7 by $\ell(x(t), u(t), t) \Delta t$, perform a Taylor approximation for $V^{*}(x(t+\Delta t), t+\Delta t)$ about the point $\left(x_{t}, t\right)=(x(t), t)$ and approximate $x(t+\Delta t)-x(t)$ by $f(x(t), u(t), t) \Delta t$. Then we find

$$
\begin{aligned}
V^{*}\left(x_{t}, t\right)= & \min _{u_{t} \in \mathbb{R}^{m^{m}}}\left\{\ell\left(x_{t}, u_{t}, t\right) \Delta t+V^{*}\left(x_{t}, t\right)+\frac{\partial V^{*}}{\partial t}\left(x_{t}, t\right) \Delta t\right. \\
& \left.+\nabla V^{*}\left(x_{t}, t\right)^{\top} f\left(x_{t}, u_{t}, t\right) \Delta t+\mathcal{O}(\Delta t)\right\} \\
= & V^{*}\left(x_{t}, t\right)+\frac{\partial V^{*}}{\partial t}\left(x_{t}, t\right) \Delta t \\
& +\Delta t \min _{u_{t} \in \mathbb{R}^{m_{u}}}\left\{\ell\left(x_{t}, u_{t}, t\right)+\nabla V^{*}\left(x_{t}, t\right)^{\top} f\left(x_{t}, u_{t}, t\right)+\frac{\mathcal{O}(\Delta t)}{\Delta t}\right\}
\end{aligned}
$$

for any $\Delta t>0$. Thus,

$$
-\frac{\partial V^{*}}{\partial t}\left(x_{t}, t\right)=\min _{u_{t} \in \mathbb{R}^{m_{u}}}\left\{\ell\left(x_{t}, u_{t}, t\right)+\nabla V^{*}\left(x_{t}, t\right)^{\top} f\left(x_{t}, u_{t}, t\right)+\frac{\mathcal{O}(\Delta t)}{\Delta t}\right\}
$$

Taking the limit $\Delta t \rightarrow 0$ and using $V^{*}\left(x_{t}, T\right)=g\left(x_{t}\right)$ we obtain

$$
\begin{equation*}
-\frac{\partial V^{*}}{\partial t}\left(x_{t}, t\right)=\min _{u_{t} \in \mathbb{R}^{m_{u}}}\left\{\ell\left(x_{t}, u_{t}, t\right)+\nabla V^{*}\left(x_{t}, t\right)^{\top} f\left(x_{t}, u_{t}, t\right)\right\} \tag{34.8a}
\end{equation*}
$$

for all $\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T)$ and

$$
\begin{equation*}
V^{*}\left(x_{t}, T\right)=g\left(x_{t}\right) \tag{34.8b}
\end{equation*}
$$

for all $x_{t} \in \mathbb{R}^{m_{x}}$. System (34.8) is called the Hamilton-Jacobi-Bellman (HJB) equations.
To solve (34.8) we proceed in two steps. First we compute a solution u_{t} to

$$
u^{*}(t)=\underset{u_{t} \in \mathbb{R}^{m} u}{\operatorname{argmin}}\left\{\ell\left(x_{t}, u_{t}, t\right)+\nabla V^{*}\left(x_{t}, t\right)^{\top} f\left(x_{t}, u_{t}, t\right)\right\}
$$

and set

$$
\begin{equation*}
\Psi\left(\nabla V^{*}\left(x_{t}, t\right), x_{t}, t\right)=u^{*}(t) \tag{34.9}
\end{equation*}
$$

which gives us a control law. Then we insert (34.9) into (34.8a) and solve

$$
-\frac{\partial V^{*}}{\partial t}\left(x_{t}, t\right)=\ell\left(x_{t}, \Psi\left(\nabla V^{*}\left(x_{t}, t\right), x_{t}, t\right), t\right)+\nabla V^{*}\left(x_{t}, t\right)^{\top} f\left(x_{t}, \Psi\left(\nabla V^{*}\left(x_{t}, t\right), x_{t}, t\right), t\right)
$$

for all $\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T)$. Finally, we can compute the gradient $\nabla V^{*}\left(x_{t}, t\right)$ and deduce the state-feedback law

$$
u^{*}\left(t ; x_{t}\right)=\Phi\left(x_{t}, t\right)=\Psi\left(\nabla V^{*}\left(x_{t}, t\right), x_{t}, t\right) \quad \text { for all }\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T)
$$

Remark 34.2.2. 1) In general, it is not possible to solve (34.8) analytically. However, for the LQR problem we can derive an explicit solution for the state-feedback law.
2) Note that the HJB equation are only necessary optimality conditions.

34.3 The state-feedback law for the linear quadratic problem

For the LQR problem we have

$$
\ell\left(x_{t}, u_{t}, t\right)=x_{t}^{\top} Q x_{t}+u_{t}^{\top} R u_{t}, \quad g\left(x_{t}\right)=x_{t}^{\top} M x_{t}, \quad f\left(x_{t}, u_{t}, t\right)=A x_{t}+B u_{t}
$$

for $\left(x_{t}, u, t\right) \in \mathbb{R}^{m_{x}} \times \mathbb{R}^{m_{u}} \times[0, T]$. For brevity, we focus on the situation, where the matrices A, B, Q, M, R are time-invariant. However, most of the presented theory also holds for the time-varying case.

First we minimize

$$
x_{t}^{\top} Q x_{t}+u_{t}^{\top} R u_{t}+\nabla V^{*}\left(x_{t}, t\right)^{\top}\left(A x_{t}+B u_{t}\right)
$$

with respect to u_{t}. First-order necessary optimality conditions are given by

$$
u_{t}^{\top} R \tilde{u}_{t}+\tilde{u}_{t}^{\top} R u_{t}+\nabla V^{*}\left(x_{t}, t\right)^{\top} B \tilde{u}_{t}=0 \quad \text { for all } \tilde{u}_{t} \in \mathbb{R}^{m_{u}} \text { and }\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T) .
$$

By assumption, R is symmetric and positive definite. Then we find

$$
\left(2 R u_{t}+B^{\top} \nabla V^{*}\left(x_{t}, t\right)\right)^{\top} \tilde{u}_{t}=0 \quad \text { for all } \tilde{u}_{t} \in \mathbb{R}^{m_{u}} \text { and }\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T)
$$

and

$$
\begin{equation*}
\bar{u}_{t}=-\frac{1}{2} R^{-1} B^{T} \nabla V^{*}\left(x_{t}, t\right) \quad \text { for all }\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T) \tag{34.10}
\end{equation*}
$$

For the minimal value function V^{*} we make the quadratic ansatz

$$
\begin{equation*}
V^{*}\left(x_{t}, t\right)=x_{t}^{\top} P(t) x_{t} \text { for }\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T), \quad P(t) \in \mathbb{R}^{m_{x} \times m_{x}} \text { symmetric. } \tag{34.11}
\end{equation*}
$$

Then, we have $\nabla V^{*}\left(x_{t}, t\right)=2 P(t) x$ so that

$$
\bar{u}_{t}=-R^{-1} B^{\top} P(t) x_{t} \quad \text { for all }\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T)
$$

Note that for all $\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T)$

$$
\begin{aligned}
\frac{\partial V^{*}}{\partial t}\left(x_{t}, t\right) & =x_{t}^{\top} \dot{P}(t) x_{t}, \\
\ell\left(x_{t},-R^{-1} B^{\top} P(t) x_{t}, t\right) & =x_{t}^{\top} Q x_{t}+x_{t}^{\top} P(t) B R^{-1} B^{\top} P(t) x_{t} \\
& =x_{t}^{\top}\left(Q+P(t) B R^{-1} B^{\top} P(t)\right) x_{t}, \\
f\left(x_{t},-R^{-1} B^{\top} P(t) x_{t}, t\right) & =A x_{t}-B R^{-1} B^{\top} P(t) x_{t}=\left(A-B R^{-1} B^{\top} P(t)\right) x_{t}, \\
\nabla V^{*}\left(x_{t}, t\right) & =2 P(t) x_{t} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& -x_{t}^{\top} \dot{P}(t) x_{t}=-\frac{\partial V^{*}}{\partial t}\left(x_{t}, t\right) \\
& \quad=x_{t}^{\top}\left(Q+P(t) B R^{-1} B^{\top} P(t)\right) x_{t}+\left(2 P(t) x_{t}\right)^{\top}\left(A-B R^{-1} B^{\top} P(t)\right) x_{t}
\end{aligned}
$$

for all $\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T)$, which yields

$$
\begin{aligned}
& -x_{t}^{\top} \dot{P}(t) x_{t} \\
& \quad=x_{t}^{\top}\left(Q+P(t) B R^{-1} B^{\top} P(t)+2 P(t) A-2 P(t) B R^{-1} B^{\top} P(t)\right) x_{t} \\
& \quad=x_{t}^{\top}\left(2 P(t) A+Q-P(t) B R^{-1} B^{\top} P(t)\right) x_{t}
\end{aligned}
$$

for all $\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T)$. From $P(t)=P(t)^{\top}$ we deduce that

$$
2 x_{t}^{\top} P(t) A x_{t}=x_{t}^{\top} P(t) A x_{t}+x_{t}^{\top} A^{T} P(t) x_{t}=x_{t}^{\top}\left(A^{\top} P(t)+P(t) A\right) x_{t} .
$$

Using $V^{*}\left(x_{t}, T\right)=x_{t}^{T} P(T) x_{t}$ and 34.8 b we get

$$
\begin{align*}
-x_{t}^{\top} \dot{P}(t) x_{t} & =x_{t}^{\top}\left(A^{\top} P(t)+P(t) A+Q-P(t) B R^{-1} B^{\top} P(t)\right) x_{t}, \quad t \in[0, T), \tag{34.12a}\\
x_{t}^{\top} P(T) x_{t} & =x_{t}^{\top} M x_{t} . \tag{34.12b}
\end{align*}
$$

Since (34.12) holds for all $x_{t} \in \mathbb{R}^{m_{x}}$ we obtain the following matrix Riccati equation

$$
\begin{align*}
-\dot{P}(t) & =A^{\top} P(t)+P(t) A+Q-P(t) B R^{-1} B^{\top} P(t), \quad t \in[0, T), \tag{34.13a}\\
P(T) & =M . \tag{34.13b}
\end{align*}
$$

Finally, the optimal state-feedback is given by

$$
\bar{u}(t)=-K(t) x(t) \quad \text { and } \quad K(t)=R^{-1} B^{\top} P(t) \quad \text { for all } t \in[0, T) .
$$

Example 34.3.1. Let us consider the problem

$$
\min \int_{0}^{T}|x(t)|^{2}+|u(t)|^{2} \mathrm{~d} t \quad \text { s.t. } \quad \dot{x}(t)=u(t) \text { for } t \in(0, T] .
$$

Choosing $m_{x}=m_{u}=1, A=M=0$ and $B=Q=R=1$ the matrix Riccati equation has the form

$$
-\dot{P}(t)=1-P(t)^{2} \text { for } t \in[0, T) \text { and } \quad P(T)=0
$$

This scalar ordinary differential equation can be solved by separation of variables. Its solution is

$$
P(t)=\frac{1-e^{-2(T-t)}}{1+e^{-2(T-t)}} \quad \text { for } t \in[0, T)
$$

with the optimal control $\bar{u}(t)=-P(t) x(t)$.

