
Lecture 34

Linear-Quadratic Optimal Control

In this lecture we introduce the optimal state-feedback and the linear-quadratic regulator (LQR) problem. Utilizing
dynamic programming necessary optimality conditions are derived. It turns out that for the LQR problem the
state-feedback solution can be determined by solving a di↵erential matrix Riccati equation. The presented theory is
taken from the book [12].

34.1 The problem formulation

The goal is to find a state-feedback control law of the form

u(t) = �Kx(t) for t 2 [0, T ]

with u : [0, T ] ! Rmu , x : [0, T ] ! Rmx , K 2 Rmu⇥mx so that u minimizes the quadratic cost functional

J(x, u) =

Z T

0
x(t)>Qx(t) + u(t)>Ru(t) dt+ x(T )>Mx(T ), (34.1a)

where the state x and the control u are related by the linear initial value problem

ẋ(t) = Ax(t) +Bu(t) for t 2 (0, T ] and x(0) = x0. (34.1b)

In (34.1a) the matrices Q, M 2 Rmx⇥mx are symmetric, positive semi-definite, R 2 Rmu⇥mu is symmetric, positive
definite and in (34.1b) we have A 2 Rmx⇥mx , B 2 Rmx⇥mu and x0 2 Rmx . The final time T is fixed, but the final
state x(T ) is free. Thus, we aim to track the state to the state x̄ = 0 as good as possible. The terms x(t)TQx(t) and
x(T )TMx(T ) are measures for the control accuracy and the term u(t)TRu(t) measures the control e↵ort. Problem
(34.1) is called the linear-quadratic regulator problem (LQR problem).

34.2 The Hamilton-Jacobi-Bellman equation

In this section we derive first-order necessary optimality conditions for the LQR problem. Since generalizing the
problem to a non-linear problem does not cause more di�culties in the deviation, we consider the problem to find a
state-control feedback control law

u(t) = �(x(t), t), t 2 [0, T ],

such that the cost-functional

Jt(x, u) =

Z T

t
`(x(s), u(s), s) ds+ g(x(T )) (34.2a)

is minimized subject to the non-linear system dynamics

ẋ(s) = f(x(s), u(s), s) for s 2 (0, T ] and x(t) = xt. (34.2b)

We suppose that the functions ` : Rmx ⇥ Rmu ⇥ [0, T ] ! [0,1) and g : Rmx ! [0,1) satisfy

`(0, 0, s) = 0 for s 2 [0, T ] and g(0) = 0
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Moreover, let f : Rmx ⇥ Rmu ⇥ [0, T ] ! Rmx be continuous and locally Lipschitz-continuous with respect to the
variable x. Moreover, xt 2 Rmx holds. To derive optimality conditions we use the so-called Bellman principle (or
dynamic programming principle). The essential assumption is that the system can be characterized by its state x(t)
at the time t 2 [0, T ] which completely summarizes the e↵ect of all u(s) for 0  s  t. The dynamic programming
principle was first proposed by Bellman [5].

Theorem 34.2.1 (Bellman principle). Let t 2 [0, T ]. If u⇤(s) is optimal for s 2 [t, T ] and x⇤ is the associated
optimal state, starting at the state xt 2 Rmx , then u⇤(s) is also optimal over the subinterval [t + �t, T ] for any
�t 2 [0, T � t] starting at xt+�t = x⇤(t+�t).

Proof. We show Theorem 34.2.1 by contradiction. Suppose that there exists a control u⇤⇤ so that

Z T

t+�t
`(x⇤⇤(s), u⇤⇤(s), s) ds+ g(x⇤⇤(T ))

<

Z T

t+�t
`(x⇤(s), u⇤(s), s) ds+ g(x⇤(T )),

(34.3)

where
ẋ⇤(s) = f(x⇤(s), u⇤(s), s) and ẋ⇤⇤(s) = f(x⇤⇤(s), u⇤⇤(s), s)

hold for s 2 [t+�t, T ]. We define the control

u(s) =

(
u⇤(s) if s 2 [t, t+�t],

u⇤⇤(s) if s 2 (t+�t, T ].
(34.4)

By x(s) we denote the state satisfying ẋ(s) = F (x(s), u(s), s) for s 2 [t, T ] and x(t) = xt. Then we derive from (34.3)
and (34.4) that Z T

t
`(x(s), u(s), s) ds+ g(x(T ))

=

Z t+�t

t
`(x⇤(s), u⇤(s), s) ds+

Z T

t+�t
`(x⇤⇤(s), u⇤⇤(s), s) ds+ g(x⇤⇤(T ))

<

Z t+�t

t
`(x⇤(s), u⇤(s), s) ds+

Z T

t+�t
`(x⇤(s), u⇤(s), s) ds+ g(x⇤(T ))

=

Z T

t
`(x⇤(s), u⇤(s), s) ds+ g(x⇤(T )).

(34.5)

Recall that u⇤(s) is optimal for s 2 [t, T ] by assumption. From (34.5) it follows that the control u given by (34.4)
yields a smaller value of the cost functional. This is a contradiction.

Next we derive the Hamilton-Jacobi-Bellman equation for (34.2). Let V ⇤ : Rmx ⇥ [0, T ] ! R denote the minimal
value function given by

V ⇤(xt, t)

= min
u:[t,T ]!Rmu

n
Jt(x, u)

�� ẋ(s) = f(x(s), u(s), s), s 2 (t, T ] and x(t) = xt

o (34.6)

for (xt, t) 2 Rmx ⇥ [0, T ], where

Jt(x, u) =

Z T

t
`(x(s), u(s), s) ds+ g(x(T )).

From the linearity of the integral and (34.6) we conclude

V ⇤(xt, t)

= min
u:[t,t+�t]!Rmu

⇢Z t+�t

t
`(x(s), u(s), s) ds+ V ⇤(x(t+�t), t+�t)

��

ẋ(s) = f(x(s), u(s), s), s 2 (t, t+�t] and x(t) = xt

�
(34.7)
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for (xt, t) 2 Rmx ⇥ [0, T ��t], where we have used the Bellman principle. Thus, by using the Bellman principle the
problem of finding an optimal control over the interval [t, T ] has been reduced to the problem of finding an optimal
control over the interval [t, t+�t].

Now we replace the integral in (34.7) by `(x(t), u(t), t)�t, perform a Taylor approximation for V ⇤(x(t+�t), t+�t)
about the point (xt, t) = (x(t), t) and approximatex(t+�t)� x(t) by f(x(t), u(t), t)�t. Then we find

V ⇤(xt, t) = min
ut2Rmu

⇢
`(xt, ut, t)�t+ V ⇤(xt, t) +

@V ⇤

@t
(xt, t)�t

+rV ⇤(xt, t)
>f(xt, ut, t)�t+ O(�t)

�

= V ⇤(xt, t) +
@V ⇤

@t
(xt, t)�t

+�t min
ut2Rmu

⇢
`(xt, ut, t) +rV ⇤(xt, t)

>f(xt, ut, t) +
O(�t)

�t

�

for any �t > 0. Thus,

�@V ⇤

@t
(xt, t) = min

ut2Rmu

⇢
`(xt, ut, t) +rV ⇤(xt, t)

>f(xt, ut, t) +
O(�t)

�t

�
.

Taking the limit �t ! 0 and using V ⇤(xt, T ) = g(xt) we obtain

�@V ⇤

@t
(xt, t) = min

ut2Rmu

�
`(xt, ut, t) +rV ⇤(xt, t)

>f(xt, ut, t)
 

(34.8a)

for all (xt, t) 2 Rmx ⇥ [0, T ) and
V ⇤(xt, T ) = g(xt) (34.8b)

for all xt 2 Rmx . System (34.8) is called the Hamilton-Jacobi-Bellman (HJB) equations.
To solve (34.8) we proceed in two steps. First we compute a solution ut to

u⇤(t) = argmin
ut2Rmu

�
`(xt, ut, t) +rV ⇤(xt, t)

>f(xt, ut, t)
 

and set
 (rV ⇤(xt, t), xt, t) = u⇤(t), (34.9)

which gives us a control law. Then we insert (34.9) into (34.8a) and solve

�@V ⇤

@t
(xt, t) = `(xt, (rV ⇤(xt, t), xt, t), t) +rV ⇤(xt, t)

>f(xt, (rV ⇤(xt, t), xt, t), t)

for all (xt, t) 2 Rmx ⇥ [0, T ). Finally, we can compute the gradient rV ⇤(xt, t) and deduce the state-feedback law

u⇤(t;xt) = �(xt, t) =  (rV ⇤(xt, t), xt, t) for all (xt, t) 2 Rmx ⇥ [0, T ).

Remark 34.2.2. 1) In general, it is not possible to solve (34.8) analytically. However, for the LQR problem we
can derive an explicit solution for the state-feedback law.

2) Note that the HJB equation are only necessary optimality conditions.
⌃

34.3 The state-feedback law for the linear quadratic problem

For the LQR problem we have

`(xt, ut, t) = x>

t Qxt + u>

t Rut, g(xt) = x>

t Mxt, f(xt, ut, t) = Axt +But

for (xt, u, t) 2 Rmx ⇥ Rmu ⇥ [0, T ]. For brevity, we focus on the situation, where the matrices A, B, Q, M , R are
time-invariant. However, most of the presented theory also holds for the time-varying case.
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First we minimize
x>

t Qxt + u>

t Rut +rV ⇤(xt, t)
>
�
Axt +But

�

with respect to ut. First-order necessary optimality conditions are given by

u>

t Rũt + ũ>

t Rut +rV ⇤(xt, t)
>Bũt = 0 for all ũt 2 Rmu and (xt, t) 2 Rmx ⇥ [0, T ).

By assumption, R is symmetric and positive definite. Then we find

�
2Rut +B>rV ⇤(xt, t)

�>
ũt = 0 for all ũt 2 Rmu and (xt, t) 2 Rmx ⇥ [0, T )

and

ūt = �1

2
R�1BTrV ⇤(xt, t) for all (xt, t) 2 Rmx ⇥ [0, T ). (34.10)

For the minimal value function V ⇤ we make the quadratic ansatz

V ⇤(xt, t) = x>

t P (t)xt for (xt, t) 2 Rmx ⇥ [0, T ), P (t) 2 Rmx⇥mx symmetric. (34.11)

Then, we have rV ⇤(xt, t) = 2P (t)x so that

ūt = �R�1B>P (t)xt for all (xt, t) 2 Rmx ⇥ [0, T ).

Note that for all (xt, t) 2 Rmx ⇥ [0, T )

@V ⇤

@t
(xt, t) = x>

t Ṗ (t)xt,

`(xt,�R�1B>P (t)xt, t) = x>

t Qxt + x>

t P (t)BR�1B>P (t)xt

= x>

t

�
Q+ P (t)BR�1B>P (t)

�
xt,

f(xt,�R�1B>P (t)xt, t) = Axt �BR�1B>P (t)xt =
�
A�BR�1B>P (t)

�
xt,

rV ⇤(xt, t) = 2P (t)xt.

Consequently,

� x>

t Ṗ (t)xt = �@V ⇤

@t
(xt, t)

= x>

t

�
Q+ P (t)BR�1B>P (t)

�
xt +

�
2P (t)xt

�>�
A�BR�1B>P (t)

�
xt

for all (xt, t) 2 Rmx ⇥ [0, T ), which yields

� x>

t Ṗ (t)xt

= x>

t

�
Q+ P (t)BR�1B>P (t) + 2P (t)A� 2P (t)BR�1B>P (t)

�
xt

= x>

t

�
2P (t)A+Q� P (t)BR�1B>P (t)

�
xt

for all (xt, t) 2 Rmx ⇥ [0, T ). From P (t) = P (t)> we deduce that

2x>

t P (t)Axt = x>

t P (t)Axt + x>

t A
TP (t)xt = x>

t

�
A>P (t) + P (t)A

�
xt.

Using V ⇤(xt, T ) = xT
t P (T )xt and (34.8b) we get

�x>

t Ṗ (t)xt = x>

t

�
A>P (t) + P (t)A+Q� P (t)BR�1B>P (t)

�
xt, t 2 [0, T ), (34.12a)

x>

t P (T )xt = x>

t Mxt. (34.12b)

Since (34.12) holds for all xt 2 Rmx we obtain the following matrix Riccati equation

�Ṗ (t) = A>P (t) + P (t)A+Q� P (t)BR�1B>P (t), t 2 [0, T ), (34.13a)

P (T ) = M. (34.13b)

Finally, the optimal state-feedback is given by

ū(t) = �K(t)x(t) and K(t) = R�1B>P (t) for all t 2 [0, T ).
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Example 34.3.1. Let us consider the problem

min

Z T

0
|x(t)|2 + |u(t)|2 dt s.t. ẋ(t) = u(t) for t 2 (0, T ].

Choosing mx = mu = 1, A = M = 0 and B = Q = R = 1 the matrix Riccati equation has the form

�Ṗ (t) = 1� P (t)2 for t 2 [0, T ) and P (T ) = 0.

This scalar ordinary di↵erential equation can be solved by separation of variables. Its solution is

P (t) =
1� e�2(T�t)

1 + e�2(T�t)
for t 2 [0, T )

with the optimal control ū(t) = �P (t)x(t). ⌃
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