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1 The POD method

Throughout the lecture we suppose that X is a real Hilbert space (cf. [DR12, Definition 12.15])
endowed with the inner product 〈· , ·〉X and the associated induced norm ‖ · ‖X = 〈· , ·〉1/2

X . Further-
more, we assume that X is separable, i.e., X has a countable dense subset; [DR12, Definition 11.3].
This implies that X possesses a countable orthonormal basis; see, e.g., [DR12, Definition 12.30].
For the POD method in complex Hilbert spaces we refer to [Vol01], for instance.

1.1 The discrete variant of the POD method

For fixed n, ℘ ∈ N let the so-called snapshots y k1 , . . . , y
k
n ∈ X be given for 1 ≤ k ≤ ℘. To avoid

a trivial case we suppose that at least one of the y kj ’s is nonzero. Then, we introduce the finite
dimensional, linear subspace

Vn = span
{
y kj
∣∣ 1 ≤ j ≤ n and 1 ≤ k ≤ ℘

}
⊂ X (1.1)

with dimension dn ∈ {1, . . . , n℘} <∞. We call the set Vn snapshot subspace.

Remark 1.1. Later we will focus on the following application: Let 0 ≤ t1 < t2 < . . . < tn ≤ T be
a given time grid in the interval [0, T ]. To simplify of the presentation, the time grid is assumed to
be equidistant with step-size ∆t = T/(n−1), i.e., tj = (j−1)∆t. For nonequidistant grids we refer
the reader to [KV02a, KV02b]. Suppose that we have trajectories y k ∈ C([0, T ];X), 1 ≤ k ≤ ℘.
Here, the Banach space C([0, T ];X) contains all functions ϕ : [0, T ] → X, which are continuous
on [0, T ] with the norm

‖ϕ‖C([0,T ];X) = max
{
‖ϕ(t)‖X

∣∣ t ∈ [0, T ]
}

for ϕ ∈ C([0, T ];X);

see, e.g., [Tro09, p. 114]. Let the snapshots be given as y kj = y k(tj) ∈ X or y kj ≈ y k(tj) ∈ X. In
Sections 2 and 3 we will choose trajectories as solutions to evolution problems. ♦

In Section 1.3 we consider the case, where the number n is varied. Therefore, we emphasize this
dependence by using the super index n. We distinguish two cases:
1) The separable Hilbert space X has finite dimension m. Then, X is isomorphic to Rm. We set
I = {1, . . . , m}. Clearly, we have dn ≤ min(n℘,m).

2) Since X is separable, each orthonormal basis of X has countably many elements. In this case
X is isomorphic to the set `2 of sequences {xi}i∈N of real numbers which satisfy

∑∞
i=1 |xi |2 <

∞; see [DR12, Beispiel 12.14-(ii)], for instance. Then, we define I = N.
The method of POD consists in choosing an orthonormal set {ψi}`i=1 in X such that for every
` ∈ {1, . . . , dn} the mean square error between the n℘ elements y kj and their corresponding `-th
partial Fourier sum is minimized on average:

min

℘∑
k=1

n∑
j=1

αnj

∥∥∥y kj −∑̀
i=1

〈y kj , ψi〉X ψi
∥∥∥2

X
s.t. {ψi}`i=1 ⊂ X and 〈ψi , ψj〉X = δi j , 1 ≤ i , j ≤ `, (P`n)

where the αnj ’s denote positive weighting parameters and ‘s.t.’ stands for ‘subject to’. Here, the
symbol δi j denotes the Kronecker symbol satisfying δi i = 1 and δi j = 0 for i 6= j . An optimal
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solution {ψ̄ni }`i=1 to (P`n) is called a POD basis of rank `, which can be extended to a complete
orthonormal basis {ψi}i∈I in the Hilbert space X. Notice that

∥∥∥y kj − ∑̀
i=1

〈y kj , ψi〉X ψi
∥∥∥2

X

=
〈
y kj −

∑̀
i=1

〈y kj , ψi〉X ψi , y
k
j −

∑̀
l=1

〈y kj , ψl〉X ψl
〉
X

= ‖y kj ‖
2

X
− 2

∑̀
i=1

〈y kj , ψi〉
2

X
+
∑̀
i=1

∑̀
l=1

〈y kj , ψi〉X〈y
k
j , ψl〉X〈ψi , ψl〉X

= ‖y kj ‖
2

X
−
∑̀
i=1

〈y kj , ψi〉
2

X

(1.2)

holds for any set {ψi}`i=1 ⊂ X satisfying 〈ψi , ψj〉X = δi j . Thus, (P`n) is equivalent with the
maximization problem

max

℘∑
k=1

n∑
j=1

αnj

∑̀
i=1

〈y kj , ψi〉
2

X
s.t. {ψi}`i=1 ⊂ X and 〈ψi , ψj〉X = δi j , 1 ≤ i , j ≤ `. (P̂`n)

Suppose that {ψi}i∈I is a complete orthonormal basis in X. Since X is separable, any y kj ∈ X,
1 ≤ j ≤ n and 1 ≤ k ≤ ℘, can be written as

y kj =
∑
i∈I
〈y kj , ψi〉X ψi (1.3)

and the (probably infinite) sum converges for all snapshots (even for all elements in X). Thus,
the POD basis {ψ̄ni }`i=1 of rank ` maximizes the absolute values of the first ` Fourier coefficients
〈y kj , ψi〉X for all n℘ snapshots y kj in an average sense. Let us recall the following definition for linear
operators in Banach spaces; cf. [DR11, Definition 10.16] and [DR12, Definition 13.18].

Definition 1.2. Let B1, B2 be two real Banach spaces. The operator T : B1 → B2 is called a
linear, bounded operator if these two conditions are satisfied:
1) T (αu + βv) = αT u + βT v for all α, β ∈ R and u, v ∈ B1.

2) There exists a constant c > 0 such that ‖T u‖B2
≤ c ‖u‖B1

for all u ∈ B1.
The set of all linear, bounded operators from B1 to B2 is denoted by L(B1,B2) which is a Banach
space equipped with the operator norm

‖T ‖L(B1,B2) = sup
‖u‖B1

=1
‖T u‖B2

for T ∈ L(B1,B2).

If B1 = B2 holds, we briefly write L(B1) instead of L(B1,B2). The dual mapping T ′ : B′2 → B′1
of an operator T ∈ L(B1,B2) is defined as

〈T ′f , u〉B′1,B1
= 〈f , T u〉B′2,B2

for all (u, f ) ∈ B1 ×B′2,

where, for instance, 〈· , ·〉B′1,B1
denotes the dual pairing of the space B1 with its dual space B′1 =

L(B1,R).

Let H1 and H2 denote two real Hilbert spaces. For a given T ∈ L(H1,H2) the adjoint operator
T ? : H2 → H1 is uniquely defined by

〈T ?v , u〉H1
= 〈v , T u〉H2

= 〈T u, v〉H2
for all (u, v) ∈ H1 ×H2.
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Let Ji : Hi → H′i , i = 1, 2, denote the Riesz isomorphisms satisfying

〈u, v〉Hi
= 〈Jiu, v〉H′i ,Hi

for all u, v ∈ Hi .

Then, we have

〈T ?v , u〉H1
= 〈v , T u〉H2

= 〈J2v , T u〉H′2,H2
= 〈T ′J2v , u〉H′1,H1

= 〈J −1
1 T

′J2v , u〉H1
for all (u, v) ∈ H1 ×H2.

Consequently, T ? = J −1
1 T ′J2 holds. Moreover, (T ?)? = T for every T ∈ L(H1,H2). If T = T ?

holds, T is said to be selfadjoint. The operator T ∈ L(H1,H2) is called nonnegative if 〈T u, u〉H2
≥

0 for all u ∈ H1. Finally, T ∈ L(H1,H2) is called compact if for every bounded sequence {un}n∈N ⊂
H1 the sequence {T un}n∈N ⊂ H2 contains a convergent subsequence.
Now we turn to (P`n) and (P̂`n). We make use of the following lemma.

Lemma 1.3. Let X be a (separable) real Hilbert space and y k1 , . . . , y
k
n ∈ X are given snapshots for

1 ≤ k ≤ ℘. Define the linear operator Rn : X → X as follows:

Rnψ =

℘∑
k=1

n∑
j=1

αnj 〈ψ, y kj 〉X y
k
j for ψ ∈ X (1.4)

with positive weights αn1, . . . , α
n
n. Then, Rn is a compact, nonnegative and selfadjoint operator.

Proof. It is clear that Rn is a linear operator. From

‖Rnψ‖X ≤
℘∑
k=1

n∑
j=1

αnj
∣∣〈ψ, y kj 〉X∣∣ ‖y kj ‖X for ψ ∈ X

and the Cauchy-Schwarz inequality [DR12, Satz 12.17]∣∣〈ϕ, φ〉X∣∣ ≤ ‖ϕ‖X‖φ‖X for ϕ, φ ∈ X

we conclude that Rn is bounded. Since Rnψ ∈ Vn holds for all ψ ∈ X, the range of Rn is finite
dimensional. Thus, Rn is a finite rank operator which is compact; see [DR12, Satz 19,2-(iii)]. Next
we show that Rn is nonnegative. For that purpose we choose an arbitrary element ψ ∈ X and
consider

〈Rnψ,ψ〉X =

℘∑
k=1

n∑
j=1

αnj 〈ψ, y kj 〉X 〈y
k
j , ψ〉X =

℘∑
k=1

n∑
j=1

αnj 〈ψ, y kj 〉
2

X
≥ 0.

Thus, Rn is nonnegative. For any ψ, ψ̃ ∈ X we derive

〈Rnψ, ψ̃〉X =

℘∑
k=1

n∑
j=1

αnj 〈ψ, y kj 〉X 〈y
k
j , ψ̃〉X =

℘∑
k=1

n∑
j=1

αnj 〈ψ̃, y kj 〉X 〈y
k
j , ψ〉X

= 〈Rnψ̃, ψ〉X = 〈ψ,Rnψ̃〉X .

Thus, Rn is selfadjoint. �

Next we recall some important results from the spectral theory of operators (on infinite dimen-
sional spaces). We begin with the following definition; see [DR12, Definition 13.22].

Definition 1.4. Let H be a real Hilbert space and T ∈ L(H).
1) A complex number λ belongs to the resolvent set ρ(T ) if λI−T is a bijection with a bounded

inverse. Here, I ∈ L(H) stands for the identity operator. If λ 6∈ ρ(T ), then λ is an element
of the spectrum σ(T ) of T .
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2) Let u 6= 0 be a vector with T u = λu for some λ ∈ C. Then, u is said to be an eigenvector of
T . We call λ the corresponding eigenvalue. If λ is an eigenvalue, then λI−T is not injective.
This implies λ ∈ σ(T ). The set of all eigenvalues is called the point spectrum of T .

We will make use of the next two essential theorems for compact operators; see [RS80, p. 203]
and [DR12, Satz 19.7 and Satz 19.8].

Theorem 1.5 (Riesz-Schauder). Let H be a real Hilbert space and T : H→ H a linear, compact
operator. Then the spectrum σ(T ) is a discrete set having no limit points except perhaps 0. Fur-
thermore, the space of eigenvectors corresponding to each nonzero λ ∈ σ(T ) is finite dimensional.

Theorem 1.6 (Hilbert-Schmidt). Let H be a real separable Hilbert space and T : H → H a
linear, compact, selfadjoint operator. Then, there is a sequence of eigenvalues {λi}i∈I and of an
associated complete orthonormal basis {ψi}i∈I ⊂ X satisfying

T ψi = λiψi and λi → 0 as i →∞.

Since X is a separable real Hilbert space and Rn : X → X is a linear, compact, nonnegative,
selfadjoint operator (see Lemma 1.3), we can utilize Theorems 1.5 and 1.6: There exist a complete
countable orthonormal basis {ψ̄ni }i∈I and a corresponding sequence of real eigenvalues {λ̄ni }i∈I
satisfying

Rnψ̄ni = λ̄ni ψ̄
n
i , λ̄n1 ≥ . . . ≥ λ̄dn > λ̄dn+1 = . . . = 0. (1.5)

The spectrum of Rn is a pure point spectrum except for possibly 0. Each nonzero eigenvalue of
Rn has finite multiplicity and 0 is the only possible accumulation point of the spectrum of Rn.

Remark 1.7. From (1.4), (1.5) and ‖ψ‖X = 1 we infer that

℘∑
k=1

n∑
j=1

αnj 〈y kj , ψ̄ni 〉
2

X
=

〈 ℘∑
k=1

n∑
j=1

αnj 〈y kj , ψ̄ni 〉Xy
k
j , ψ̄

n
i

〉
X

= 〈Rnψ̄ni , ψ̄ni 〉X = λ̄ni for any i ∈ I.

(1.6)

In particular, it follows that

℘∑
k=1

n∑
j=1

αnj 〈y kj , ψ̄ni 〉
2

X
= 0 for all i > dn. (1.7)

Since {ψ̄ni }i∈I is a complete orthonormal basis and ‖y kj ‖X < ∞ holds for 1 ≤ k ≤ ℘, 1 ≤ j ≤ n,
we derive from (1.6) and (1.7) that

℘∑
k=1

n∑
j=1

αnj ‖y kj ‖
2

X
=

℘∑
k=1

n∑
j=1

αnj

∑
ν∈I
〈y kj , ψ̄nν〉

2

X

=
∑
ν∈I

℘∑
k=1

n∑
j=1

αnj 〈y kj , ψ̄nν〉
2

X
=
∑
i∈I

λ̄ni =

dn∑
i=1

λ̄ni .

(1.8)

By (1.8) the sum
∑
i∈I λ̄

n
i is bounded. It follows from (1.2) that the objective of (P`n) can be

written as
℘∑
k=1

n∑
j=1

αnj

∥∥∥y kj − ∑̀
i=1

〈y kj , ψ̄ni 〉X ψ̄
n
i

∥∥∥2

X

=

dn∑
i=1

λ̄ni −
℘∑
k=1

n∑
j=1

αnj

∑̀
i=1

〈y kj , ψ̄ni 〉
2

X

(1.9)

which we will use in the proof of Theorem 1.8. ♦
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Now we can formulate the main result for (P`n) and (P̂`n).

Theorem 1.8. Let X be a separable real Hilbert space, y k1 , . . . , y
k
n ∈ X for 1 ≤ k ≤ ℘ and

Rn : X → X be defined by (1.4). Suppose that {λ̄ni }i∈I and {ψ̄ni }i∈I denote the nonnegative
eigenvalues and associated orthonormal eigenfunctions of Rn satisfying (1.5). Then, for every
` ∈ {1, . . . , dn} the first ` eigenfunctions {ψ̄ni }`i=1 solve (P`n) and (P̂`n). Moreover, the value of
the cost evaluated at the optimal solution {ψ̄ni }`i=1 satisfies

℘∑
k=1

n∑
j=1

αnj

∥∥∥y kj − ∑̀
i=1

〈y kj , ψ̄ni 〉X ψ̄
n
i

∥∥∥2

X
=

dn∑
i=`+1

λ̄ni (1.10)

and
℘∑
k=1

n∑
j=1

αnj

∑̀
i=1

〈y kj , ψ̄ni 〉
2

X
=
∑̀
i=1

λ̄ni . (1.11)

Proof. We prove the claim for (P̂`n) by finite induction over ` ∈ {1, . . . , dn}.
1) The base case: Let ` = 1 and ψ ∈ X with ‖ψ‖X = 1. Since {ψ̄nν}ν∈I is a complete ortho-

normal basis in X, we have the representation

ψ =
∑
ν∈I
〈ψ, ψ̄nν〉X ψ̄

n
ν . (1.12)

Inserting this expression for ψ in the objective of (P̂`n) we find that

℘∑
k=1

n∑
j=1

αnj 〈y kj , ψ〉
2

X
=

℘∑
k=1

n∑
j=1

αnj

〈
y kj ,
∑
ν∈I
〈ψ, ψ̄nν〉X ψ̄

n
ν

〉2

X

=

℘∑
k=1

n∑
j=1

αnj

∑
ν∈I

∑
µ∈I

(〈
y kj , 〈ψ, ψ̄nν〉X ψ̄

n
ν

〉
X

〈
y kj , 〈ψ, ψ̄nµ〉X ψ̄

n
µ

〉
X

)
=

℘∑
k=1

n∑
j=1

αnj

∑
ν∈I

∑
µ∈I

(
〈y kj , ψ̄nν〉X〈y

k
j , ψ̄

n
µ〉X〈ψ, ψ̄

n
ν〉X〈ψ, ψ̄

n
µ〉X

)
=
∑
ν∈I

∑
µ∈I

(〈 ℘∑
k=1

n∑
j=1

αnj 〈y kj , ψ̄nν〉X y
k
j , ψ̄

n
µ

〉
X
〈ψ, ψ̄nν〉X〈ψ, ψ̄

n
µ〉X

)
.

Utilizing (1.4), (1.5) and ‖ψ̄nν‖X = 1 we find that

℘∑
k=1

n∑
j=1

αnj 〈y kj , ψ〉
2

X
=
∑
ν∈I

∑
µ∈I

(
〈λ̄nνψ̄nν , ψ̄nµ〉X〈ψ, ψ̄

n
ν〉X〈ψ, ψ̄

n
µ〉X

)
=
∑
ν∈I

λ̄nν 〈ψ, ψ̄nν〉
2
X .

From λ̄n1 ≥ λ̄nν for all ν ∈ I and (1.6) we infer that∑
ν∈I

λ̄nν 〈ψ, ψ̄nν〉
2
X ≤ λ̄

n
1

∑
ν∈I
〈ψ, ψ̄nν〉

2
X = λ̄n1 ‖ψ‖

2
X = λ̄n1

=

℘∑
k=1

n∑
j=1

αnj 〈y kj , ψ̄n1〉
2

X
,

i.e., ψ̄n1 solves (P̂`n) for ` = 1 and (1.11) holds. This gives the base case. Notice that (1.9)
and (1.11) imply (1.10).
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2) The induction hypothesis: Now we suppose that
for any ` ∈ {1, . . . , dn − 1} the set {ψ̄ni }`i=1 ⊂ X solve (P̂`n)

and
℘∑
k=1

n∑
j=1

αnj

∑̀
i=1

〈y kj , ψ̄ni 〉
2

X
=
∑̀
i=1

λ̄ni .
(1.13)

3) The induction step: We consider
max

℘∑
k=1

n∑
j=1

αnj

`+1∑
i=1

〈y kj , ψi〉
2

X

s.t. {ψi}`+1
i=1 ⊂ X and 〈ψi , ψj〉X = δi j , 1 ≤ i , j ≤ `+ 1.

(P̂`+1
n )

By (1.13) the elements {ψ̄ni }`i=1 maximize the term

℘∑
k=1

n∑
j=1

αnj

∑̀
i=1

〈y kj , ψi〉
2

X
.

Thus, (P̂`+1
n ) is equivalent with

max

℘∑
k=1

n∑
j=1

αnj 〈y kj , ψ〉
2

X

s.t. ψ ∈ X and ‖ψ‖X = 1, 〈ψ, ψ̄ni 〉X = 0, 1 ≤ i ≤ `.

(1.14)

Let ψ ∈ X be given satisfying ‖ψ‖X = 1 and 〈ψ, ψ̄ni 〉X = 0 for i = 1 . . . , `. Then, using the
representation (1.12) and 〈ψ, ψ̄ni 〉X = 0 for i = 1 . . . , `, we derive as above

℘∑
k=1

n∑
j=1

αnj 〈y kj , ψ〉
2

X
=
∑
ν∈I

λ̄nν 〈ψ, ψ̄nν〉
2
X =

∑
ν>`

λ̄nν 〈ψ, ψ̄nν〉
2
X .

From λ̄n`+1 ≥ λ̄nν for all ν ≥ `+ 1 and (1.6) we conclude that

℘∑
k=1

n∑
j=1

αnj 〈y kj , ψ〉
2

X
≤ λ̄n`+1

∑
ν>`

〈ψ, ψ̄nν〉
2
X ≤ λ̄

n
`+1

∑
ν∈I
〈ψ, ψ̄nν〉

2
X

= λ̄n`+1 ‖ψ‖
2
X = λ̄n`+1 =

℘∑
k=1

n∑
j=1

αnj 〈y kj , ψ̄n`+1〉
2

X
.

Thus, ψ̄n`+1 solves (1.14), which implies that {ψ̄ni }
`+1
i=1 is a solution to (P̂`+1

n ) and

℘∑
k=1

n∑
j=1

αnj

`+1∑
i=1

〈y kj , ψ̄ni 〉
2

X
=

`+1∑
i=1

λ̄ni .

Again, (1.9) and (1.11) imply (1.10).
It follows that the claim is proved. �

Remark 1.9. Theorem 1.8 can also be proved by using the theory of nonlinear programming;
see [HLBR12, Vol01], for instance. In this case (P̂`n) is considered as an equality constrained
optimization problem. Applying a Lagrangian framework it turns out that (1.5) are first-order
necessary optimality conditions for (P̂`n). ♦
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For the application of POD to concrete problems the choice of ` is certainly of central importance
for applying POD. It appears that no general a-priori rules are available. Rather the choice of ` is
based on heuristic considerations combined with observing the ratio of the modeled to the “total
energy” contained in the snapshots y k1 , . . . , y

k
n , 1 ≤ k ≤ ℘, which is expressed by

E(`) =

∑`
i=1 λ̄

n
i∑dn

i=1 λ̄
n
i

∈ [0, 1].

Utilizing (1.8) we have

E(`) =

∑`
i=1 λ̄

n
i∑℘

k=1

∑n
j=1 α

n
j ‖y kj ‖

2

X

,

i.e., the computation of the eigenvalues {λ̄i}di=`+1 is not necessary. This is utilized in numerical
implementations when iterative eigenvalue solver are applied like, e.g., the Lanczos method; see
[Ant05, Chapter 10], for instance.

In the following we will discuss three examples which illustrate that POD is strongly related to
the singular value decomposition of matrices.

Remark 1.10 (POD in Euclidean space Rm). Suppose that X = Rm with m ∈ N and ℘ = 1

hold. Then we have n snapshot vectors y1, . . . , yn and introduce the rectangular matrix Y =

[y1 | . . . | yn] ∈ Rm×n with rank dn ≤ min(m, n). Choosing αnj = 1 for 1 ≤ j ≤ n problem (P`n) has
the form 

min

n∑
j=1

∥∥∥yj − ∑̀
i=1

(
y>j ψi

)
ψi

∥∥∥2

Rm

s.t. {ψi}`i=1 ⊂ Rm and ψ>i ψj = δi j , 1 ≤ i , j ≤ `,

(1.15)

where ‖ · ‖Rm stands for the Euclidean norm in Rm and “>” denotes the transpose of a given vector
(or matrix). From

(
Rnψ

)
i

=
( n∑
j=1

(
y>j ψ

)
yj

)
i

=

n∑
j=1

m∑
l=1

Yl jψlYi j =
(
Y Y >ψ

)
i
, ψ ∈ Rm,

for each component 1 ≤ i ≤ m we infer that (1.5) leads to the symmetric m × m eigenvalue
problem

Y Y >ψ̄ni = λ̄ni ψ̄
n
i , λ̄n1 ≥ . . . ≥ λ̄ndn > λ̄ndn+1 = . . . = λ̄nm = 0. (1.16)

Recall that (1.16) can be solved by utilizing the singular value decomposition (SVD) [Nob69]: There
exist real numbers σ̄n1 ≥ σ̄n2 ≥ . . . ≥ σ̄ndn > 0 and orthogonal matrices Ψ ∈ Rm×m with column
vectors {ψ̄ni }mi=1 and Φ ∈ Rn×n with column vectors {φ̄ni }ni=1 such that

Ψ>Y Φ =

(
D 0

0 0

)
=: Σ ∈ Rm×n, (1.17)

where D = diag (σ̄n1 , . . . , σ̄
n
dn) ∈ Rd×d and the zeros in (1.17) denote matrices of appropriate

dimensions. Moreover the vectors {ψ̄ni }di=1 and {φ̄ni }di=1 satisfy

Y φ̄ni = σ̄ni ψ̄
n
i and Y >ψ̄ni = σ̄ni φ̄

n
i for i = 1, . . . , dn. (1.18)

They are eigenvectors of Y Y > and Y >Y , respectively, with eigenvalues λ̄ni = (σ̄ni )2 > 0, i =

1, . . . , dn. The vectors {ψ̄ni }mi=dn+1 and {φ̄ni }ni=dn+1 (if d
n < m respectively dn < n) are eigenvectors

of Y Y > and Y >Y with eigenvalue 0. Consequently, in the case n < m one can determine the POD
basis of rank ` as follows: Compute the eigenvectors φ̄n1, . . . , φ̄

n
` ∈ Rn by solving the symmetric

n × n eigenvalue problem
Y >Y φ̄ni = λ̄ni φ̄

n
i for i = 1, . . . , `

1.1. THE DISCRETE VARIANT OF THE POD METHOD 9



and set, by (1.18),

ψ̄ni =
1

(λ̄ni )1/2
Y φ̄ni for i = 1, . . . , `.

For historical reasons this method of determing the POD-basis is sometimes called the method of
snapshots; see [?]. On the other hand, if m < n holds, we can obtain the POD basis by solving
the m×m eigenvalue problem (1.16). If the matrix Y is badly scaled, we should avoid to build the
matrix product Y Y > (or Y >Y ). In this case the SVD turns out to be more stable for the numerical
computation of the POD basis of rank `. ♦

Remark 1.11 (POD in Rm with weighted inner product). As in Remark 1.10 we choose X = Rm
with m ∈ Rm and ℘ = 1. Let W ∈ Rm×m be a given symmetric, positive definite matrix. We supply
Rm with the weighted inner product

〈ψ, ψ̃〉W = ψ>Wψ̃ = 〈ψ,Wψ̃〉Rm = 〈Wψ, ψ̃〉Rm for ψ, ψ̃ ∈ Rm.

Then, problem (P`n) has the form
min

n∑
j=1

αnj

∥∥∥yj − ∑̀
i=1

〈yj , ψi〉W ψi
∥∥∥2

W

s.t. {ψi}`i=1 ⊂ Rm and 〈ψi , ψj〉W = δi j , 1 ≤ i , j ≤ `.

As in Remark 1.10 we introduce the matrix Y = [y1 | . . . | yn] ∈ Rm×n with rank dn ≤ min(m, n).
Moreover, we define the diagonal matrix D = diag (αn1, . . . , α

n
n) ∈ Rn×n. We find that

(
Rnψ

)
i

=
( n∑
j=1

αnj 〈yj , ψ〉W yj
)
i

=

n∑
j=1

m∑
l=1

m∑
ν=1

αnj Yl jWlνψνYi j

=
(
Y DY >Wψ

)
i

for ψ ∈ Rm,

for each component 1 ≤ i ≤ m. Consequently, (1.5) leads to the eigenvalue problem

Y DY >Wψ̄ni = λ̄ni ψ̄
n
i , λ̄n1 ≥ . . . ≥ λ̄ndn > λ̄ndn+1 = . . . = λ̄nm = 0. (1.19)

Since W is symmetric and positive definite, W possesses an eigenvalue decomposition of the form
W = QBQ>, where B = diag (β1, . . . , βm) contains the eigenvalues β1 ≥ . . . ≥ βm > 0 of W and
Q ∈ Rm×m is an orthogonal matrix. We define

W r = Qdiag (βr1, . . . , β
r
m)Q> for r ∈ R.

Note that (W r )−1 = W−r and W r+s = W rW s for r, s ∈ R. Moreover, we have

〈ψ, ψ̃〉W = 〈W 1/2ψ,W 1/2ψ̃〉Rm for ψ, ψ̃ ∈ Rm

and ‖ψ‖W = ‖W 1/2ψ‖Rm for ψ ∈ Rm. Analogously, the matrix D1/2 is defined. Inserting ψni =

W 1/2ψ̄ni in (1.19), multiplying (1.19) by W 1/2 from the left and setting Ŷ = W 1/2Y D1/2 yield the
symmetric m ×m eigenvalue problem

Ŷ Ŷ >ψni = λ̄ni ψ
n
i , 1 ≤ i ≤ `.

Note that
Ŷ >Ŷ = D1/2Y >WY D1/2 ∈ Rn×n. (1.20)

Thus, the POD basis {ψ̄ni }`i=1 of rank ` can also be computed by the methods of snapshots as
follows: First solve the symmetric n × n eigenvalue problem

Ŷ >Ŷ φni = λ̄ni φ
n
i , 1 ≤ i ≤ ` and 〈φni , φnj 〉Rn = δi j , 1 ≤ i , j ≤ `.
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Then we set (by using the SVD of Ŷ )

ψ̄ni = W−1/2ψni =
1

σ̄ni
W−1/2Ŷ φni =

1

σ̄ni
Y D1/2φni , 1 ≤ i ≤ `. (1.21)

Note that
〈ψ̄ni , ψ̄nj 〉W = (ψ̄ni )>Wψ̄nj =

1

σ̄ni σ̄
n
j

(φni )>D1/2Y >WY D1/2︸ ︷︷ ︸
=Ŷ >Ŷ

φnj = δi j

for 1 ≤ i , j ≤ `. Thus, the POD basis {ψ̄ni }`i=1 of rank ` is orthonormal in Rm with respect to
the inner product 〈· , ·〉W . We observe from (1.20) and (1.21) that the computation of W 1/2 and
W−1/2 is not required. For applications, where W is not just a diagonal matrix, the method of
snapshots turns out to be more attractive with respect to the computational costs even if m > n

holds. ♦

Remark 1.12 (POD in Rm with multiple snapshots). Let us discuss the more general case ℘ = 2

in the setting of Remark 1.11. The extension for ℘ > 2 is straightforward. We introduce the matrix
Y = [y1

1 | . . . | y1
n | y2

1 | . . . |y2
n ] ∈ Rm×(n℘) with rank dn ≤ min(m, n℘). Then we find

Rnψ =

n∑
j=1

(
αnj 〈y1

j , ψ〉W y
1
j + αnj 〈y2

j , ψ〉W y
2
j

)
= Y

(
D 0

0 D

)
︸ ︷︷ ︸

=:D̃∈R(n℘)×(n℘)

Y >Wψ = Y D̃Y >Wψ for ψ ∈ Rm.

Hence, (1.5) corresponds to the eigenvalue problem

Y D̃Y >Wψ̄ni = λ̄ni ψ̄
n
i , λ̄n1 ≥ . . . ≥ λ̄ndn > λ̄ndn+1 = . . . = λ̄nm = 0. (1.22)

Setting ψni = W 1/2ψ̄ni in (1.22) and multiplying by W 1/2 from the left yield

W 1/2Y D̃Y >W 1/2ψni = λ̄ni ψ
n
i . (1.23)

Let Ŷ = W 1/2Y D̃1/2 ∈ Rm×(n℘). Using W> = W as well as D̃> = D̃ we infer from (1.23) that
the POD basis {ψ̄ni }`i=1 of rank ` is given by the symmetric m ×m eigenvalue problem

Ŷ Ŷ >ψni = λ̄ni ψ
n
i , 1 ≤ i ≤ `, and 〈ψni , ψnj 〉Rm = δi j , 1 ≤ i , j ≤ `

and ψ̄ni = W−1/2ψni . Note that

Ŷ >Ŷ = D̃1/2Y >WY D̃1/2 ∈ R(n℘)×(n℘).

Thus, the POD basis of rank ` can also be computed by the methods of snapshots as follows: First
solve the symmetric (n℘)× (n℘) eigenvalue problem

Ŷ >Ŷ φni = λ̄ni φi , 1 ≤ i ≤ ` and 〈φni , φnj 〉Rn℘ = δi j , 1 ≤ i , j ≤ `.

Then we set (by SVD)

ψ̄ni = W−1/2ψni =
1

σ̄ni
W−1/2Ŷ φni =

1

σ̄ni
Y D̃1/2φni

for 1 ≤ i ≤ `. ♦
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1.2 The continuous variant of the POD method

As in Remark 1.1 tet 0 ≤ t1 < t2 < . . . < tn ≤ T be a given time grid in the interval [0, T ] with
equidistant with step-size ∆t = T/(n − 1), i.e., tj = (j − 1)∆t. Suppose that we have trajectories
y k ∈ C([0, T ];X), 1 ≤ k ≤ ℘. Let the snapshots be given as y kj = y k(tj) ∈ X or y kj ≈ y k(tj) ∈ X.
Then, the snapshot subspace Vn introduced in (1.1) depends on the chosen time instances {tj}nj=1.
Consequently, the POD basis {ψ̄ni }`i=1 of rank ` as well as the corresponding eigenvalues {λ̄ni }`i=1

depend also on the time instances (which has already been indicated by the superindex n). Moreover,
we have not discussed so far what is the motivation to introduce the positive weights {αnj }nj=1 in
(P`n). For this reason we proceed by investigating the following two questions:

- How to choose good time instances for the snapshots?

- What are appropriate positive weights {αnj }nj=1?
To address these two questions we will introduce a continuous version of POD. In Section 1.1 we
have introduced the operator Rn in (1.4). By {ψ̄ni }i∈I and {λ̄ni }i∈I we have denoted the eigenfunc-
tions and eigenvalues for Rn satisfying (1.5). Moreover, we have set dn = dimVn for the dimension
of the snapshot set. Let us now introduce the snapshot set by

V = span
{
y k(t) | t ∈ [0, T ] and 1 ≤ k ≤ ℘

}
⊂ X

with dimension d ≤ ∞. For any ` ≤ d we are interested in determining a POD basis of rank `
which minimizes the mean square error between the trajectories y k and the corresponding `-th
partial Fourier sums on average in the time interval [0, T ]:

min

℘∑
k=1

∫ T

0

∥∥∥y k(t)−
∑̀
i=1

〈y k(t), ψi〉X ψi
∥∥∥2

X
dt

s.t. {ψi}`i=1 ⊂ X and 〈ψi , ψj〉X = δi j , 1 ≤ i , j ≤ `.

(P`)

An optimal solution {ψ̄i}`i=1 to (P`) is called a POD basis of rank `. Analogous to (P̂`n) we can –
instead of (P`) – consider the problem

max

℘∑
k=1

∫ T

0

∑̀
i=1

〈y k(t), ψi〉
2

X dt

s.t. {ψi}`i=1 ⊂ X and 〈ψi , ψj〉X = δi j , 1 ≤ i , j ≤ `.

(P̂`)

A solution to (P`) and to (P̂`) can be characterized by an eigenvalue problem for the linear integral
operator R : X → X given as

Rψ =

℘∑
k=1

∫ T

0

〈y k(t), ψ〉X y k(t) dt for ψ ∈ X. (1.24)

For the given real Hilbert space X we denote by L2(0, T ;X) the Hilbert space of square integrable
functions t 7→ ϕ(t) ∈ X so that [?, p. 114]

- the mapping t 7→ ϕ(t) is measurable for t ∈ [0, T ] and

- ‖ϕ‖L2(0,T ;X) =
(∫ T

0

‖ϕ(t)‖2
X dt

)1/2
<∞.

Recall that ϕ : [0, T ]→ X is called measurable if there exists a sequence {ϕn}n∈N of step functions
ϕn : [0, T ] → X satisfying ϕ(t) = limn→∞ ϕn(t) for almost all t ∈ [0, T ]. The standard inner
product on L2(0, T ;X) is given by

〈ϕ,ψ〉L2(0,T ;X) =

∫ T

0

〈ϕ(t), φ(t)〉X dt for ϕ, φ ∈ L2(0, T ;X).
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Lemma 1.13. Let X be a (separable) real Hilbert space and y k ∈ L2(0, T ;X), 1 ≤ k ≤ ℘, be
given snapshot trajectories. Then, the operator R introduced in (1.24) is compact, nonnegative
and selfadjoint.

Proof. First we write R as a product of an operator and its Hilbert space adjoint. For that purpose
let us define the linear operator Y : L2(0, T ;R℘)→ X by

Yφ =

℘∑
k=1

∫ T

0

φk(t)y k(t) dt for φ = (φ1, . . . , φ℘) ∈ L2(0, T ;R℘). (1.25)

Utilizing the Cauchy-Schwarz inequality [DR12, Satz 12.17] and y k ∈ L2(0, T ;X) for 1 ≤ k ≤ ℘
we infer that

‖Yφ‖X ≤
℘∑
k=1

∫ T

0

∣∣φk(t)
∣∣‖y k(t)‖X dt ≤

℘∑
k=1

‖φk‖L2(0,T )‖y k‖L2(0,T ;X)

≤
( ℘∑
k=1

‖φk‖2

L2(0,T )

)1/2( ℘∑
k=1

‖y k‖2

L2(0,T ;X)

)1/2

= CY ‖φ‖L2(0,T ;R℘) for any φ ∈ L2(0, T ;R℘),

where we set CY = (
∑℘
k=1 ‖y k‖2

L2(0,T ;X)
)1/2 < ∞. Hence, the operator Y is bounded. Its Hilbert

space adjoint Y? : X → L2(0, T ;R℘) satisfies

〈Y?ψ, φ〉L2(0,T ;R℘) = 〈ψ,Yφ〉X for ψ ∈ X and φ ∈ L2(0, T ;R℘).

Since we derive

〈Y?ψ, φ〉L2(0,T ;R℘) = 〈ψ,Yφ〉X =

〈
ψ,

℘∑
k=1

∫ T

0

φk(t)y k(t) dt

〉
X

=

℘∑
k=1

∫ T

0

〈ψ, y k(t)〉Xφk(t) dt =
〈(
〈ψ, y k(·)〉X

)
1≤k≤℘, φ

〉
L2(0,T ;R℘)

for ψ ∈ X and φ ∈ L2(0, T ;R℘), the adjoint operator is given by

(Y?ψ)(t) =

 〈ψ, y
1(t)〉X
...

〈ψ, y℘(t)〉X

 for ψ ∈ X and t ∈ [0, T ] a.e.,

where ‘a.e.’ stands for ‘almost everywhere’. From (1.4) and

(
YY?

)
ψ = Y

 〈ψ, y
1(·)〉X
...

〈ψ, y℘(·)〉X

 =

℘∑
k=1

∫ T

0

〈ψ, y k(t)〉Xy k(t) dt for ψ ∈ X

we infer that R = YY? holds. Since the operator Y is bounded, its adjoint and therefore R = YY?
are bounded operators. To prove thatR is compact, we show that Y? is compact. Let {χn}n∈N ⊂ X
be sequence converging weakly to an element χ ∈ X, i.e.,

lim
n→∞

〈χn, ψ〉X = 〈χ,ψ〉X for all ψ ∈ X.

This implies that

lim
n→∞

(Y?χn)(t) = lim
n→∞

 〈χn, y
1(t)〉X
...

〈χn, y℘(t)〉X

 =

 〈χ, y
1(t)〉X
...

〈χ, y℘(t)〉X

 =
(
Y?χ

)
(t)
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for t ∈ [0, T ] a.e. Thus, the sequence {Y?χn}n∈N converges weakly to Y?χ in L2(0, T ;R℘).
Consequently, R = YY? is compact. From

〈Rψ,ψ〉X =

〈 ℘∑
k=1

∫ T

0

〈ψ, y k(t)〉X y k(t) dt, ψ

〉
X

=

℘∑
k=1

∫ T

0

∣∣〈ψ, y k(t)〉X
∣∣2 dt ≥ 0 for all ψ ∈ X

we infer that R is nonnegative. Finally, we have R? = (YY?)? = R, i.e. R is selfadjoint. �

Remark 1.14. It follows from the proof of Lemma 1.13 that K = Y?Y : L2(0, T ;R℘) →
L2(0, T ;R℘) is compact as well. We find that

(
Kφ
)

(t) =


℘∑
k=1

∫ T
0 〈y

k(s), y1(t)〉Xφk(s) ds

...
℘∑
k=1

∫ T
0 〈y

k(s), y℘(t)〉Xφk(s) ds

 , φ ∈ L2(0, T ;R℘).

The compactness of K can also be shown as follow: Notice that the kernel function

rik(s, t) = 〈y k(s), y i(t)〉X , (s, t) ∈ [0, T ]× [0, T ] and 1 ≤ i , k ≤ ℘,

belongs to L2(0, T ) × L2(0, T ). Here, we shortly write L2(0, T ) for L2(0, T ;R). Then, it follows
from [DR12, Beispiel 19.3] that the linear integral operator Kik : L2(0, T )→ L2(0, T ) defined by

Kik(t) =

∫ T

0

rik(s, t)φ(s) ds, φ ∈ L2(0, T ),

is compact. This implies, that the operator
∑℘
k=1Kik is compact for 1 ≤ i ≤ ℘ as well. ♦

In the next theorem we formulate how the solution to (P`) and (P̂`) can be found.

Theorem 1.15. Let X be a separable real Hilbert space and y k ∈ L2(0, T ;X) are given trajectories
for 1 ≤ k ≤ ℘. Suppose that the linear operator R is defined by (1.24). Then, there exist
nonnegative eigenvalues {λ̄i}i∈I and associated orthonomal eigenfunctions {ψ̄i}i∈I satisfying

Rψ̄i = λ̄i ψ̄i , λ̄1 ≥ . . . ≥ λ̄d > λ̄d+1 = . . . = 0. (1.26)

For every ` ∈ {1, . . . , d} the first ` eigenfunctions {ψ̄i}`i=1 solve (P`) and (P̂`). Moreover, the
value of the objectives evaluated at the optimal solution {ψ̄i}`i=1 satisfies

℘∑
k=1

∫ T

0

∥∥∥y k(t)−
∑̀
i=1

〈y k(t), ψ̄i〉X ψ̄i
∥∥∥2

X
dt =

d∑
i=`+1

λ̄i (1.27)

and
℘∑
k=1

∫ T

0

∑̀
i=1

〈y k(t), ψ̄i〉
2

X dt =
∑̀
i=1

λ̄i , (1.28)

respectively.

Proof. The existence of sequences {λ̄i}i∈I of eigenvalues and {ψ̄i}i∈I of associated eigenfunctions
satisfying (1.26) follows from Lemma 1.13, Theorem 1.5 and Theorem 1.6. Analogous to the proof
of Theorem 1.8 in Section 1.1 one can show that {ψ̄i}`i=1 solves (P`) as well as (P̂`) and that
(1.27) respectively (1.28) are valid. �
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Remark 1.16. Similar to (1.6) we have

℘∑
k=1

∫ T

0

‖y k(t)‖2

X dt =

d∑
i=1

λ̄i . (1.29)

In fact,

Rψ̄i =

℘∑
k=1

∫ T

0

〈y k(t), ψ̄i〉X y k(t) dt for every i ∈ I.

Taking the inner product with ψ̄i , using (1.26) and summing over i we get

d∑
i=1

℘∑
k=1

∫ T

0

〈y k(t), ψ̄i〉
2

X dt =

d∑
i=1

〈Rψ̄i , ψ̄i〉X =

d∑
i=1

λ̄i .

Expanding each y k(t) ∈ X in terms of {ψ̄i}i∈I for each 1 ≤ k ≤ ℘ we have

y k(t) =

d∑
i=1

〈y k(t), ψ̄i〉X ψ̄i

and hence
℘∑
k=1

∫ T

0

‖y k(t)‖2

X dt =

℘∑
k=1

d∑
i=1

∫ T

0

〈y k(t), ψ̄i〉
2

X dt =

d∑
i=1

λ̄i ,

which is (1.29). ♦

Remark 1.17 (Singular value decomposition). Suppose that y k ∈ L2(0, T ;X) holds. By Theo-
rem 1.15 there exist nonnegative eigenvalues {λ̄i}i∈I and associated orthonomal eigenfunctions
{ψ̄i}i∈I satisfying (1.26). From K = Y?Y it follows that there is a sequence {φ̄i}i∈I such that

Kφ̄i = λ̄i φ̄i , 1 . . . , `.

We set R+
0 = {s ∈ R | s ≥ 0} and σ̄i = λ̄

1/2
i . The sequence {σ̄i , φ̄i , ψ̄i}i∈I in R+

0 ×L2(0, T ;R℘)×X
can be interpreted as a singular value decomposition of the mapping Y : L2(0, T ;R℘) → X

introduced in (1.25). In fact, we have

Yφ̄i = σ̄i ψ̄i , Y?ψ̄i = σ̄i φ̄i , i ∈ I.

Since σ̄i > 0 holds for 1 = 1 . . . , d , we have ψ̄i = Yφ̄i/σi for i = 1, . . . , d . ♦

1.3 Perturbation analysis for the POD basis

The eigenvalues {λ̄ni }i∈I satisfying (1.5) depend on the time grid {tj}nj=1. In this section we in-

vestigate the sum
∑dn

i=`+1 λ̄
n
i , the value of the cost in (P`n) evaluated at the solution {ψ̄ni }`i=1 for

n →∞. Clearly, n →∞ is equivalent with ∆t = T/(n − 1)→ 0.
In general the spectrum σ(T ) of an operator T ∈ L(X) does not depend continuously on T . This

is an essential difference to the finite dimensional case. For the compact and selfadjoint operator
R we have σ(R) = {λ̄i}i∈I. Suppose that for ` ∈ N we have λ̄` > λ̄`+1 so that we can seperate the
spectrum as follows: σ(R) = S`∪S′` with S` = {λ̄1, . . . , λ̄`} and S′` = σ(R)\S`. Then, S`∩S′` = ∅.
Moreover, setting V ` = span {ψ̄1, . . . , ψ̄`} we have X = V `⊕ (V `)⊥, where the linear space (V `)⊥

stands for the X-orthogonal complement of V `. Let us assume that

lim
n→∞

‖Rn −R‖L(X) = 0 (1.30)
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holds. Then it follows from the perturbation theory of the spectrum of linear operators [Kat80,
pp. 212-214] that the space V `n = span {ψ̄n1 , . . . , ψ̄n` } is isomorphic to V ` if n is sufficiently large.
Furthermore, the change of a finite set of eigenvalues of R is small provided ‖Rn − R‖L(X) is
sufficiently small. Summarizing, the behavior of the spectrum is much the same as in the finite
dimensional case if we can ensure (1.30). Therefore, we start this section by investigating the
convergence of Rn −R in the operator norm.
Recall that the Sobolev space H1(0, T ;X) is given by

H1(0, T ;X) =
{
ϕ ∈ L2(0, T ;X)

∣∣ϕt ∈ L2(0, T ;X)
}
,

where ϕt denotes the weak derivative of ϕ. The space H1(0, T ;X) is a Hilbert space with the inner
product

〈ϕ, φ〉H1(0,T ;X) =

∫ T

0

〈ϕ(t), φ(t)〉X + 〈ϕt(t), φt(t)〉X dt for ϕ, φ ∈ H1(0, T ;X)

and the induced norm ‖ϕ‖H1(0,T ;X) = 〈ϕ,ϕ〉1/2
H1(0,T ;X)

.
Let us choose the trapezoidal weights

αn1 =
T

2(n − 1)
, αnj =

T

n − 1
for 2 ≤ j ≤ n − 1, αnn =

T

2(n − 1)
. (1.31)

For this choice we observe that for every ψ ∈ X the element Rnψ is a trapezoidal approximation
for Rψ. We will make use of the following lemma.

Lemma 1.18. Suppose that X is a (separable) real Hilbert space and that the snapshot trajectories
y k belong to H1(0, T ;X) for 1 ≤ k ≤ ℘. Then, (1.30) holds true.

Proof. For an arbitrary ψ ∈ X with ‖ψ‖X = 1 we define F : [0, T ]→ X by

F (t) =

℘∑
k=1

〈y k(t), ψ〉X y k(t) for t ∈ [0, T ].

It follows that

Rψ =

∫ T

0

F (t) dt =

n−1∑
j=1

∫ tj+1

tj

F (t) dt,

Rnψ =

n∑
j=1

αjF (tj) =
∆t

2

n−1∑
j=1

(
F (tj) + F (tj+1)

)
.

(1.32)

Then, we infer from ‖ψ‖X = 1 that

‖F (t)‖2
X ≤

( ℘∑
k=1

‖y k(t)‖2

X

)2

. (1.33)

Now we show that F belongs to H1(0, T ;X) and its norm is bounded independently of ψ. Recall
that y k ∈ H1(0, T ;X) imply that y k ∈ C([0, T ];X) holds for 1 ≤ k ≤ ℘. Using (1.33) we have

‖F‖2
L2(0,T ;X) ≤

∫ T

0

( ℘∑
k=1

‖y k‖2

C([0,T ];X)

)2

dt ≤ C1

with C1 = T (
∑℘
k=1 ‖y k‖2

C([0,T ];X))2. Moreover, F ∈ H1(0, T ;X) with

Ft(t) =

℘∑
k=1

〈y kt (t), ψ〉X y
k(t) + 〈y k(t), ψ〉X y kt (t) f.a.a. t ∈ [0, T ],
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where ‘f.a.a.’ stands for ’for almost all’. Thus, we derive

‖Ft‖2
L2(0,T ;X) ≤ 4

∫ T

0

( ℘∑
k=1

‖y k(t)‖X‖y kt (t)‖X

)2

dt ≤ C2

with C2 = 4
∑℘
k=1 ‖y k‖2

C([0,T ];X)

∑℘
l=1 ‖y lt‖2

L2(0,T ;X)
<∞. Consequently,

‖F‖H1(0,T ;X) =

(∫ T

0

‖F (t)‖2
X + ‖Ft(t)‖2

X dt

)1/2

≤ C3 (1.34)

with the constant C3 = (C1 +C2)1/2, which is independent of ψ. To evaluate Rnψ we notice that∫ tj+1

tj

F (t) dt =
1

2

∫ tj+1

tj

(
F (tj) +

∫ t

tj

Ft(s) ds
)

dt

+
1

2

∫ tj+1

tj

(
F (tj+1) +

∫ t

tj+1

Ft(s) ds
)

dt

=
∆t

2

(
F (tj) + F (tj+1)

)
+

1

2

∫ tj+1

tj

(∫ t

tj+1

Ft(s) ds +

∫ t

tj+1

Ft(s) ds
)

dt.

(1.35)

Utilizing (1.32) and (1.35) we obtain

∥∥Rnψ −Rψ∥∥
X

=

∥∥∥∥ n−1∑
j=1

(∆t

2

(
F (tj) + F (tj+1)

)
−
∫ tj+1

tj

F (t) dt
)∥∥∥∥

X

≤
1

2

n−1∑
j=1

∥∥∥∥∫ tj+1

tj

∫ t

tj

Ft(s) dsdt

∥∥∥∥
X

+
1

2

n−1∑
j=1

∥∥∥∥∫ tj+1

tj

∫ t

tj+1

Ft(s) dsdt

∥∥∥∥
X

.

From the Cauchy-Schwarz inequality [DR12, Satz 12.17] we deduce that

n−1∑
j=1

∥∥∥∥∫ tj+1

tj

∫ t

tj

Ft(s) dsdt

∥∥∥∥
X

≤
n−1∑
j=1

∫ tj+1

tj

∥∥∥∥∫ t

tj

Ft(s) ds

∥∥∥∥
X

dt

≤
√

∆t

n−1∑
j=1

(∫ tj+1

tj

∥∥∥∫ t

tj

Ft(s) ds
∥∥∥2

X
dt

)1/2

≤
√

∆t

n−1∑
j=1

(∫ tj+1

tj

(∫ t

tj

‖Ft(s)‖X ds
)2

dt

)1/2

≤ ∆t

n−1∑
j=1

(∫ tj+1

tj

∫ t

tj

‖Ft(s)‖2
X dsdt

)1/2

≤ T
√

∆t ‖F‖H1(0,T ;X).

(1.36)

Analogously, we derive

n−1∑
j=1

∥∥∥∥∫ tj+1

tj

∫ t

tj+1

Ft(s) dsdt

∥∥∥∥
X

≤ T
√

∆t ‖F‖H1(0,T ;X). (1.37)

From (1.34), (1.36) and (1.37) it follows that∥∥Rnψ −Rψ∥∥
X
≤
C4√
n
,
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where C4 = C3T
3/2 is independent of n and ψ. Consequently,

‖Rn −R‖L(X) = sup
‖ψ‖X=1

‖Rnψ −Rψ‖X
n→∞−→ 0

which gives the claim. �

Now we follow [KV02a, Section 3.2]. We suppose that y k ∈ H1(0, T ;X) for 1 ≤ k ≤ ℘. Thus
y k ∈ C([0, T ];X) holds, which implies that

℘∑
k=1

n∑
j=1

αnj ‖y k(tj)‖
2

X →
℘∑
k=1

∫ T

0

‖y k(t)‖2

X dt as n →∞. (1.38)

Combining (1.38) with (1.8) and (1.29) we find

dn∑
i=1

λ̄ni →
d∑
i=1

λ̄i as n →∞. (1.39)

Now choose and fix
` such that λ̄` 6= λ̄`+1. (1.40)

Then, by spectral analysis of compact operators and Lemma 1.18 it follows that

λ̄ni → λ̄i for 1 ≤ i ≤ ` as n →∞. (1.41)

Combining (1.39) and (1.41) we derive

dn∑
i=`+1

λ̄ni →
d∑

i=`+1

λ̄i as n →∞.

Especially, if λ1 > λ2 > · · · > λ` is satisfied, we conclude from (1.40) and Lemma 1.18 that
limn→∞ ‖ψ̄ni − ψ̄i‖X = 0 for i = 1, . . . , `. Summarizing the following theorem has been shown.

Theorem 1.19. Let X be a separable real Hilbert space, the weighting parameters {αnj }nj=1 be
given by (1.31) and y k ∈ H1(0, T ;X) for 1 ≤ k ≤ ℘. Let {(ψ̄ni , λ̄ni )}i∈I and {(ψ̄i , λ̄i)}i∈I be
eigenvector-eigenvalue pairs satisfying (1.5) and (1.26), respectively. Suppose that ` ∈ N is fixed
such that (1.40) holds. Then we have

lim
n→∞

∣∣λ̄ni − λ̄i ∣∣ = 0 for 1 ≤ i ≤ `,

and

lim
n→∞

dn∑
i=`+1

λ̄ni =

d∑
i=`+1

λ̄i .

In particular, if λ1 > λ2 > · · · > λ` holds, then we even have

lim
n→∞

‖ψ̄ni − ψ̄i‖X = 0 for 1 ≤ i ≤ `.

Remark 1.20. Theorem 1.19 gives an answer to the two questions posed at the beginning of
Section 1.2: The time instances {tj}nj=1 and the associated positive weights {αnj }nj=1 should be
chosen such that Rn is a quadrature approximation of R and ‖Rn−R‖L(X) is small (for reasonable
n). A different strategy is applied in [KV10], where the time instances {tj}nj=1 are chosen by an
optimization approach. Clearly, other choices for the weights {αnj }nj=1 are also possible provided
(1.30) is guaranteed. For instance, we can choose the Simpson weights. ♦
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2 Reduced-order modelling for evolution problems

In this section we utilize the POD method to derive low-dimensional models for evolution problems.
For that purpose the POD basis of rank ` serves as test and ansatz functions in a POD Galerkin
approximation. The a-priori error of the POD Galerkin scheme is investigated. It turns out that the
resulting error bounds depend on the number of POD basis functions.

2.1 The abstract evolution problem

In this subsection we introduce our abstract evolution problem which will be under consideration
in Sections 2 and 3. Let V and H be real, separable Hilbert spaces and suppose that V is dense
in H with compact embedding. By 〈· , ·〉H and 〈· , ·〉V we denote the inner products in H and V ,
respectively. In particular, there exists an embedding constant cV > 0 such that

‖ϕ||H ≤ cV ‖ϕ‖V for all ϕ ∈ V. (2.1)

Let T > 0 the final time. For t ∈ [0, T ] we define a time-dependent symmetric bilinear form
a(t; · , ·) : V × V → R satisfying∣∣a(t;ϕ,ψ)

∣∣ ≤ γ ‖ϕ‖V ‖ψ‖V ∀ϕ ∈ V a.e. in [0, T ], (2.2a)

a(t;ϕ,ϕ) ≥ γ1 ‖ϕ‖2
V − γ2 ‖ϕ‖2

H ∀ϕ ∈ V a.e. in [0, T ] (2.2b)

for constants γ, γ1 > 0 and γ2 ≥ 0 which do not depend on t. In (2.2), the abbreviation “a.e.”
stands for “almost everywhere”. By identifying H with its dual H′ it follows that V ↪→ H = H′ ↪→ V ′

each embedding being continuous and dense. Here, V ′ denotes the dual space of V . Recall that
the function space (see [Tro09, §3.4.1], for instance)

W (0, T ) =
{
ϕ ∈ L2(0, T ; V )

∣∣ϕt ∈ L2(0, T ; V ′)
}

is a Hilbert space endowed with the inner product

〈ϕ, φ〉W (0,T ) =

∫ T

0

〈ϕ(t), φ(t)〉V + 〈ϕt(t), φt(t)〉V ′ dt for ϕ, φ ∈ W (0, T )

and the induced norm ‖ϕ‖W (0,T ) = 〈ϕ,ϕ〉1/2
W (0,T )

. Furthermore, W (0, T ) is continuously embedded
into the space C([0, T ];H). Hence, ϕ(0) and ϕ(T ) are meaningful in H for an element ϕ ∈ W (0, T ).
The integration by parts formula reads∫ T

0

〈ϕt(t), φ(t)〉V ′,V dt +

∫ T

0

〈φt(t), ϕ(t)〉V ′,V dt =
d

dt

∫ T

0

〈ϕ(t), ψ(t)〉H dt

= ϕ(T )φ(T )− ϕ(0)φ(0)

for ϕ, φ ∈ W (0, T ), where 〈· , ·〉V ′,V stands for the dual pairing between V and its dual space V ′.
Moreover, we have the formula

〈ϕt(t), φ〉V ′,V =
d

dt
〈ϕ(t), φ〉H for (ϕ, φ) ∈ W (0, T )× V and f.a.a. t ∈ [0, T ].
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Since we will consider optimal control problems in Section 3, we already introduce the evolution
problem with an input term. We suppose that for Nu ∈ N the input space U = L2(0, T ;RNu) is
chosen. In particular, we identify U with its dual space U ′. For u ∈ U, y◦ ∈ H and f ∈ L2(0, T ; V ′)

we consider the linear evolution problem

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) = 〈(f + Bu)(t), ϕ〉V ′,V ∀ϕ ∈ V a.e. in (0, T ],

〈y(0), ϕ〉H = 〈y◦, ϕ〉H ∀ϕ ∈ H,
(2.3)

where B : U → L2(0, T ; V ′) is a continuous, linear (control or input) operator.

Remark 2.1. Notice that the techniques presented in this work can be adapted for problems, where
the input space U is given by L2(0, T ;L2(D)) for some open and bounded domain D ⊂ RÑu for an
Ñu ∈ N. ♦

Theorem 2.2. For t ∈ [0, T ] let a(t; · , ·) : V × V → R be a time-dependent symmetric bilinear
form satisfying (2.2). Then, for every u ∈ U, f ∈ L2(0, T ; V ′) and y◦ ∈ H there is a unique weak
solution y ∈ W (0, T ) satisfying (2.3) and

‖y‖W (0,T ) ≤ C
(
‖y◦‖H + ‖f ‖L2(0,T ;V ′) + ‖u‖U

)
(2.4)

for a constant C > 0 which is independent of u, y◦ and f . If f ∈ L2(0, T ;H), a(t; · , ·) =

a(· , ·) (independent of t) and y◦ ∈ V hold, we even have y ∈ L∞(0, T ; V ) ∩ H1(0, T ;H). He-
re, L∞(0, T ; V ) stands for the Banach space of all measurable functions ϕ : [0, T ] → V with
ess supt∈[0,T ] ‖ϕ(t)‖V <∞ (see [Tro09, §3.4.1], for instance).

Proof. For a proof of the existence of a unique solution we refer to [DL00, pp. 512-520]. The a-priori
error estimate follows from standard variational techniques and energy estimates. The regularity
result follows from [DL00, pp. 532-533] and [Eva08, pp. 360-364]. �

Remark 2.3. We split the solution to (2.3) in one part, which depends on the fixed initial condition
y◦ and right-hand f , and another part depending linearly on the input variable u. Let ŷ ∈ W (0, T )

be the unique solution to

d

dt
〈ŷ(t), ϕ〉H + a(t; ŷ(t), ϕ) = 〈f (t), ϕ〉V ′,V ∀ϕ ∈ V a.e. in (0, T ],

ŷ(0) = y◦ in H.

We define the subspace

W0(0, T ) =
{
ϕ ∈ W (0, T )

∣∣ϕ(0) = 0 in H
}

endowed with the topology of W (0, T ). Let us now introduce the linear solution operator S : U →
W0(0, T ): for u ∈ U the function y = Su ∈ W0(0, T ) is the unique solution to

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) = 〈(Bu)(t), ϕ〉V ′,V ∀ϕ ∈ V a.e. in (0, T ].

From y ∈ W0(0, T ) we infer y(0) = 0 in H. The boundedness of S follows from (2.4). Now, the
solution to (2.3) can be expressed as y = ŷ + Su. ♦

2.2 The POD method for the evolution problem

Let u ∈ U, f ∈ L2(0, T ; V ′) and y◦ ∈ H be given and y = ŷ + Su. To keep the notation simple we
apply only a spatial discretization with POD basis functions, but no time integration by, e.g., the

20 Prof. Dr. Stefan Volkwein



implicit Euler method. Therefore, we utilize the continuous version of the POD method introduced
in Section 1.2. In this section we distinguish two choices for X: X = H and X = V . It turns out
that the choice for X leads to different rate of convergence results. We suppose that the snapshots
y k , k = 1, . . . , ℘, belong to L2(0, T ; V ). Later, we will present different rate of convergence results
for appropriate choices of the y k ’s. Let us introduce the following notations:

RV ψ =

℘∑
k=1

∫ T

0

〈ψ, y k(t)〉V y k(t) dt for ψ ∈ V,

RHψ =

℘∑
k=1

∫ T

0

〈ψ, y k(t)〉H y k(t) dt for ψ ∈ H. (2.5)

Moreover, we set KV = R?V and KH = R?H. In Remark 1.17 we have introduced the singular value
decomposition of the operator Y defined by (1.25). To distinguish the two choices for the Hilbert
space X we denote by the sequence {(σVi , ψVi , φVi )}`i∈I ⊂ R

+
0 × V × L2(0, T ;R℘) of triples the

singular value decomposition for X = V , i.e., we have that

RV ψVi = λVi ψ
V
i , KV φVi = λVi φ

V
i , σVi =

√
λVi , i ∈ I.

Furthermore, let the sequence {(σHi , ψHi , φHi )}`i∈I ⊂ R
+
0 ×H × L2(0, T ;R℘) in satisfy

RHψHi = λHi ψ
H
i , KHφHi = λHi φ

H
i , σHi =

√
λHi , i ∈ I. (2.6)

The relationship between the singular values σHi and σVi is investigated in the next lemma, which
is taken from [Sin14].

Lemma 2.4. Suppose that the snapshots y k ∈ L2(0, T ; V ), k = 1, . . . , ℘. Then we have:
1) For all i ∈ I with σHi > 0 we have ψHi ∈ V .
2) σVi = 0 for all i > d with some d ∈ N if and only if σHi = 0 for all i > d , i.e., we have

dH = dV if the rank of RV is finite.

3) σVi > 0 for all i ∈ I if and only if σHi > 0 for all i ∈ I.

Proof. We argue similarly as in the proof of Lemma 3.1 in [Sin14].
1) Let σHi > 0 hold. Then, it follows that λHi > 0. We infer from y k ∈ L2(0, T ; V ) that
RHψ ∈ V for any ψ ∈ H. Hence, we infer from (2.6) and that ψHi = RHψHi /λHi ∈ V .

2) Assume that σVi = 0 for all i > d with some d ∈ N. Then, we deduce from (1.27) that

y k(t) =

d∑
i=1

〈y k(t), ψVi 〉V ψ
V
i for every k = 1, . . . , ℘. (2.7)

From

RHψHj =

℘∑
k=1

∫ T

0

〈ψHj , y k(t)〉
H
y k(t) dt

=

d∑
i=1

( ℘∑
k=1

∫ T

0

〈ψHj , y k(t)〉
H
〈y k(t), ψVi 〉V dt

)
ψVi , j ∈ I,

we conclude that that the range of RH is at most d-dimensional, which implies that λHi = 0

for all i > d . Analogously, we deduce from σHi = 0 for all i > d that the range of RV is at
most d .

3) The claim follows directly from part 2).
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Thus, Lemma 2.4 is proved. �

Let us define the two POD subspaces

V ` = span
{
ψV1 , . . . , ψ

V
`

}
⊂ V, H` = span

{
ψH1 , . . . , ψ

H
`

}
⊂ V ⊂ H,

where H` ⊂ V follows from part 1) of Lemma 2.4. Moreover, we introduce the orthogonal projection
operators P`H : V → H` ⊂ V and P`V : V → V ` ⊂ V as follows:

v ` = P`Hϕ for any ϕ ∈ V iff v ` solves min
w `∈H`

‖ϕ− w `‖V ,

v ` = P`V ϕ for any ϕ ∈ V iff v ` solves min
w `∈V `

‖ϕ− w `‖V .
(2.8)

It follows from the first-order optimality conditions that v ` = P`Hϕ satisfies

〈v `, ψHi 〉V = 〈ϕ,ψHi 〉V , 1 ≤ i ≤ `. (2.9)

Writing v ` ∈ H` in the form v ` =
∑`
j=1 v`jψ

H
j we derive from (2.9) that the vector v` =

(v`1, . . . , v``)
> ∈ R` satisfies the linear system

∑̀
j=1

〈ψHj , ψHi 〉V v`j = 〈ϕ,ψHi 〉V , 1 ≤ i ≤ `.

For the operator P`V we have the explicit representation

P`V ϕ =
∑̀
i=1

〈ϕ,ψVi 〉V ψ
V
i for ϕ ∈ V.

Since the linear operators P`V and P`H are orthogonal projections, we have ‖P`V ‖L(V ) = ‖P`H‖L(V ) =

1. As {ψVi }i∈I is a complete orthonormal basis in V , we have

lim
`→∞

∫ T

0

‖w(t)− P`V w(t)‖2

V dt = 0 for all w ∈ L2(0, T ; V ). (2.10)

Next we review an essential result from [Sin14, Theorem 5.2], which we will use in our a-priori
error analysis for the choice X = H. Recall that ψHi ∈ V holds for 1 ≤ i ≤ dH and the image of
P`H belongs to V . Consequently, ‖ψHi − P`HψHi ‖V is well-defined for 1 ≤ i ≤ dH.

Theorem 2.5. Suppose that y k ∈ L2(0, T ; V ) for 1 ≤ k ≤ ℘. Then,
℘∑
k=1

∫ T

0

‖y k(t)− P`Hy k(t)‖2

V dt =

dH∑
i=`+1

λHi ‖ψHi − P`HψHi ‖
2

V . (2.11)

Here, dH is the rank of the operator RH, which may be infinite. Moreover, P`Hy k converges to y k

in L2(0, T ; V ) as ` tends to ∞ for each k ∈ {1, . . . , ℘}.

Proof. Suppose that 1 ≤ ` ≤ dH and 1 ≤ `◦ < ∞ hold. Then, λHi > 0 for 1 ≤ i ≤ `. Let
I ∈ L(V ) denote the identity operator. As I −P`H is an orthonormal projection on V , we conclude
‖I − P`H‖L(V ) = 1. Furthermore, y k ∈ L2(0, T ; V ) holds for each k ∈ {1, . . . ℘}. Thus, (2.10)
implies that P`◦V y

k → y k in L2(0, T ; V ) as `◦ → ∞ for each k . The proof of (2.11) is essentially
based on Hilbert-Schmidt theory and on the following result [Sin14, Lemma 5.1]:

℘∑
k=1

∫ T

0

‖(I − P`H)P`◦V y
k(t))‖2

V
dt

=

`◦∑
i=1

λVi ‖ψVi − P`HψVi ‖
2

V ≤
∑
i :λVi >0

λVi ‖ψVi − P`HψVi ‖
2

V <∞
(2.12)
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for any `◦ ∈ N. To prove that P`Hy k converges to y k in L2(0, T ; V ) as ` tends to ∞ for each
k ∈ {1, . . . , ℘} we observe that

dH∑
i=`+1

λHi ‖ψHi − P`HψHi ‖
2

V ≤
dH∑

i=`+1

λHi ‖I − P`H‖L(V )‖ψ
H
i ‖

2

V

=

dH∑
i=`+1

λHi ‖ψHi ‖
2

V

By utilizing the singular value decomposition (see Remark 1.17) it is shown in [Sin14, Theorem 5.2]
that

∑dH
i=`+1 λ

H
i ‖ψHi ‖

2

V <∞ holds. Therefore,

lim
`◦→∞

℘∑
k=1

∫ T

0

‖(I − P`H)P`◦V y
k(t))‖2

V
dt = 0

which gives the claim. �

We will also need the following result, which follows from the continuous embedding V ↪→ H .
For a proof we refer to [Sin14, Proposition 5.5].

Lemma 2.6. Let y k ∈ L2(0, T ; V ) for each k ∈ {1, . . . , ℘} and λHi > 0 for all i ∈ I. Then,

lim
`→∞

‖ϕ− P`Hϕ‖V = 0 for all ϕ ∈ V.

2.3 The POD Galerkin approximation

After the computation of a POD basis of rank ` we are interested in deriving a low-dimensional
approximation for the evolution problem (2.3). In the context of Section 1.2 we choose ℘ = 1,
y1 = Su and compute a POD basis {ψi}`i=1 of rank ` by solving (P`) with ψi = ψVi for X = V

and ψi = ψHi for X = H. Then, we define the subspace X` = span {ψ1, . . . , ψ`}, i.e., X` = V `

for X = V and X` = H` for X = H. Now we approximate the state variable y by the Galerkin
expansion

y `(t) = ŷ(t) +
∑̀
i=1

y`i (t)ψi ∈ V a.e. in [0, T ] (2.13)

with coefficient functions y`i : [0, T ]→ R. We introduce the vector-valued coefficient function

y` =
(

y`1, . . . , y``
)

: [0, T ]→ R`.

Since ŷ(0) = y◦ holds, we suppose that y`(0) = 0. Then, y `(0) = y◦ is valid, i.e., the POD state
matches exactly the initial condition. Inserting (2.13) into (2.3) and using the test space in V ` for
1 ≤ i ≤ ` we obtain the following POD Galerkin scheme for (2.3): y ` ∈ W (0, T ) solves

d

dt
〈y `(t), ψ〉H + a(t; y `(t), ψ) = 〈(f + Bu)(t), ψ〉V ′,V ∀ψ ∈ X` a.e.,

y`(0) = 0.

(2.14)

We call (2.14) a low dimensional or reduced-order model for (2.3).

Proposition 2.7. Let all assumptions of Theorem 2.2 be satisfied and the POD basis of rank `
be computed as desribed at the beginning of Section 2.1. Then, there exists a unique solution
y ` ∈ H1(0, T ; V ) ↪→ W (0, T ) solving (2.14).
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Proof. Choosing ψ = ψi , 1 ≤ i ≤ `, and applying (2.13) we infer from (2.14) that the coefficient
vector y` satisfies

M`ẏ`(t) + A`(t)y(t) = F̂`(t) a.e. in [0, T ], y`(0) = 0, (2.15)

where we have set

M` =
((
〈ψi , ψj〉H

))
∈ R`×`, A`(t) =

((
a(t;ψi , ψj)

))
∈ R`×`,

F̂`(t) =
(
〈(f + Bu)(t)− ŷt(t), ψi〉V ′,V − a(t; ŷ(t), ψi)

)
∈ R`

(2.16)

with ψi = ψVi for X = V and ψi = ψHi for X = H. Since (2.15) is a linear ordinary differential
equation system the existence of a unique y` ∈ H1(0, T ;R`) follows by standard arguments. �

Remark 2.8. 1) Suppose ŷ 6= 0. Then, the POD approximation does admit values y `(t) in X,
but (y ` − ŷ)(t) ∈ X` holds. The benefit of this approach is that y `(0) = y◦ – and not
y `(0) = P`Hy◦ or y `(0) = P`V y◦. This improves the approximation quality of the POD basis
which is illustrated in our numerical tests.

2) We proceed analogously to Remark 2.3 and introduce the linear and bounded solution ope-
rator S` : U → W0(0, T ): for u ∈ U the function w ` = S`u ∈ W (0, T ) satisfies w `(0) = 0

and
d

dt
〈w `(t), ψ〉H + a(t;w `(t), ψ) = 〈(Bu)(t), ψ〉V ′,V ∀ψ ∈ X` a.e.

Then, the solution to (2.14) is given by y ` = ŷ + S`u. Analogous to the proof of (2.4) we
derive that there exists a positive constant C2 which does not depend on ` or u so that

‖S`u‖W (0,T ) ≤ C ‖u‖U .

Thus, S` is bounded uniformly with respect to `. ♦

To investigate the convergence of the error y −y ` we make use of the following two inequalities:
1) Gronwall’s inequality [DR11, Satz 16.6]: For T > 0 let v : [0, T ] → R be a nonnegative,

differentiable function satisfying

v ′(t) ≤ ϕ(t)v(t) + χ(t) for all t ∈ [0, T ],

where ϕ and χ are real-valued, nonnegative, integrable functions on [0, T ]. Then

v(t) ≤ exp

(∫ t

0

ϕ(s) ds

)(
v(0) +

∫ t

0

χ(s) ds

)
for all t ∈ [0, T ]. (2.17)

In particular, if
v ′ ≤ ϕv in [0, T ] and v(0) = 0

hold, then v = 0 in [0, T ].

2) Young’s inequality [DR11, Satz 10.2-(iii)]: For every a, b ∈ R and for every ε > 0 we have

ab ≤
εa2

2
+
b2

2ε
.

Theorem 2.9. Let u ∈ U be chosen arbitrarily with 0 6= Su ∈ H1(0, T ; V ).
1) To compute a POD basis {ψi}`i=1 of rank ` we choose ℘ = 1 and y1 = Su. Then, y = ŷ+Su

and y ` = ŷ + S`u satisfies the a-priori error estimate

‖y ` − y‖2

W (0,T )

≤ C1 ·


dV∑

i=`+1

λVi + ‖y1
t − P`V y1

t ‖
2

L2(0,T ;V ) if X = V,

dH∑
i=`+1

λHi ‖ψHi − P`HψHi ‖
2

V + ‖y1
t − P`Hy1

t ‖
2

L2(0,T ;V ) if X = H,

(2.18)

where the constant C1 depends on the terminal time T and the constants γ, γ1, γ2 introduced
in (2.2).
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2) Let Su ∈ H1(0, T ; V ) holds true. If we set ℘ = 2 and compute a POD basis of rank ` using
the trajectories y1 = Su and y2 = (Su)t , it follows that

‖y ` − y‖2

W (0,T ) ≤ C3 ·


dV∑

i=`+1

λVi for X = V,

dH∑
i=`+1

λHi ‖ψHi − P`HψHi ‖
2

V for X = H

(2.19)

for a constant C3 which depends on γ, γ1, γ2, and T .

Proof.
1) For almost all t ∈ [0, T ] we make use of the decomposition

y `(t)− y(t) = ŷ(t) + (S`u)(t)− ŷ(t)− (Su)(t)

= (S`u)(t)− P`
(

(Su)(t)
)

+ P`
(

(Su)(t)
)
− (Su)(t)

= ϑ`(t) + %`(t),

(2.20)

where ϑ` = S`u − P`(Su) ∈ X` and %` = P`(Su)− Su. In (2.20) we will consider the two
choices P` = P`H for X = H and P` = P`V for X = V . Since H1(0, T ; V ) ↪→ W (0, T ) holds,
there exists an embedding constant ce > 0 such that

‖ϕ‖W (0,T ) ≤ ce ‖ϕ‖H1(0,T ;V ) for all ϕ ∈ H1(0, T ; V ). (2.21)

From y1 = Su and (1.27) we infer that

‖%`‖2

W (0,T ) ≤ c2
e ‖%`‖

2

H1(0,T ;V ) = c2
e

dV∑
i=`+1

λVi + c2
e ‖y1

t − P`V y1
t ‖

2

L2(0,T ;V ) (2.22)

in case of X = V , where dV stands for rank of RV . For the choice X = H we derive from
y1 = Su and Theorem 2.5 that

‖%`‖2

W (0,T ) ≤ c2
e

dH∑
i=`+1

λHi ‖ψHi − P`HψHi ‖
2

V + c2
e ‖y1

t − P`Hy1
t ‖

2

L2(0,T ;V ). (2.23)

Here, dH denotes for rank of RH. Using ϑ`t(t) ∈ H for almost all t ∈ [0, T ], (2.3), (2.14)
and (2.2a) we derive that

d

dt
〈ϑ`(t), ψ〉H + a(t;ϑ`(t), ψ)

= 〈y1
t (t)− P`y1

t (t), ψ〉H + a(t; y1(t)− P`y1(t), ψ)

≤ ‖y1
t (t)− P`y1

t (t)‖H‖ψ‖H + γ ‖y1(t)− P`y1(t)‖V ‖ψ‖V

(2.24)

for all ψ ∈ X` and for almost all t ∈ [0, T ]. From choosing ψ = ϑ`(t), (2.2b) and (2.24) we
find

d

dt
‖ϑ`(t)‖2

H + γ1 ‖ϑ`(t)‖
2

V − 3γ2 ‖ϑ`(t)‖
2

H

≤
1

γ2
‖y1
t (t)− P`y1

t (t)‖2

H +
γ2

γ1
‖y1(t)− P`y1(t)‖2

V .

From (2.17) – setting v(t) = ‖ϑ`(t)‖2
H ≥ 0,

χ(t) =
1

γ2
‖y1
t (t)− P`y1

t (t)‖2

H +
γ2

γ1
‖y1(t)− P`y1(t)‖2

V ≥ 0,
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ϕ(t) = 3γ2 > 0 – and ϑ`(0) = 0 it follows that

‖ϑ`(t)‖2

H ≤ c1

(
‖y1
t − P`y1

t ‖
2

L2(0,T ;H) + ‖y1 − P`y1‖2

L2(0,T ;V )

)
for almost all t ∈ [0, T ] with the constants c1 = c2 exp(3γ2T ) and c2 = max(1/γ2, γ

2/γ1),
so that we derive from (2.1)

‖ϑ`‖2

L2(0,T ;V ) ≤ c3

(
‖ϑ`‖2

L2(0,T ;H) + ‖y1
t − P`y1

t ‖
2

L2(0,T ;H)

)
+ c3 ‖y1 − P`y1‖2

L2(0,T ;V )

≤ c4

(
‖y1
t − P`y1

t ‖
2

L2(0,T ;H) + ‖%`(t)‖2

L2(0,T ;V )

)
≤ c4

(
c2
V ‖y1

t − P`y1
t ‖

2

L2(0,T ;V ) + ‖%`(t)‖2

L2(0,T ;V )

)
(2.25)

with c3 = max(3γ2, c2)/γ1 and c4 = c3(1 + c1T ). We conclude from (2.2a), (2.18), (2.25)
and (2.1) that

‖ϑ`t‖L2(0,T ;(V `)′) = sup

{∫ T

0

〈ϑ`t(t), ψ(t)〉V ′,V
∣∣∣ ‖ψ‖L2(0,T ;V ) = 1, ψ(t) ∈ V `

}
≤ γ ‖ϑ`‖L2(0,T ;V ) + ‖y1

t − P`y1
t ‖L2(0,T ;H)

≤ c5

(
‖y1
t − P`y1

t ‖L2(0,T ;H) + ‖y1 − P`y1‖L2(0,T ;V )

)
≤ c5

(
cV ‖y1

t − P`y1
t ‖L2(0,T ;V ) + ‖y1 − P`y1‖L2(0,T ;V )

)
(2.26)

with c5 = 1 + c4γ. Consequently, (2.25) (2.26) and c4 ≤ 2c2
5 imply

‖ϑ`‖2

W (0,T ) ≤ ‖ϑ`‖
2

L2(0,T ;V ) + ‖ϑ`t‖
2

L2(0,T ;V ′)

≤ 2c2
5 ‖y1 − P`y1‖2

L2(0,T ;V ) + c2
V

(
c4 + 2c2

5

)
‖y1
t − P`y1

t ‖
2

L2(0,T ;V ′)

+ c4 ‖%`(t)‖
2

L2(0,T ;V )

≤ c6

(
‖y1 − P`y1‖2

L2(0,T ;V ) + ‖y1
t − P`y1

t ‖
2

L2(0,T ;V ′) + ‖%`(t)‖2

L2(0,T ;V )

) (2.27)

with c6 = max(2c2
5 , c

2
V (c4 + 2c2

5 )). Utilizing (2.20)-(2.23) and (2.27) imply (2.18).

2) The claim follows directly from

‖y1
t − P`y1

t ‖
2

L2(0,T ;V ) = ‖y2 − P`y2‖2

L2(0,T ;V ),

(1.27) and Theorem 2.5. �

Remark 2.10. 1) Note that the a-priori error estimates (2.18) and (2.19) depend an the ar-
bitrarily chosen, but fixed control u ∈ U, which is also utilized to compute the POD basis.
Moreover, these a-priori estimates do not involve errors by the POD discretization of the
initial condition y◦. Further, let us mention that the a-priori error analysis holds for T <∞.

2) For the numerical realization we have to utilize also a time integration method like, e.g., the
implicit Euler or the Crank-Nicolson method. ♦

Example 2.11. Accurate approximation results are achieved if the subspace spanned by the snaps-
hots is (approximatively) of low dimension. Let T > 0, Ω = (0, 2) ⊂ R and Q = (0, T ) × Ω. We
set f (t, x) = e−t(π2 − 1) sin(πx) for (t, x) ∈ Q and y◦(x) = sin(πx) for x ∈ Ω. Let H = L2(Ω),
V = H1

0(Ω) and

a(t;ϕ, φ) =

∫
Ω

ϕ′(x)φ′(x) dx for ϕ, φ ∈ V,
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i.e., the bilinear form a is independent of t. Finally, we choose u = 0. Then, the exact solution to
(2.3) is given by y(t, x) = e−t sin(πx). Thus, the snapshot space V is the one-dimensional space
{αψ | α ∈ R} with ψ(x) = sin(πx). Choosing the space X = H, this implies that all eigenvalues of
the operator RH introduced in (2.5) except of the first one are zero and ψ1 = ψ ∈ V is the single
POD element corresponding to a nontrivial eigenvalue of RH. Further, the reduced order model of
the rank-1 POD-Galerkin ansatz

ẏ1(t) + ‖ψ′1‖
2
H y1(t) = 〈f (t), ψ1〉H for t ∈ (0, T ],

y1(0) = 〈y◦, ψ1〉H
has the solution y1(t) = e−t , so both the projection(

P1y
)

(t, x) = 〈y(t), ψ1〉Xψ1(x), (t, x) ∈ Q,

of the state y on the POD-Galerkin space and the reduced-order solution y1(t) = y1(t)ψ1 coincide
with the exact solution y . In the latter case, this is due to the fact that the data functions f and
y◦ as well as all time derivative snapshots ẏ(t) are already elements of span(ψ1), so no projection
error occurs here, cp. the a priori error bounds given in (2.19). In the case X = V , we get the same
results with ψ1(x) = sin(πx)/

√
1 + π2 and y1(t) =

√
1 + π2e−t . ♦

Corollary 2.12. Let u, ũ ∈ U be chosen arbitrarily so that 0 6= Sũ ∈ H1(0, T ; V ) and u 6= ũ hold.
To compute a POD basis {ψi}`i=1 of rank ` we choose ℘ = 1 and y1 = Sũ. Moreover, let P` = P`V .
Then, y = ŷ + Su and y ` = ŷ + S`u satisfies

lim
`→∞

‖y ` − y‖W (0,T ) = 0. (2.28)

Proof. We infer from (2.27), (2.20), (2.21) that

‖y ` − y‖2

W (0,T ) = 2
(
‖ϑ`‖2

W (0,T ) + ‖%`‖2

W (0,T )

)
≤ 2c6

(
‖%`‖2

L2(0,T ;V ) + ‖%`t‖
2

L2(0,T ;V ′) + ‖%`‖2

L2(0,T ;V )

)
+ c2

e ‖%`‖
2

H1(0,T ;V )

≤ 4c6 ‖%`‖
2

W (0,T ) + c2
e ‖%`‖

2

H1(0,T ;V ) ≤ c7 ‖%`‖
2

H1(0,T ;V )

with c7 = 4c6c
2
e + c2

e . From (2.10) and y ∈ H1(0, T ; V ) we infer that

‖%`‖2

H1(0,T ;V ) =

∫ T

0

∥∥∥y(t)−
∑̀
i=1

〈y(t), ψi〉V ψi
∥∥∥2

V
+
∥∥∥yt(t)− ∑̀

i=1

〈yt(t), ψi〉V ψi
∥∥∥2

V
dt

`→∞−→ 0

which gives the claim. �

Utilizing the techniques as in the proof of Theorem 6.5 in [Sin14] one can derive an a-priori error
bound without including the time derivatives into the snapshot subspace. In the next proposition
we formulate the a-priori error estimate.

Proposition 2.13. Let y◦ ∈ V and u ∈ U be chosen arbitrarily so that Su 6= 0. To compute a
POD basis {ψi}`i=1 of rank ` we choose ℘ = 1 and y1 = Su. Then, y = ŷ + Su and y ` = ŷ + S`u
satisfies the a-priori error estimate

‖y ` − y‖2

L2(0,T ;V ) ≤ C ·


dV∑

i=`+1

λVi ‖ψVi − P`H,V `ψ
V
i ‖

2

V
if X = V,

dH∑
i=`+1

λHi ‖ψHi ‖
2

V if X = H,

(2.29)

where the constant C depends on the terminal time T and the constants γ, γ1, γ2 introduced in
(2.2). Moreover, P`

H,V `
: H → V ` is the H-orthogonal projection given as follows:

v ` = P`H,V `ϕ for any ϕ ∈ H iff v ` solves min
w `∈V `

‖ϕ− w `‖H.

In particular, we have y ` → y in L2(0, T ; V ) as `→∞.
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3 The linear-quadratic optimal control problem

In this section we apply a POD Galerkin approximation to linear-quadratic optimal control problems.
Linear-quadratic problems are interesting in several respects: In particular, they occur in each level
of a sequential quadratic programming (SQP) methods; see, e.g., [NW06].

In this chapter we prove convergence and derive a-priori error estimates for the optimal control
problem. The error estimates rely on the (unrealistic) assumption that the POD basis is computed
from the (exact) optimal solution. However, these estimates are utilized to develop an a-posteriori
error analysis for the POD Galerkin appproximation of the optimal control problem. We deduce how
far the suboptimal control, computed by the POD Galerkin approximation, is from the (unknown)
exact one.

3.1 Problem formulation

In this section we introduce our optimal control problem, which is a constrained optimization
problem in a Hilbert space. The objective is a quadratic function. The evolution problem (2.3)
serves as an equality constraint. Moreover, bilateral control bounds lead to inequality constraints in
the minimization. For the readers’ convenience we recall (2.3) here. Let U = L2(0, T ;RNu) denote
the control space with Nu ∈ N. For u ∈ U, y◦ ∈ H and f ∈ L2(0, T ; V ′) we consider the state
equation

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) = 〈(f + Bu)(t), ϕ〉V ′,V ∀ϕ ∈ V a.e. in (0, T ],

〈y(0), ϕ〉H = 〈y◦, ϕ〉H ∀ϕ ∈ H,
(3.1)

where B : U → L2(0, T ; V ′) is a continuous, linear operator. Due to Theorem 2.2 there exists a
unique solution y ∈ W (0, T ) to (3.1).
We introduce the Hilbert space

X = W (0, T )× U

endowed with the natural product topology, i.e., with the inner product

〈x, x̃〉X = 〈y , ỹ〉W (0,T ) + 〈u, ũ〉U for x = (y , u), x̃ = (ỹ , ũ) ∈ X

and the norm ‖x‖X = (‖y‖2
W (0,T ) + ‖u‖2

U)1/2 for x = (y , u) ∈ X.

Assumption 1. For t ∈ [0, T ] let a(t; · , ·) : V × V → R be a time-dependent symmetric bilinear
form satisfying (2.2). Moreover, f ∈ L2(0, T ; V ′), y◦ ∈ H and B ∈ L(U, L2(0, T ; V ′)) holds.

In Remark 2.3 we have introduced the particular solution ŷ ∈ W (0, T ) as well as the linear,
bounded solution operator S. Then, the solution to (3.1) can be expressed as y = ŷ +Su. By Xad

we denote the closed, convex and bounded set of admissible solutions for the optimization problem
as

Xad =
{

(ŷ + Su, u) ∈ X
∣∣ ua ≤ u ≤ ub in RNu a.e. in [0, T ]

}
,

where ua = (ua,1, . . . , ua,Nu), ub = (ub,1, . . . , ub,Nu) ∈ U satisfy ua,i ≤ ub,i for 1 ≤ i ≤ Nu a.e.
in [0, T ]. Since ua,i ≤ ub,i holds for 1 ≤ i ≤ Nu, we infer from Theorem 2.2 that the set Xad is
nonempty.
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The quadratic objective J : X → R is given by

J(x) =
σQ
2

∫ T

0

‖y(t)− yQ(t)‖2
H dt +

σΩ

2
‖y(T )− yΩ‖2

H +
σ

2
‖u‖2

U (3.2)

for x = (y , u) ∈ X, where (yQ, yΩ) ∈ L2(0, T ;H) × H are given desired states. Furthermore, σQ,
σΩ ≥ 0 and σ > 0. Of course, more general cost functionals can be treated analogously.

Now the quadratic programming problem is given by

min J(x) subject to (s.t.) x ∈ Xad. (P)

From x = (y , u) ∈ Xad we infer that y = ŷ + Su holds. Hence, y is a dependent variable. We call
u the control and y the state. In this way, (P) becomes an optimal control problem. Utilizing the
relationship y = ŷ + Su we define a so-called reduced cost functional Ĵ : U → R by

Ĵ(u) = J(ŷ + Su, u) for u ∈ U.

Moreover, the set of admissible controls is given as

Uad =
{
u ∈ U

∣∣ ua ≤ u ≤ ub in RNu a.e. in [0, T ]
}
,

which is convex, closed and bounded in U. Then, we consider the reduced optimal control problem:

min Ĵ(u) s.t. u ∈ Uad. (P̂)

Clearly, if ū is the optimal solution to (P̂), then x̄ = (ŷ +Sū, ū) is the optimal solution to (P). On
the other hand, if x̄ = (ȳ , ū) is the solution to (P), then ū solves (P̂).

Example 3.1. We introduce an example for (P) and discuss the presented theory for this app-
lication. Let Ω ⊂ Rd , d ∈ {1, 2, 3}, be an open and bounded domain with Lipschitz-continuous
boundary Γ = ∂Ω. For T > 0 we set Q = (0, T )×Ω and Σ = (0, T )× Γ. We choose H = L2(Ω)

and V = H1
0(Ω) endowed with the usual inner products

〈ϕ,ψ〉H =

∫
Ω

ϕψ dx , 〈ϕ,ψ〉V =

∫
Ω

ϕψ +∇ϕ · ∇ψ dx

and their induced norms, respectively. Let χi ∈ H, 1 ≤ i ≤ m, denote given control shape functions.
Then, for given control u ∈ U, initial condition y◦ ∈ H and inhomogeneity f ∈ L2(0, T ;H) we
consider the linear heat equation

yt(t, x)− ∆y(t, x) = f (t, x) +

m∑
i=1

ui(t)χi(x), a.e. in Q,

y(t, x) = 0, a.e. in Σ,

y(0, x) = y◦(x), a.e. in Ω.

(3.3)

We introduce the time-independent, symmetric bilinear form

a(ϕ,ψ) =

∫
Ω

∇ϕ · ∇ψ dx for ϕ,ψ ∈ V

and the bounded, linear operator B : U → L2(0, T ;H) ↪→ L2(0, T ; V ′) as

(Bu)(t, x) =

m∑
i=1

ui(t)χi(x) for (t, x) ∈ Q a.e. and u ∈ U.

Hence, we have γ = γ1 = γ2 = 1 in (2.2). It follows that the weak formulation of (3.3) can be
expressed in the form (2.3). Moreover, the unique weak solution to (3.3) belongs to the space
L∞(0, T ; V ) provided y◦ ∈ V holds. ♦
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3.2 Existence of a unique optimal solution

We suppose the following hypothesis for the objective.

Assumption 2. In (3.2) the desired states (yQ, yΩ) belong to L2(0, T ;H) × H. Furthermore,
σQ , σΩ ≥ 0 and σ > 0 are satisfied.

Let us review the following result for quadratic optimization problems in Hilbert spaces; see
[Tro09, Satz 2.14].

Theorem 3.2. Suppose that U and H are given Hilbert spaces with norms ‖ · ‖U and ‖ · ‖H,
respectively. Furthermore, let Uad ⊂ U be non-empty, bounded, closed, convex and zd ∈ H, κ ≥ 0.
The mapping G : U→ H is assumed to be a linear and continuous operator. Then there exists an
optimal control ū solving

min
u∈Uad

J (u) :=
1

2
‖Gu − zd‖2

H +
κ

2
‖u‖2

U. (3.4)

If κ > 0 holds or if G is injective, then ū is uniquely determined.

Remark 3.3. In the proof of Theorem 3.2 it is only used that J is continuous and convex. Therefore,
the existence of an optimal control follows for general convex, continuous cost functionals J : U→
R with a Hilbert space U. ♦

Next we can use Theorem 3.2 to obtain an existence result for the optimal control problem (P̂),
which imply the existence of an optimal solution to (P).

Theorem 3.4. Let Assumptions 1 and 2 be valid. Moreover, let the bilateral control constraints
ua, ub ∈ U satisfy ua ≤ ub componentwise in RNu a.e. in [0, T ]. Then, (P̂) has a unique optimal
solution ū.

Proof. Let us choose the Hilbert spacesH = L2(0, T ;H)×H and U = U. Moreover, E : W (0, T )→
L2(0, T ;H) is the canonical embedding operator, which is linear and bounded. We define the
operator E2 : W (0, T ) → H by E2ϕ = ϕ(T ) for ϕ ∈ W (0, T ). Since W (0, T ) is continuously
embedded into C([0, T ];H), the linear operator E2 is continuous. Finally, we set

G =

( √
σQ E1S
√
σΩ E2S

)
∈ L(U,H), zd =

( √
σQ (yQ − ŷ)

√
σΩ

(
yΩ − ŷ(T )

) ) ∈ H (3.5)

and Uad = Uad. Then, (P̂) and (3.4) coincide. Consequently, the claim follows from Theorem 3.2
and σ > 0. �

Next we consider the case that ua = −∞ or/and ub = +∞. In this case Uad is not bounded.
However, we have the following result [Tro09, Satz 2.17].

Theorem 3.5. Let Assumptions 1 and 2 be satisfied. If ua = −∞ or/and ub = +∞, problem (P̂)
admits a unique solution.

Proof. We utilize the setting of the proof of Theorem 3.4. By assumption there exists an element
u0 ∈ Uad. For u ∈ U with ‖u‖2

U > 2Ĵ(u0)/σ we have

Ĵ(u) = J (u) =
1

2
‖Gu − zd‖2

H +
σ

2
‖u‖2

U ≥
σ

2
‖u‖2

U > Ĵ(u0).

Thus, the minimization of Ĵ over Uad is equivalent with the minimization of Ĵ over the bounded,
convex and closed set

Uad ∩
{
u ∈ U

∣∣∣ ‖u‖2
U ≤

2Ĵ(u0)

σ

}
.

Now the claim follows from Theorem 3.2. �

30 Prof. Dr. Stefan Volkwein



3.3 First-order necessary optimality conditions

In (3.4) we have introduced the quadratic programming problem

min
u∈Uad

J (u) =
1

2
‖Gu − zd‖2

H +
σ

2
‖u‖2

U. (3.6)

Existence of a unique solution has been investigated in Section 3.2. In this section we characterize
the solution to (3.6) by first-order optimality conditions, which are essential to prove convergence
and rate of convergence results for the POD approximations in Section 3.4. To derive first-order
conditions we require the notion of derivatives in function spaces. Therefore, we recall the following
definition [Tro09, §2.6].

Definition 3.6. Suppose that B1 and B2 are real Banach spaces, U ⊂ B1 be an open subset and
F : U ⊃ B1 → B2 a given mapping. The directional derivative of F at a point u ∈ U in the
direction h ∈ B2 is defined by

DF(u; h) := lim
ε↘0

1

ε

(
F(u + εh)−F(u)

)
provided the limit exists in B2. Suppose that the directional derivative exists for all h ∈ B1 and
there is a linear, continuous operator T : U→ B2 satisfying

DF(u; h) = T h for all h ∈ U.

Then, F is said to be Gâteaux-differentiable at u and T is the Gâteaux derivative of F at u. We
write T = F ′(u).

Remark 3.7. Let H be a real Hilbert space and F : H → R be Gâteaux-differentiable at u ∈ H.
Then, its Gâteaux derivative F ′(u) at u belongs to H′ = L(H,R). Due to Riesz theorem [DR12,
Satz 12.24] there exists a unique element ∇F(u) ∈ H satisfying

〈∇F(u), v〉H = 〈F ′(u), v〉H′,H for all v ∈ H.

We call ∇F(u) the (Gâteaux) gradient of F at u. ♦

Theorem 3.8. Let U be a real Hilbert space and Uad be convex subset. Suppose that ū ∈ Uad is a
solution to (3.6)

min
u∈Uad

J (u).

Then the following variational inequality holds

〈∇J (ū), u − ū〉U ≥ 0 for all u ∈ Uad, (3.7)

where the gradient of J is given by

∇J (ū) = G?(Gu − zd) + σu for u ∈ U.

If ū ∈ Uad solves (3.7), then ū is a solution to (3.6).

Proof. Let ū ∈ Uad be a solution to (3.6), u ∈ Uad be arbitrarily chosen. Since Uad is convex, we
have ū + t(u − ū) = tu + (1− t)ū ∈ Uad for all t ∈ [0, 1]. In particular, for we find that

J (ū) ≤ J (ū + t(u − ū)) for all t ∈ (0, 1].

Consequently,
1

t

(
J (ū + t(u − ū))− J (ū)

)
≥ 0 for all t ∈ (0, 1]

3.3. FIRST-ORDER NECESSARY OPTIMALITY CONDITIONS 31



Since J is Gâteaux-differentiable, we get (3.7), which is a sufficient condition becaus J and Uad

are convex. �

Inequality (3.7) is a first-order necessary and sufficient condition for (3.6), which can be expressed
as

〈Gū − zd ,Gu − Gū〉H + 〈σū, u − ū〉U ≥ 0 for all u ∈ Uad. (3.8)

Next we study (3.8) for (P̂). Utilizing the setting from (3.5) we obtain

〈Gū − zd ,G(u − ū)〉H
= σQ 〈Sū − (yQ − ŷ),S(u − ū)〉L2(0,T ;H)

+ σΩ 〈(Sū)(T )− (yΩ − ŷ(T )), (S(u − ū))(T )〉H
= σQ 〈Sū,S(u − ū)〉L2(0,T ;H) + σΩ 〈(Sū)(T ), (S(u − ū))(T )〉H
− σQ 〈yQ − ŷ ,S(u − ū)〉L2(0,T ;H) − σΩ 〈yΩ − ŷ(T ), (S(u − ū))(T )〉H.

Let us define the two linear, bounded operators Θ : W0(0, T )→ W0(0, T )′ and Ξ : L2(0, T ;H)×
H → W0(0, T )′ by

〈Θϕ, φ〉W0(0,T )′,W0(0,T ) =

∫ T

0

〈σQϕ(t), φ(t)〉H dt + 〈σΩϕ(T ), φ(T )〉H,

〈Ξz, φ〉W0(0,T )′,W0(0,T ) =

∫ T

0

〈σQzQ(t), φ(t)〉H dt + 〈σΩzΩ, φ(T )〉H

(3.9)

for ϕ, φ ∈ W0(0, T ) and z = (zQ, zΩ) ∈ L2(0, T ;H)×H. Then, we find

〈Gū − zd ,G(u − ū)〉H
= 〈Θ(Sū)− Ξ(yQ − ŷ , yΩ − ŷ(T )),S(u − ū)〉W0(0,T )′,W0(0,T )

= 〈S ′ΘSū, u − ū〉U − 〈S ′Ξ(yQ − ŷ , yΩ − ŷ(T )), u − ū〉U .
(3.10)

Let us define the linear A : U → W (0, T ) as follows: for given u ∈ U the function p = Au ∈
W (0, T ) is the unique solution to

−
d

dt
〈p(t), ϕ〉H + a(t; p(t), ϕ) = −σQ 〈(Su)(t), ϕ〉H ∀ϕ ∈ V a.e.,

p(T ) = −σΩ (Su)(T ) in H.
(3.11)

It follows from (2.2) and Su ∈ W (0, T ) that the operator A is well-defined and bounded.

Lemma 3.9. Let Assumption 1 be satisfied and u, v ∈ U. We set y = Su ∈ W0(0, T ), w = Sv ∈
W0(0, T ), and p = Av ∈ W (0, T ). Then,∫ T

0

〈(Bu)(t), p(t)〉V ′,V dt = −
∫ T

0

σQ 〈w(t), y(t)〉H dt − σΩ 〈w(T ), y(T )〉H.

Proof. We derive from y = Su, p = Au, y ∈ W0(0, T ) and integration by parts∫ T

0

〈(Bu)(t), p(t)〉V ′,V dt =

∫ T

0

〈yt(t), p(t)〉V ′,V + a(t; y(t), p(t)) dt

=

∫ T

0

−〈pt(t), y(t)〉V ′,V + a(t; p(t), y(t)) dt + 〈p(T ), y(T )〉H

= −
∫ T

0

σQ 〈w(t), y(t)〉H dt − σΩ 〈w(T ), y(T )〉H

which is the claim. �
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We define p̂ ∈ W (0, T ) as the unique solution to

−
d

dt
〈p̂(t), ϕ〉H + a(t; p̂(t), ϕ) = σQ 〈yQ(t)− ŷ(t), ϕ〉H ∀ϕ ∈ V a.e.,

p(T ) = σΩ (yΩ − ŷ(T )) in H.
(3.12)

Then, for every u ∈ U the function p = p̂ +Au is the unique solution to

−
d

dt
〈p(t), ϕ〉H + a(t; p(t), ϕ) = σQ 〈yQ(t)− y(t), ϕ〉H ∀ϕ ∈ V a.e.,

p(T ) = σΩ (yΩ − y(T )) in H

with y = ŷ + Su. Moreover, we have the following result.

Lemma 3.10. Let Assumption 1 be satisfied. Then, B′A = −S ′ΘS ∈ L(U), where linear and
bounded operator Θ has been defined in (3.9). Moreover, B′p̂ = S ′Ξ(yQ− ŷ , yΩ− ŷ(T )), where p̂
is the solution to (3.12).

Proof. Let u, v ∈ U be chosen arbitrarily. We set y = Su ∈ W0(0, T ) and w = Sv ∈ W0(0, T ). Re-
call that we identify U with its dual space U ′. From the integration by parts formula and Lemma 3.9
we infer that

〈S ′ΘSv , u〉U = 〈ΘSv ,Su〉W0(0,T )′,W0(0,T ) = 〈Θw, y〉W0(0,T )′,W0(0,T )

=

∫ T

0

σQ 〈w(t), y(t)〉H dt + σΩ 〈w(T ), y(T )〉H

= −〈Bu, p〉L2(0,T ;V ′),L2(0,T ;V ) = −〈u,B′p〉U = −〈B′Av , u〉U .

Since u, v ∈ U are chosen arbitrarily, we have B′A = S ′ΘS. Further, we find

〈S ′Ξ(yQ − ŷ , yΩ − ŷ(T )), u〉U = 〈Ξ(yQ − ŷ), yΩ − ŷ(T )),Su〉W0(0,T )′,W0(0,T )

=

∫ T

0

σQ 〈yQ − ŷ(t), y(t)〉H dt + σΩ 〈yΩ − ŷ(T ), y(T )〉H

=

∫ T

0

−〈p̂t(t), y(t)〉H + a(t; p̂(t), y(t)) dt + 〈p̂(T ), y(T )〉H

=

∫ T

0

〈yt(t), p̂(t)〉H + a(t; y(t), p̂(t)) dt =

∫ T

0

〈(Bu)(t), p̂(t)〉V ′,V dt

= 〈B′p̂, u〉U .

which gives the claim. �

We infer from (3.10) and Lemma 3.10 that

〈Gū − zd ,Gv̄〉H = −〈B′(p̂ +Aū), u − ū〉U .

This implies the following variational inequality for (P̂)

〈Gū − zd ,Gu − Gū〉H + σ 〈ū, u − ū〉U
= 〈σū − B′(p̂ +Aū), u − ū〉U ≥ 0 for all u ∈ Uad.

Summarizing we have proved the following result.

Theorem 3.11. Suppose that Assumptions 1 and 2 hold. Then, (ȳ , ū) is a solution to (P) if and
only if (ȳ , ū) satisfy together with the adjoint variable p̄ the first-order optimality system

ȳ = ŷ + Sū, p̄ = p̂ +Aū, ua ≤ ū ≤ ub (3.13a)

〈σū − B′p̄, u − ū〉U ≥ 0 for all u ∈ Uad. (3.13b)
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Remark 3.12. By using a Lagrangian framework it follows from Theorem 3.11 and [Tro09] that
the variational inequality (3.13b) is equivalent to the existence of two Lagrange multiplier functions
µ̄a, µ̄b ∈ U satisfying µ̄a, µ̄b ≥ 0,

σū − B′p̄ + µ̄b − µ̄a = 0

and the complementarity condition

µ̄a(t)>(ua(t)− ū(t)) = µ̄b(t)>(ū(t)− ub(t)) = 0 f.a.a. t ∈ [0, T ].

Thus, (3.13) is equivalent to the system

ȳ = ŷ + Sū, p̄ = p̂ +Aū, σū − B′p̄ + µ̄b − µ̄a = 0,

ua ≤ ū ≤ ub, 0 ≤ µ̄a, 0 ≤ µ̄b,
µ̄a(t)>(ua(t)− ū(t)) = µ̄b(t)>(ū(t)− ub(t)) = 0 a.e. in [0, T ].

(3.14)

Utilizing a complementarity function it can be shown that (3.14) is equivalent with

ȳ = ŷ + Sū, p̄ = p̂ +Aū, σū − B′p̄ + µ̄b − µ̄a = 0, ua ≤ ū ≤ ub,
µ̄a = max

(
0, µ̄a + η(ū − ua)

)
, µ̄b = max

(
0, µ̄b + η(ū − ub)

)
,

(3.15)

where η > 0 is an arbitrary real number. The max-and min-operations are interpreted component-
wise in the pointwise everywhere sense. ♦

The gradient ∇Ĵ : U → U of the reduced cost functional Ĵ is given by

∇J(u) = σu − B?p, u ∈ U,

where p = p̂+Au holds true; see, e.g., [HPUU09]. Thus, a first-order sufficient optimality condition
for (P̂) is given by the variational inequality

〈σū − B′p̄, u − ū〉U ≥ 0 for all u ∈ Uad, (3.16)

with p̄ = p̂ +Aū.

3.4 The POD Galerkin approximation for (P̂)

In this subsection we introduce the POD Galerkin schemes for the variational inequality (3.16) using
a POD Galerkin approximation for the state and dual variables. Moreover, we study the convergence
of the POD discretizations. In Section 2.3 we have introduced a POD Galerkin scheme for the state
equation (3.1). Suppose that {ψi}`i=1 be a POD basis of rank ` computed from (P`) with ψi = ψVi
in case of X = V and ψi = ψHi in case of X = H. We set X` = span {ψ1, . . . , ψ`} ⊂ V . Let the
linear and bounded projection operator P` denote P`V for X = V and P`H for X = H; see (2.8).
Recall the POD Galerkin ansatz (2.13) for the state variable. Analogously, we approximate the

adjoint variable p = p̂ +Au by the Galerkin expansion

p`(t) = p̂(t) +
∑̀
i=1

p`i (t)ψi ∈ V for t ∈ [0, T ] (3.17)

with coefficient functions p`i : [0, T ]→ R and with p̂ from (3.12). Let the vector-valued coefficient
function given by

p` =
(

p`1, . . . , p``
)

: [0, T ]→ R`
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If we assume that p`(T ) = −σΩy`(T ) holds, then we infer from p̂(T ) = σΩ(yΩ− ŷ(T )) and (3.17)
that

p`(T ) = p̂(T )− σΩ

∑̀
i=1

y`i (t)ψi = σΩ

(
yΩ − y `(T )

)
.

This motivates the following POD scheme for the approximation of p = p̂+Au is given as follows:
p` ∈ W (0, T ) satisfies

−
d

dt
〈p`(t), ψ〉H + a(t; p`(t), ψ) = σQ 〈(yQ − y `)(t), ψ〉H ∀ψ ∈ X` a.e.,

p`(T ) = −σΩy`(T ).

(3.18)

It follows by similar arguments as for (2.14) that there is a unique solution p` ∈ W (0, T ).

Remark 3.13. Recall that we have introduced the linear and bounded solution operator S` : U →
W (0, T ) as an approximation for the state solution operator S; see Remark 2.8-2). Analogously,
we define an approximation of the adjoint solution operator A as follows: Let A` : U → W (0, T )

denote the solution operator to

−
d

dt
〈w `(t), ψ〉H + a(t;w `(t), ψ) = −σ1 〈(S`u)(t), ψ〉H ∀ψ ∈ X` a.e.,

w `(T ) = −σ2(S`u)(T ).

Then p` = p̂ +A`u is the unique solution to (3.18). ♦

Lemma 3.14. Let Assumption 1 on page 28 be satisfied and u, v ∈ U. We set y ` = S`u ∈ W0(0, T ),
w ` = S`v ∈ W0(0, T ), and p` = A`v ∈ W (0, T ). Then,∫ T

0

〈(Bu)(t), p`(t)〉V ′,V dt = −
∫ T

0

σQ〈w `(t), y `(t)〉H dt − σΩ〈w `(T ), y `(T )〉H.

Moreover, B′A` = −(S`)′ΘS` ∈ L(U), where linear and bounded operator Θ has been defined in
(3.9).

Proof. Since the POD basis for the state and adjoint coincide, the claim follows by the same
arguments used to prove Lemmas 3.9 and 3.10. �

Theorem 3.15. Suppose that Assumptions 1 and 2 hold. Let X = V and u ∈ U be arbitrarily given
so that Su, Au ∈ H1(0, T ; V )\{0}. To compute a POD basis {ψi}`i=1 of rank ` we choose ℘ = 4,
y1 = Su, y2 = (Su)t , y3 = Au and y4 = (Au)t . Then, p = p̂ + Au and p` = p̂ + A`u satisfies
the a-priori error estimate

‖p` − p‖2

H1(0,T ;V ) ≤


C

dV∑
i=`+1

λVi if X = V,

C
dH∑

i=`+1

λHi ‖ψHi − P`HψHi ‖
2

V if X = H

(3.19)

for a constant C which depends on γ, γ1, γ2, T , σΩ and σQ.

Proof. Analogous to (2.20) we have p`(t) − p(t) = θ`(t) + ρ`(t) for almost all t ∈ [0, T ] with
θ` = A`u − P`(Au) and ρ` = P`(Au) − Au. Here, P` = P`V for X = V and P` = P`H for
X = H. Now, the proof of the claims follows by similar arguments as the proofs of Theorem 2.9,
Proposition 4.7 in [HV08], Proposition 4.6 in [TV09] and Theorem 6.3 in [Sin14]. To estimate the
terminal term θ`(T ) we use observe that∥∥θ`(T )

∥∥
H

=
∥∥P`((Au)(T )

)
− (A`u)(T )

∥∥
H

≤ σΩ

(∥∥P`((Su)(T )
)
− (Su)(T )

∥∥
H

+
∥∥(Su)(T )− (S`u)(T )

∥∥
H

)
≤ σΩ

(∥∥P`(Su)− Su
∥∥
C([0,T ];H)

+
∥∥Su − S`u∥∥

C([0,T ];H)

)
≤ σΩcE

(∥∥P`(Su)− Su
∥∥
H1(0,T ;V )

+
∥∥Su − S`u∥∥

H1(0,T ;V )

)
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with an embedding constant cE . The first term on the right-hand side can be handled by (1.27),
the second term is estimated in Theorem 2.9. �

Remark 3.16. 1) Analogous to Remark 2.10-2) the a-priori estimate (3.19) holds for an arbi-
trarily chosen, but fixed control u ∈ U. Argueing as in the proof of Corollary 2.12 we find
that

lim
`→∞

∥∥p̂ +A`ũ − p̂ −Aũ
∥∥
W (0,T )

= 0

for any ũ ∈ U.
2) We can also extend the results in Proposition 2.13 for the adjoint equation and get an a-priori

error estimate choosing ℘ = 2, y1 = Su and y2 = Au. ♦

The POD Galerkin approximation for (P̂) is as follows:

min Ĵ`(u) s.t. u ∈ Uad, (P̂`)

where the cost is defined by Ĵ`(u) = J(ŷ +S`u, u) for u ∈ U. Let ū` be the solution to (P̂`). Then,
a first-order sufficient optimality condition is given by the variational inequality

〈σū` − B′p̄`, u − ū`〉U ≥ 0 for all u ∈ Uad, (3.20)

where p̄` = p̂` +A`ū` holds.

Theorem 3.17. Suppose that Assumptions 1 and 2 hold. Let u ∈ U be arbitrarily given so that
Su, Au ∈ H1(0, T ; V ) \ {0}.
1) To compute a POD basis {ψi}`i=1 of rank ` we choose ℘ = 4, y1 = Su, y2 = (Su)t ,

y3 = Au and y4 = (Au)t . Then, the optimal solution ū to (P̂) and the associated POD
suboptimal solution ū` to (P̂`) satisfy

lim
`→∞

∥∥ū` − ū∥∥
U

= 0 (3.21)

for X = V and X = H.

2) If an optimal POD basis of rank is computed by choosing ℘ = 4, y1 = Sū, y2 = (Sū)t ,
y3 = Aū and y4 = (Aū)t , then we have

∥∥ū` − ū∥∥
U
≤


C

σ

dV∑
i=`+1

λVi if X = V,

C

σ

dH∑
i=`+1

λHi ‖ψHi − P`HψHi ‖
2

V if X = H,

(3.22)

where the constant C depends on γ, γ1, γ2, T , σΩ, σQ and the norm ‖B′‖L(L2(0,T ;V ),U).

Proof. Choosing u = ū` in (3.16) and u = ū in (3.20) we get the variational inequality

0 ≤ 〈σ(ū − ū`)− B′(p̄ − p̄`), ū` − ū〉U . (3.23)

Utilizing Lemma 3.14 and 〈Θϕ,ϕ〉W0(0,T )′,W0(0,T ) ≥ 0 for all ϕ ∈ W0(0, T ) we infer from (3.23)
that

0 ≤ 〈B′A`ū` − B′Aū, ū` − ū〉U − σ ‖ū − ū`‖
2

U

= 〈B′A`(ū` − ū) + B′(A` −A)ū, ū` − ū〉U − σ ‖ū − ū`‖
2

U

≤ 〈ΘS`(ū − ū`),S`(ū` − ū)〉U + ‖B′(A` −A)ū‖U‖ū` − ū‖U − σ ‖ū − ū`‖
2

U

≤ ‖B′(A` −A)ū‖U‖ū` − ū‖U − σ ‖ū − ū`‖
2

U .

Consequently,

‖ū − ū`‖U ≤
1

σ
‖B′(A` −A)ū‖U .

Now (3.21) and (3.22) follow from Remark 3.16-1) and (3.19), respectively. �
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3.5 POD a-posteriori error analysis

In [TV09] a POD a-posteriori error estimates are presented which can be applied to our optimal
control problem as well. It is deduced how far the suboptimal control ū` is from the (unknown)
exact optimal control ū. Thus, our goal is to estimate the norm ‖ū − ū`‖U without the knowledge
of the optimal solution ū. In general, ū` 6= ū holds, so that ū` does not satisfy the variational
inequality (3.16). However, there exists a function ζ` ∈ U such that

〈σū` − B′p̃` + ζ`, u − ū`〉U ≥ 0 ∀v ∈ Uad, (3.24)

with p̃` = p̂ + Aū`. Therefore, ū` satisfies the optimality condition of the perturbed parabolic
optimal control problem

min
u∈Uad

J̃(u) = J(ŷ + Su, u) + 〈ζ`, u〉U

with “perturbation” ζ`. The smaller ζ` is, the closer ū` is to ū. Next we estimate ‖ū− ū`‖U in terms
of ‖ζ`‖U . By Lemma 3.10 we have

B′
(
p̄ − p̃`

)
= B′A

(
ū − ū`

)
= −S ′ΘS

(
ū − ū`

)
= S ′Θ

(
ỹ ` − ȳ

)
(3.25)

with ỹ ` = ŷ + Sū`. Choosing u = ū` in (3.16), u = ū in (3.24) and using (3.25) we obtain

0 ≤ 〈−σ(ū − ū`) + B′(p̄ − p̃`) + ζ`, ū − ū`〉U
= −σ ‖ū − ū`‖2

U + 〈S ′Θ(ỹ ` − ȳ), ū − ū`〉U + 〈ζ`, ū − ū`〉U
= −σ ‖ū − up‖2

U − 〈Θ(ȳ − ỹ `), ȳ − ỹ `〉W0(0,T )′,W0(0,T ) + 〈ζ`, ū − ū`〉U
= −σ ‖ū − ū`‖2

U + 〈ζ`, ū` − ū`〉U ≤ −σ ‖ū − ū`‖
2

U + ‖ζ`‖U‖ū − ū`‖U .

Hence, we get the a-posteriori error estimation

‖ū − ū`‖U ≤
1

σ
‖ζ`‖U .

Theorem 3.18. Suppose that Assumptions 1 and 2 hold. Let u ∈ U be arbitrarily given so that
Su, Au ∈ H1(0, T ; V ) \ {0}. To compute a POD basis {ψi}`i=1 of rank ` we choose ℘ = 4,
y1 = Su, y2 = (Su)t , y3 = Au and y4 = (Au)t . Define the function ζ` ∈ U by

ζ`i (t) =


−min(0, ξ`i (t)) a.e. in A`ai =

{
t ∈ [0, T ] |ū`i (t) = uai(t)

}
,

−max(0, ξ`i (t)) a.e. in A`bi =
{
t ∈ [0, T ] |ū`i (t) = ubi(t)

}
,

− ξ`i (t) a.e. in [0, T ] \
(
A`ai ∪A`bi

)
,

where ξ` = σū` − B′(p̂ +Aū`) in U. Then, the a-posteriori error estimate

‖ū − ū`‖U ≤
1

σ
‖ζ`‖U . (3.26)

In particular, lim
`→∞

∥∥ζ`∥∥
U

= 0.

Proof. Estimate (3.26) has already be shown. We proceed by constructing the function ζ`. Here
we adapt the lines of the proof of Proposition 3.2 in [TV09] to our optimal control problem.
Suppose that we know ū` and p̃` = p̂ + Aū`. The goal is to determine ζ` ∈ U satisfying (3.24).
We distinguish three different cases.
• Case ū`i (t) = uai(t) for fixed t ∈ [0, T ] and i ∈ {1, . . . , Nu}: Then, ui(t)− ū`i (t) = ui(t)−

uai(t) ≥ 0 for all u ∈ Uad . Hence, ζ`i (t) has to satisfy(
σū` − B′p̃`

)
i
(t) + ζ`i (t) ≥ 0. (3.27)

Setting ζ`i (t) = −min(0, (σū` − B′p̃`)i(t)) the value ζ`i (t) satisfies (3.27).
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• Case ū`i (t) = ubi(t) for fixed t ∈ [0, T ] and i ∈ {1, . . . , Nu}: Now, ui(t) − ū`i (t) = u(t) −
ubi(t) ≤ 0 for all u ∈ Uad . Analogously to the first case we define ζ`i (t) = −max(0, (σū` −
B′p̃`)i(t)) to ensure (3.27).

• Case uai(t) < ū`i (t) < ubi(t) for fixed t ∈ [0, T ] and i ∈ {1, . . . , Nu}: Consequently,
(σū` − B′p̃`)i(t) + ζ`i (t) = 0 holds so that ζ`i (t) = −(σū` − B′p̃`)i(t) guarantees (3.27).

It remains to prove that ζ` tends to zero for `→∞. Here we adapt the proof of Theorem 4.11 in
[TV09]. By Theorem 3.17-1), the sequence {ū`}`∈N converges to ū in U. Since the linear operator
B′A is bounded and p̃` = p̂ + Aū` holds, {B′p̃`}`∈N tends to B′p̄ = B′Aū as well. Hence, there
exist subsequences {ū`k}k∈N and {B′p̃`k}k∈N satisfying

lim
k→∞

ū`ki (t) = ūi(t) and lim
k→∞

(B′p̃`k )i(t) = (B′p̄)i(t)

f.a.a. t ∈ [0, T ] and for 1 ≤ i ≤ Nu. Next we consider the active and inactive sets for ū.
• Let t ∈ Ji = {t ∈ [0, T ] | uai(t) < ūi(t) < ubi(t)} for i ∈ {1, . . . , Nu}. For k◦ = k◦(t) ∈ N

sufficiently large, ū`ki (t) ∈ (uai(t), ubi(t)) for all k ≥ k◦ and f.a.a. t ∈ Ji . Thus, (σū`k −
B′p̃`k )i(t) = 0 for all k ≥ k◦(t) in Ji a.e. This implies

ζ`ki (t) = 0 ∀k ≥ k◦(t) and f.a.a. t ∈ Ji . (3.28)

• Suppose that t ∈ Aai = {t ∈ [0, T ] | uai(t) = ūi(t)} for i ∈ {1, . . . , Nu}. From (σūi −
B′p̄)i(t) ≥ 0 in Aai a.e. we deduce

lim
k→∞

ζ`ki (t) = − lim
k→∞

min(0, (σū`k − B′p̃`k )i(t)) = 0 f.a.a. t ∈ Aai .

• Suppose that t ∈ Abi = {t ∈ [0, T ] | ubi(t) = ūi(t)}. Analogously to the second case we find

lim
k→∞

ζ`ki (t) = − lim
k→∞

max(0, (σū`k − B′p̃`k )i(t)) = 0 f.a.a. t ∈ Abi . (3.29)

Combining (3.28)-(3.29) we conclude that limk→∞ ζ
`k
i = 0 a.e. in [0, T ] and for 1 ≤ i ≤ Nu. Mo-

reover, the sequence {‖ζ`k (·)‖RNu }k∈N ⊂ L2(0, T ) is bounded. Utilizing the dominated convergence
theorem [DR11, Satz 13.28] we have

lim
k→∞

∥∥ζ`k∥∥
U

= 0.

Since all subsequences contain a subsequence converging to zero, the claim follows from a standard
argument. �

Remark 3.19. 1) Theorem 3.18 shows that ‖ζ`‖U tends to zero as ` goes to infinity. Thus,
‖ζ`‖U is smaller than any tolerance ε > 0 provided that ` is taken sufficiently large. Motivated
by this result we set up Algorithm 1. Note that the approximation quality of the POD Galerkin
scheme is improved by only increasing the number of POD basis elements: A rank-` POD
basis can be extended to a rank-(`+1) POD basis by adding a new eigenfunction and keeping
all the old ones. Especially, the system matrices and projected data functions can be extended
by the new element, they do not have to be reconstructed in all components.

2) We infer from Proposition 2.13 and Remark 3.16-3) that Theorem 3.18 holds still true if we
take ℘ = 2, y1 = Su and y2 = Au. ♦
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Algorithm 1 POD reduced-order method with a-posteriori estimator

Require: Initial control u0` ∈ U, initial number ` for the POD ansatz functions, a maximal number
`max > ` of POD ansatz functions, and a stopping tolerance ε > 0.

1: Determine ŷ , p̂, y1 = Su0`, y2 = Au0`.
2: Compute a POD basis {ψi}`max

i=1 choosing y1 and y2. Set ` = 1.
3: repeat
4: Establish the POD Galerkin discretization using {ψi}`i=1.
5: Compute suboptimal control ū`.
6: Determine ζ` according to Theorem 3.15 and compute εape = ‖ζ`‖U/σ.
7: if εape < ε or ` = `max then
8: Return ` and suboptimal control ū` and STOP.
9: end if

10: Set ` = `+ 1.
11: until ` > `max
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