Tutorium 4

18. Januar 2023

4.1 Linear-Quadratic Optimal Control

Tracking problem- problem formulation

The goal is to find a state-feedback control law of the form

$$
u(t)=\Psi(y(t), t) \text { for } t \in[0, T]
$$

with $u:[0, T] \rightarrow \mathbb{R}^{m_{u}}, y:[0, T] \rightarrow \mathbb{R}^{m_{y}}$ so that u minimizes the quadratic cost functional

$$
\begin{equation*}
J(y, u)=\int_{0}^{T}\left(y(t)-y^{d}(t)\right)^{\top} Q\left(y(t)-y^{d}(t)\right)+u(t)^{\top} R u(t) d t+\left(y(T)-y^{d}(T)\right)^{\top} M\left(y(T)-y^{d}(T)\right) \tag{4.1}
\end{equation*}
$$

subject to the linear initial value problem

$$
\begin{equation*}
\dot{y}(t)=A y(t)+B u(t)+f(t) \text { for } t \in(0, T] \text { and } y(0)=y_{0} . \tag{4.2}
\end{equation*}
$$

The matrices $Q, M \in \mathbb{R}^{m_{y} \times m_{y}}$ are symmetric, positive semi-definite, $R \in \mathbb{R}^{m_{u} \times m_{u}}$ is symmetric, positive definite and in (4.2) we have $A \in \mathbb{R}^{m_{y} \times m_{y}}, B \in \mathbb{R}^{m_{y} \times m_{u}}, f \in C\left([0, T], \mathbb{R}^{m_{y}}\right)$ and $y_{0} \in \mathbb{R}^{m_{y}}$. The final time T is fixed. Thus, we aim to track the state to the state y^{d} as good as possible.

Exercise 1

Reformulate the minimization problem from 4.1 to obtain an optimization problem of the following form

$$
\begin{align*}
& J(x, u)=\int_{0}^{T} x(t)^{\top} Q x(t)+u(t)^{\top} R u(t) d t+x(T)^{\top} M x(T) \tag{4.3a}\\
& \dot{x}(t)=A x(t)+B u(t)+\omega(t) \text { for } t \in(0, T] \text { and } x(0)=x_{0} . \tag{4.3b}
\end{align*}
$$

Use $x(t):=y(t)-y^{d}(t)$.
Proof.

Exercise 2

Use the same method as in Section 34.3 to find the optimal state-feedback law for (4.3). Instead of the quadratic ansatz in (34.11) use the ansatz

$$
V^{*}\left(x_{t}, t\right)=x_{t}^{\top} P(t) x_{t}+2 b(t)^{\top} x_{t}+c(t)
$$

for $x_{t} \in \mathbb{R}^{m_{x}}, t \in[0, T), P(t) \in \mathbb{R}^{m_{x} \times m_{x}}$ symmetric, $b(t) \in \mathbb{R}^{m_{x}}, c(t) \in \mathbb{R}$ and $m_{x}:=m_{y}$. Assume that $A \in \mathbb{R}^{m_{x} \times m_{x}}$ is symmetric, to simplify the proof.

Proof.

Exercise 3

Let us consider the problem

$$
\min \int_{0}^{T}|x(t)|^{2}+|u(t)|^{2} \mathrm{~d} t \quad \text { s.t. } \quad \dot{x}(t)=u(t)+t \text { for } t \in(0, T] .
$$

Choosing $m_{x}=m_{u}=1, A=M=0$ and $B=Q=R=1$.

1. Calculate the matrix Riccati equations.
2. Calculate the optimal state-feedback law.

Proof.

