Lecture 34

Linear-Quadratic Optimal Control

In this lecture we introduce the optimal state-feedback and the linear-quadratic regulator (LQR) problem. Utilizing
dynamic programming necessary optimality conditions are derived. It turns out that for the LQR problem the
state-feedback solution can be determined by solving a differential matrix Riccati equation. The presented theory is
taken from the book [12].

34.1 The problem formulation
The goal is to find a state-feedback control law of the form

u(t) = —Ka(t) forte[0,T]

with w: [0,T] = R™ x:[0,T] = R™=, K € R™*™M= g0 that u minimizes the quadratic cost functional
T
J(z,u) = / z(t) T Qx(t) + u(t) T Ru(t) dt + x(T) T Mx(T), (34.1a)
0

where the state z and the control u are related by the linear initial value problem
z(t) = Az(t) + Bu(t) for t € (0,T7] and x(0) = xo. (34.1b)

In the matrices @, M € R™=*™= are symmetric, positive semi-definite, R € R™=*™ ig symmetric, positive
definite and in we have A € RM=XM= B € R™=*™u and xq € R™=. The final time T is fixed, but the final
state 2(T) is free. Thus, we aim to track the state to the state Z = 0 as good as possible. The terms x(t)TQz(t) and
2(T)T Mx(T) are measures for the control accuracy and the term u(t)” Ru(t) measures the control effort. Problem
is called the linear-quadratic regulator problem (LQR problem).

34.2 The Hamilton-Jacobi-Bellman equation

In this section we derive first-order necessary optimality conditions for the LQR problem. Since generalizing the
problem to a non-linear problem does not cause more difficulties in the deviation, we consider the problem to find a
state-control feedback control law

u(t) = ®(x(t),t), tel0,T),

such that the cost-functional .
Ty(w,u) = /t 0 (s), u(s), ) ds + g(x(T)) (34.2a)
is minimized subject to the non-linear system dynamics
#(s) = f(z(s),u(s),s) for s € (0,7] and =(t) = z. (34.2b)
We suppose that the functions £ : R™= x R™« x [0,7] — [0,00) and g : R™= — [0, 00) satisfy

£(0,0,8) =0 for s € [0,7] and g¢(0)=0
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Moreover, let f : R™» x R™« x [0,7] — R™= be continuous and locally Lipschitz-continuous with respect to the
variable . Moreover, z; € R™= holds. To derive optimality conditions we use the so-called Bellman principle (or
dynamic programming principle). The essential assumption is that the system can be characterized by its state x(t)
at the time ¢ € [0,7] which completely summarizes the effect of all u(s) for 0 < s < ¢. The dynamic programming
principle was first proposed by Bellman [5].

Theorem 34.2.1 (Bellman principle). Let t € [0,T]. If u*(s) is optimal for s € [t,T] and x* is the associated
optimal state, starting at the state xx € R™=, then u*(s) is also optimal over the subinterval [t + At,T] for any
At € [0,T — t] starting at xeya = (L + At).

Proof. We show Theorem|34.2.1| by contradiction. Suppose that there exists a control ©** so that

T
/" U™ (s),u™ (5), 5) ds + g(a** (T)
t+AL T (34.3)

</ U (3),u*(s), ) ds + g (T)),

t+At

where
" (s) = f(2"(s),u"(s),5) and &™(s) = f(a™"(s),u™"(5), 5)
hold for s € [t + At, T]. We define the control

u(s)

:{ u*fs) if s € [t,t + At], (34.4)

**(s) if s € (t+ At T).

By z(s) we denote the state satisfying #(s) = F(x(s),u(s), s) for s € [t,T] and x(t) = x;. Then we derive from -34.3
agd - ) that e
T
[ tats)uts)5)ds + g(a(1))
t+AL T
= [ @@ st [ (0,07 ), 95 4 9l (D))
LA R (34.5)
</ f@%MN$)®+/M/W@MN$ﬁ®+mfGD

/f (), 5) ds + g(a*(T)).

Recall that u*(s) is optimal for s € [t,T] by assumption. From (34.5) it follows that the control u given by (34.4)
yields a smaller value of the cost functional. This is a contradiction. l

Next we derive the Hamilton-Jacobi-Bellman equation for (34.2). Let V* : R™= x [0,T] — R denote the minimal
value function given by

V*($t7t)
. ; , e (34.6)
= omin i) [#(5) = F((s),uls)s), s € (4,T] and a(t) = .
for (m,t) € R™= x [0,T], where
T
Tesw) = [ 6Gats),u(s). ) ds + gla(T)).
t
From the linearity of the integral and (34.6) we conclude
V* (l‘t, t)
t+At
_ . A A
e { /t U(a(s), u(s), ) ds + V*(a(t + A),t + Ab) | (34.7)

z(s) = f(z(s),u(s),s), s € (t,t + At] and z(t) = mt}
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for (z¢,t) € R™= x [0, — At], where we have used the Bellman principle. Thus, by using the Bellman principle the
problem of finding an optimal control over the interval [t, T] has been reduced to the problem of finding an optimal
control over the interval [¢,t + At].

Now we replace the integral in by £(z(t), u(t), t) At, perform a Taylor approximation for V*(x(t+At), t+At)
about the point (z,t) = (x(t),t) and approximatex(t + At) — xz(t) by f(z(t),u(t),t)At. Then we find

V*(2¢,t) = min {E(mt,ut,t)At + V¥ (x,t) + ovz

) At
wr R ot (w¢,1)

+ VV* (x4, t) T fg, ug, )AL + o(At)}

*

= V*(xt,t) + W(Z’t,t)At
) o(At)
At 1 t (24, t) " t
+ uﬁIélﬂlg},’“{ (zgyug, t) + VV (24, 1) ' [y, ug, t) + At }

for any At > 0. Thus,

W(xht) - ut%lﬂép"u {gcﬁt?uht) +VV (xﬁt)—rf('rhutvt) + (At ) }

Taking the limit At — 0 and using V*(x4, T) = g(x) we obtain

ov* . .
- ot (xtvt) = urél]]g}'u {Z(xtautvt) +VV (xtvt)—rf(xhut?t)} (3483‘)

for all (z¢,t) € R™» x [0,T) and
V¥ (e, T) = g(w¢) (34.8b)

for all z; € R™=. System (34.8) is called the Hamilton-Jacobi-Bellman (HJB) equations.
To solve (34.8) we proceed in two steps. First we compute a solution u; to

u*(t) = argerﬂrgin {6(1}, ug, t) + VV* (20, t) T (24, ur, t)}
uiZRMu
and set
W(VV*(xht)axtvt) = U*(t), (349)
which gives us a control law. Then we insert (34.9) into (34.8a) and solve

ov*
—W (.Tt,t) = Z(xt, \IJ(VV*(CEt, t), {I't,t), t) + VV*(.fEt,t)Tf(l't, \II(VV*(Z't,t), .Tt,t),t)

for all (z¢,t) € R™= x [0,T). Finally, we can compute the gradient VV*(x,t) and deduce the state-feedback law
w () = O(z4,t) = UW(VV* (24, t),24,t)  for all (z4,t) € R™= x [0,T).

Remark 34.2.2. 1) In general, it is not possible to solve (34.8) analytically. However, for the LQR problem we
can derive an explicit solution for the state-feedback law.

2) Note that the HIJB equation are only necessary optimality conditions.

34.3 The state-feedback law for the linear quadratic problem
For the LQR problem we have
U, ue,t) = &) Quy+ul Ry, glwy) = x/ May,  f(wy,up,t) = Az, + Buy

for (zy,u,t) € R™= x R™v x [0,T]. For brevity, we focus on the situation, where the matrices A, B, Q, M, R are
time-invariant. However, most of the presented theory also holds for the time-varying case.
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First we minimize
xtTth + utTRut + VV* (2, t)T (Axt + But)

with respect to us. First-order necessary optimality conditions are given by

u, Rity + @) Rug +VV*(x4,t) By =0 for all @, € R™ and (z4,t) € R™ x [0,T).

By assumption, R is symmetric and positive definite. Then we find
(2Rut + BTVV*(xt,t))Tﬂt =0 forall 4; € R™ and (z+,¢t) € R™ x [0,T)

and
1
Uy = ~3 RIBTVV*(xy,t) for all (z;,t) € R™= x [0,T).

For the minimal value function V* we make the quadratic ansatz

V*(x4,t) =z P(t)zy for (zy,t) € R™ x [0,T), P(t) € R™*™= symmetric.

Then, we have VV*(zy,t) = 2P(¢)x so that
iy = —R BT P(t)z; forall (z;,t) € R™ x [0,T).
Note that for all (z,t) € R™= x [0,T)
oV*
ot
Uz, —RIBTP(t)xy,t) = 2] Quy + 2] P(()BR™*BT P(t)x,
=2, (Q+ Pt)BR™'B"P(t))x,
flze,—R™'B"P(t)zy,t) = Az, — BR™'B'P(t)z; = (A— BR™'B' P(t))a,
VV* (xt, t) = 2P(t)l't

(e, 1) = x?P(t)m,

Consequently,
V*
ot (mtv t)

— 2/ (Q+ P()BR™'BT P(t))x, + (2P(t)x,) " (A— BR™'BT P(t)),

_xtP()

for all (x¢,t) € R™= x [0,T), which yields
— ) P(t)z,
=2/ (Q+Pt)BR'B"P(t) + 2P(t)A — 2P(t)BR™*B" P(t))
=/ (2P(t)A+ Q — P(t)BR™'B" P(t))x:
for all (z¢,t) € R™= x [0,T). From P(t) = P(t)" we deduce that
2z P(t)Axy = x] P(t) Az + 2] ATP(t)xy = x; (ATP(t) + P(t)A)z,
Using V* (24, T) = x{ P(T)x; and (34.8b) we get
—z] P(t)zy = 2, (AT (t) + P)A+Q — P(t)BR'BTP(t))zy, t€[0,7),
z; P(T)x, = ] M.

Since (34.12)) holds for all x; € R™= we obtain the following matriz Riccati equation

—P(t)=ATP(t)+ P(t)A+Q — P(t)BR™'BTP(t), tc|0,T),
P(T) = M.

Finally, the optimal state-feedback is given by
a(t) = —K(t)z(t) and K(t)= R 'BTP(t) forallte[0,T).

(34.10)

(34.11)

(34.12a)
(34.12D)

(34.13a)
(34.13Db)
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Example 34.3.1. Let us consider the problem
T
min/ @ + a2 dt st @(t) = u(t) for t € (0,T].
0
Choosing m, =my, =1, A= M =0 and B =@ = R = 1 the matrix Riccati equation has the form
—P(t)=1-P(t)*fort € [0,T) and P(T)=0.

This scalar ordinary differential equation can be solved by separation of variables. Its solution is

1 _ e—2(T—1)

PO =15 s

for t € [0,T)

with the optimal control @(t) = —P(t)z(t). O
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