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1.1 Optimal control of the Laplace equation

We expand the concept of finite-dimensional optimal control theory from the lecture to infinite dimensional optimal
control problems using the Laplace equation.

Let us consider the minimization problem

—Ay = (u,&)gnu  on

y=0 on 5O and wu € Uyy (1.1)

min J(y,u) s.t. {
with Q C R? a close and bounded Lipschitz domain, J : Y x R — R with

1 1
Iy =5 [y =al do+ 5llu =l
Q

denotes the quadratic cost functional, Y := H}(Q) the state space with the following scalar product
(Y, ) m () = /Vngoda:,
Q

Uyq C R™ is the set of addmissible control parameters, y4 € Y the desired state, ug € R™ the desired control and
£ e L3(Q,R™).
We look for a control vector u € R™ and a state y € Y which solve (L.1.

Remark 1.1.1. For u € U, the function y € Y = H}(Q) is called a weak solution of

—Ay = na Q
Yy <ua §>R on (12)
y=0 on 0f)
if the weak formulation
o) i= [ VuVods = [ € do = Flug) (1.3)
Q Q
holds for all p e Y witha:Y XY - Rand F:U,g XY — R. O

Theorem 1.1.2 (Lax and Milgram). Let Y be a Hilbert space. Suppose that for the bilinear form
a:Y XY — R there exist ¢, > 0 with

1. laly, 9 < allylly llly (voundedness)
2. cllyll3 < aly,y) (V-ellipticity).
Then for every F' € Y™ there exists a unique y € Y which solves
a(y,p) = F(p) forallgeY

and there exists c, > 0 with

1ylly < cal Flly~
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The proof can be found in [I].
Theorem 1.1.3. If Q is a close and bounded Lipschitz domain, then for every u € Uuq and & € L*(Q,R™) there
exists an unique weak solution y € Y of (1.2) with
Yl @) < cllull2ll€llz2@rm).- (1.4)
Proof. Exercise. (Use Lax and Milgram and Poincaré inequality.) O

Remark 1.1.4. Induced by Theorem we define the solution operator S : Ugg — Y with u — y(u). With this,
we can define the reduced problem .
min J(u) := J(S(u),u) s.t. u € Uyg. (1.5)

O

Theorem 1.1.5. Let Q C R? be a closed and bounded Lipschitz domain, Y := H} (), y4 € Y, Usg C R™ a closed,
nonempty, bounded and convex set, & € L?>(Q, R™) and assume that the solution operator S : Uyg — Y is linear and
continuous. Then (1.5) has an optimal control @ with an optimal state §. If @ is strictly convex, the optimal control
U 1S UNIQUE.

Proof. Exercise. O

Lemma 1.1.6. Assume that the conditions from Theorem m hold. Then the reduced cost functional J is
continuously differentiable on U,4 and it holds

T

VJ(u) = SGipdx, ..., | Eupdx | + (u—ug) (1.6)
[erse]

and p € Y solves the adjoint equation

—Ap=S8(u) — Q
p=35(u)—ya on (L)
p=20 on Of)
p is called the adjoint variable, associated with (y, u.
Proof. Exercise. Use the representation of (1.6)) to show
1 J(u+w) = J(u) — (VJ(u),w) 0
llwligne —0 [[w|lrnw '
O

Theorem 1.1.7. Assume that the conditions of Theorem hold and assume that u solves the reduced problem
(1.5)). Then the variational inequality

(VJ(u),u — ygne >0 for all u € Uyq (1.8)

holds.
If i € Ugq is a solution of the variational inequality (1.8) and J is convez, then @ solves (1.5).

Proof. Exercise. (Same arguments as in Optimization II). O

Remark 1.1.8. Utilizing the adjoint variable for the representation of the gradient of the reduced cost functional
J the variational inequality (|1.8)) is equivalent to

0 <(VJ(@),u — Wrru = /(u — U, E)rrupdr + (0 — ug,u — Uygnw  for all u € Uygy.
Q
Now we can formulate an optimality system for the unknown variables u,y and p:
a(y,p) = F(u,p) for all p €,

a(p,¢) = Fp(¥, ) for all ¢ €Y,
(1.9)
0< /(u — U, E)gnupdr + (4 — ug,u — Wgnw for all u € Uyg

Q
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with

Fy(5¢) = / (7 — ya)p da.
Q

Every solution (7, @) to (1.1)) must satisfy, together with the adjoint variable p, the necessary conditions ((1.9). Due
to the convexity in this setting, the conditions are sufficient. %
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