
Lecture 31

Proper Orthogonal Decomposition –
Introduction

In this lecture we introduce the method of proper orthogonal decomposition (POD) in the Euclidean space Rm and
study the close connection to the singular value decomposition of rectangular matrices; see [23]. We also refer to the
monograph [19].

31.1 POD and SVD

Let Y = [y1, . . . , yn] be a real-valued m ⇥ n matrix of rank d  min{m,n} with columns yj 2 Rm, 1  j  n.
Consequently,

ȳ =
1

n

nX

j=1

yj (31.1)

can be viewed as the column-averaged mean of the matrix Y .

Theorem 31.1.1 (SVD). There exist uniquely determined real numbers �1 � �2 � . . . � �d > 0 and orthogonal
matrices U 2 Rm⇥m with columns {ui}mi=1 and V 2 Rn⇥n with columns {vi}ni=1 such that

U>Y V =

✓
D 0
0 0

◆
=: ⌃ 2 Rm⇥n, (31.2)

where D = diag (�1, . . . ,�d) 2 Rd⇥d and the zeros in (31.2) denote matrices of appropriate dimensions. Moreover
the vectors {ui}di=1 and {vi}di=1 satisfy

Y vi = �iui and Y >ui = �ivi for i = 1, . . . , d. (31.3)

Proof. We follow the arguments given in [9, pp. 144-145]. For Y = 0 the claim is clear. Suppose that Y 6= 0 holds.
Then,

�1 = kY k2 = max
kvkRn=1

kY vk2 > 0.

Let v 2 Rn be vector with kvk2 = 1, where the maximum is attained. We set u = Y v/�1 2 Rm. It follows that
kuk2 = kY vk2/�1 = 1. We extend u and v to orthonormal bases {u, ũ2, . . . , ũm} and {v, ṽ2, . . . , ṽn} in Rm and Rn,
respectively. Next we define the two orthogonal matrices U1 = [u, ũ2, . . . , ũm] 2 Rm⇥m and V1 = [v, ṽ2, . . . , ṽm] 2
Rn⇥n. Since hũ, Y vi2 = �1 hũi, ui2 = �1 ũ>

i u = 0 holds for i = 2, . . . ,m, we find that

Y1 = U>

1 Y V1 =

✓
�1 w>

0 Ỹ

◆
2 Rm⇥n

with w 2 Rn�1 and Ỹ 2 R(m�1)⇥(n�1). We observe that

����Y1

✓
�1
w

◆����
2

=

����

✓
�2
1 + w>w
Ỹ w

◆����
2

� �2
1 + kwk2Rn�1 =

����

✓
�1
w

◆����
2

2

.
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26 LECTURE 31. POD – INTRODUCTION

Moreover, kY k2 = kY1k2 holds. Therefore, we have

�1 = kY1k2 �

����Y1

✓
�1
w

◆����
2����

✓
�1
w

◆����
2

�
q
�2
1 + kwk2Rn�1 .

Consequently, w = 0 and

U>

1 Y V1 =

✓
�1 0
0 Ỹ

◆
2 Rm⇥n.

Thus, the claim has been proved for m = 1 or n = 1. For the case m,n > 1 we apply an induction argument. For
that purpose we assume that U>

2 Ỹ V2 = ⌃2 with two orthogonal matrices U2 2 R(m�1)⇥(m�1), V2 2 R(n�1)⇥(n�1)

and with a matrix ⌃2 2 R(m�1)⇥(n�1) of the same structure as the marix ⌃ in (31.2). Then, we find

�2 := kỸ k2  kY1k2 = kU>

1 Y V1k2 = kY k2 = �1.

Setting

U = U1

✓
1 0
0 U2

◆
2 Rm⇥m and V = V1

✓
1 0
0 V2

◆
2 Rn⇥n

we get the decomposition

U>Y V =

✓
�1 0
0 ⌃2

◆

which yields the claim by using the hypothesis of the induction.

It follows directly from (31.3) that {ui}mi=1 ⇢ Rm and {vi}ni=1 ⇢ Rn are eigenvectors of Y Y > and Y >Y , respec-
tively, with eigenvalues �i = �2

i > 0, i = 1, . . . , d. The vectors {ui}mi=d+1 and {vi}ni=d+1 (if d < m respectively d < n)
are eigenvectors of Y Y > and Y >Y with eigenvalue 0.

From (31.2) we deduce that
Y = U⌃V >.

We infer (31.3) from the columnwise evaluation of (31.2). The follows It follows that Y can also be expressed as

Y = UdD(V d)>, (31.4)

where Ud 2 Rm⇥d and V d 2 Rn⇥d are given by

Ud
ij = Uij for 1  i  m, 1  j  d and V d

ij = Vij for 1  i  n, 1  j  d.

Setting Bd = D(V d)> 2 Rd⇥n we can write (31.4) in the form

Y = UdBd with Bd = D(V d)> 2 Rd⇥n.

Thus, the column space of Y can be represented in terms of the d linearly independent columns of Ud. The coe�cients
in the expansion for the columns yj , j = 1, . . . , n, in the basis {ui}di=1 are given by the jth-column of Bd. Since U
is orthogonal, we find that

yj =
dX

i=1

Bd
ijU

d
·,i =

dX

i=1

�
D(V d)>

�
ij
ui =

dX

i=1

�
(Ud)TUd

| {z }
=Id2Rd⇥d

D(V d)>
�
ij
ui

(31.4)
=

dX

i=1

�
(Ud)>Y

�
ij
ui =

dX

i=1

✓ mX

k=1

Ud
kiYkj

| {z }
=u>

i yj

◆
ui =

dX

i=1

hui, yji2 ui,

where h· , ·iRm denotes the canonical inner product in Rm. Thus,

yj =
dX

i=1

hyj , uii2 ui for j = 1, . . . , n (31.5)
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31.2 The POD method

Let us now interprete SVD in terms of POD. One of the central issues of POD is the reduction of data expressing
their essential information by means of a few basis vectors. The problem of approximating all spatial coordinate
vectors yj of Y simultaneously by a single, normalized vector as well as possible can be expressed as

max
u2Rm

nX

j=1

��hyj , ui2
��2 subject to (s.t.) kuk22 = 1, (P1)

where kukRm =
p
hu, uiRm for u 2 Rm.

Note that (P1) is a constrained optimization problem that can be solved by considering first-order necessary
optimality conditions; cf. [8, Theorem 13.3.3]. We introduce the function e : Rm ! R by e(u) = 1�kuk22 for u 2 Rm.
Then, the equality constraint in (P1) can be expressed as e(u) = 0. Notice that re(u) = �2u is linear independent
if u 6= 0 holds. In particular, a solution to (P1) satisfies u 6= 0. Thus, any solution to (P1) is a regular point. Let
L : Rm ⇥ R ! R be the Lagrange functional associated with (P1), i.e.,

L(u,�) =
nX

j=1

��hyj , ui2
��2 + �

�
1� kuk22

�
for (u,�) 2 Rm ⇥ R.

Suppose that u 2 Rm is a solution to (P1). Since u is regular, there exists a Lagrange multiplier satisfying the
first-order necessary optimality condition

rL(u,�) !
= 0 in Rm ⇥ R.

We compute the gradient of L with respect to u:

@L
@ui

(u,�) =
@

@ui

 
nX

j=1

����
mX

k=1

Ykjuk

����
2

+ �

✓
1�

mX

k=1

u2
k

◆!
= 2

nX

j=1

✓ mX

k=1

Ykjuk

◆
Yij � 2�ui

= 2
mX

k=1

✓ nX

j=1

YijY
>

jk

| {z }
=(Y Y >)ik

uk

◆
� 2�ui.

Thus,

ruL(u,�) = 2
�
Y Y >u� �u

� !
= 0 in Rm. (31.6)

Equation (31.6) yields the eigenvalue problem

Y Y >u = �u in Rm. (31.7a)

Notice that Y Y T 2 Rm⇥m is a symmetric matrix satisfying

u>(Y Y >)u = (Y >u)>Y >u = kY >uk22 � 0 for all u 2 Rm.

Thus, Y Y > is positive semi-definite. It follows that Y Y T possesses m non-negative eigenvalues �1 � �2 � . . . �
�m � 0 and the corresponding eigenvectors can be chosen such that they are pairwise orthonormal.

From @L
@� (u,�)

!
= 0 in R we infer the constraint

kuk2 = 1. (31.7b)

Due to SVD the vector u1 solves (31.7) and

nX

j=1

��hyj , u1i2
��2 =

nX

j=1

hyj , u1i2hyj , u1i2 =
nX

j=1

⌦
hyj , u1i2 yj , u1

↵
2
=

⌧ nX

j=1

hyj , u1i2 yj , u1

�

2

=

⌧ nX

j=1

✓ mX

k=1

Ykj(u1)k

◆
yj , u1

�

2

=

⌧ mX

k=1

✓ nX

j=1

Y·,jY
>

jk(u1)k

◆
, u1

�

2

=
⌦
Y Y >u1, u1

↵
2

= �1
⌦
u1, u1

↵
2
= �1 ku1k22 = �1.
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We next prove that u1 solves (P1). Suppose that ũ 2 Rm is an arbitrary vector with kũkRm = 1. Since {ui}mi=1 is an
orthonormal basis in Rm, we have

ũ =
mX

i=1

hũ, uii2 ui.

Thus,

nX

j=1

��hyj , ũi2
��2 =

nX

j=1

�����

⌧
yj ,

mX

i=1

hũ, uii2 ui

�

2

�����

2

=
nX

j=1

mX

i=1

mX

k=1

�⌦
yj , hũ, uii2 ui

↵
2

⌦
yj , hũ, uki2 uk

↵
2

�

=
nX

j=1

mX

i=1

mX

k=1

�
hyj , uii2hyj , uki2hũ, uii2hũ, uki2

�
=

mX

i=1

mX

k=1

✓⌧ nX

j=1

hyj , uii2 yj
| {z }

=�iui

, uk

�

2

hũ, uii2hũ, uki2
◆

=
mX

i=1

mX

k=1

⇣
h�iui, uki2| {z }

=�i�ik

hũ, uii2hũ, uki2
⌘
=

mX

i=1

�i
��hũ, uii2

��2

 �1

mX

i=1

��hũ, uii2
��2 = �1 kũk22 = �1 =

nX

j=1

��hyj , u1i2
��2.

Consequently, u1 solves (P1) and argmax (P1) = �2
1 = �1.

If we look for a second vector, orthogonal to u1 that again describes the data set {yi}ni=1 as well as possible then
we need to solve

max
u2Rm

nX

j=1

��hyj , ui2
��2 s.t. kuk2 = 1 and hu, u1i2 = 0. (P2)

SVD implies that u2 is a solution to (P2) and argmax (P2) = �2
2 = �2. In fact, u2 solves the first-order necessary

optimality conditions (31.7) and for

ũ =
mX

i=2

hũ, uii2 ui 2 span {u1}?

we have
nX

j=1

��hyj , ũi2
��2  �2 =

nX

j=1

��hyj , u2i2
��2.

Clearly this procedure can be continued by finite induction. We summarize our results in the following theorem.

Theorem 31.2.1. Let Y = [y1, . . . , yn] 2 Rm⇥n be a given matrix with rank d  min{m,n}. Further, let Y = U⌃V >

be the singular value decomposition of Y , where U = [u1, . . . , um] 2 Rm⇥m, V = [v1, . . . , vn] 2 Rn⇥n are orthogonal
matrices and the matrix ⌃ 2 Rm⇥n has the form as (31.2). Then, for any ` 2 {1, . . . , d} the solution to

max
ũ1,...,ũ`2Rm

X̀

i=1

nX

j=1

��hyj , ũii2
��2 s.t. hũi, ũji2 = �ij for 1  i, j  ` (P`)

is given by the singular vectors {ui}`i=1, i.e., by the first ` columns of U . Moreover,

argmax (P`) =
X̀

i=1

�2
i =

X̀

i=1

�i. (31.8)

Proof. Since (P`) is an equality constrained optimization problem, we introduce the Lagrangian

L : Rm ⇥ . . .⇥ Rm
| {z }

`-times

⇥R`⇥`

by

L( 1, . . . , `,⇤) =
X̀

i=1

nX

j=1

��hyj , ii2
��2 +

X̀

i,j=1

�ij
�
�ij � h i, ji2

�
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for  1, . . . , ` 2 Rm and ⇤ = ((�ij)) 2 R`⇥`. First-order necessary optimality conditions for (P`) are given by

@L
@ k

( 1, . . . , `,⇤)� k = 0 for all � k 2 Rm and k 2 {1, . . . , `}. (31.9)

From

@L
@ k

( 1, . . . , `,⇤)� k = 2
X̀

i=1

nX

j=1

hyj , ii2hyj , � ki2�ik �
X̀

i=1

X̀

j=1

�ijh i, � ki2�jk

�
X̀

i=1

X̀

j=1

�ijh� k, ji2�ki

= 2
nX

j=1

hyj , ki2hyj , � ki2 �
X̀

i=1

(�ik + �ki) h i, � ki2

=

⌧
2

nX

j=1

hyj , ki2 yj �
X̀

i=1

(�ik + �ki) i, � k

�

2

and (31.9) we infer that

nX

j=1

hyj , kiRm yj =
1

2

X̀

i=1

(�ik + �ki) i in Rm and for all k 2 {1, . . . , `}. (31.10)

Note that

Y Y > =
nX

j=1

hyj , iRm yj for  2 Rm.

Thus, condition (31.10) can be expressed as

Y Y > k =
1

2

X̀

i=1

(�ik + �ki) i in Rm and for all k 2 {1, . . . , `}. (31.11)

Now we proceed by induction. For ` = 1 we have k = 1. It follows from (31.11) that

Y Y > 1 = �1 1 in Rm (31.12)

with �1 = �11. Next we suppose that for ` � 1 the first-order optimality conditions are given by

Y Y > k = �k k in Rm and for all k 2 {1, . . . , `}. (31.13)

We want to show that the first-order necessary optimality conditions for a POD basis { i}`+1
i=1 of rank `+1 are given

by
Y Y > k = �k k in Rm and for all k 2 {1, . . . , `+ 1}. (31.14)

By assumption we have (31.13). Thus, we only have to prove that

Y Y > `+1 = �`+1 `+1 in Rm. (31.15)

Due to (31.11) we have

Y Y > `+1 =
1

2

`+1X

i=1

(�i,`+1 + �`+1,i) i in Rm. (31.16)

Since { i}`+1
i=1 is a POD basis we have h `+1, ji2 = 0 for 1  j  `. Using (31.13) and the symmetry of Y Y > we

have for any j 2 {1, . . . , `}

0 = �j h `+1, ji2 = h `+1, Y Y > ji2 = hY Y > `+1, ji2

=
1

2

`+1X

i=1

(�i,`+1 + �`+1,i) h i, ji2 =
1

2
(�j,`+1 + �`+1,j) .
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This gives
�`+1,i = ��i,`+1 for any i 2 {1, . . . , `}. (31.17)

Inserting (31.17) into (31.16) we obtain

Y Y > `+1 =
1

2

X̀

i=1

(�i,`+1 + �`+1,i) i + �`+1,`+1  `+1

=
1

2

X̀

i=1

(�i,`+1 � �i,`+1) i + �`+1,`+1  `+1 = �`+1,`+1  `+1.

Setting �`+1 = �`+1,`+1 we obtain (31.15).
Summarizing, the necessary optimaity conditions for (P`) are given by the symmetric m⇥m eigenvalue problem

Y Y >ui = �iui for i = 1, . . . , `. (31.18)

It follows from SVD that {ui}`i=1 solves (31.18). The proof that {ui}`i=1 is a solution to (P`) and that argmax (P`) =P`
i=1 �

2
i holds is analogous to the proof for (P1); see Exercise 1.2). ⇤

Motivated by the previous theorem we give the next definition.

Definition 31.2.2. For ` 2 {1, . . . , d} the vectors {ui}`i=1 are called POD basis of rank `.



Lecture 32

Proper Orthogonal Decomposition –
Properties and Applications

After introducing the POD method in the previous lecture we discuss now properties of the POD basis and applica-
tions to dynamical systems.

32.1 Optimality of the POD basis

The following result states that for every `  d the approximation of the columns of Y by the first ` singular vectors
{ui}`i=1 is optimal in the mean among all rank ` approximations to the columns of Y .

Corollary 32.1.1 (Optimality of the POD basis). Let all hypotheses of Theorem 31.2.1 be satisfied. Suppose that
Ûd 2 Rm⇥d denotes a matrix with pairwise orthonormal vectors ûi and that the expansion of the columns of Y in
the basis {ûi}di=1 be given by

Y = ÛdCd, where Cd
ij = hûi, yji2 for 1  i  d, 1  j  n.

Then for every ` 2 {1, . . . , d} we have
kY � U `B`kF  kY � Û `C`kF (32.1)

with
Bd

ij = hui, yji2 for 1  i  d, 1  j  n.

In (32.1), k · kF denotes the Frobenius norm given by

kAkF =

vuut
mX

i=1

nX

j=1

��Aij

��2 =
q
trace

�
A>A

�
for A 2 Rm⇥n,

the matrix U ` denotes the first ` columns of U , B` the first ` rows of B and similarly for Û ` and C`.

Remark 32.1.2. Notice that

kY � Û `C`k
2

F =
mX

i=1

nX

j=1

���Yij �
X̀

k=1

Û `
ikCkj

���
2
=

nX

j=1

mX

i=1

���Yij �
X̀

k=1

hûk, yjiRmÛ `
ik

���
2
=

nX

j=1

���yj �
X̀

k=1

hyj , ûkiRm ûk

���
2

2
.

Analogously,

kY � U `B`k2F =
nX

j=1

���yj �
X̀

k=1

hyj , uki2 uk

���
2

2
.

Thus, (32.1) implies that

nX

j=1

���yj �
X̀

k=1

hyj , uki2 uk

���
2

2


nX

j=1

���yj �
X̀

k=1

hyj , ûki2 ûk

���
2

2
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for any other set {ûi}`i=1 of ` pairwise orthonormal vectors. Hence, the POD basis of rank ` can also be determined
by solving

min
ũ1,...,ũ`2Rm

nX

j=1

���yj �
X̀

i=1

hyj , ũii2 ũi

���
2

2
s.t. hũi, ũji2 = �ij , 1  i, j  `. (P̂`)

⌃
Proof of Corollary 32.1.1. Note that

kY � Û `C`k
2

F = kÛd(Cd � C`
0)k

2

F = kCd � C`
0k

2

F =
dX

i=`+1

nX

j=1

��Cd
ij

��2,

where C`
0 2 Rd⇥n results from C 2 Rd⇥n by replacing the last d� ` rows by 0. Similarly,

kY � U `B`k2F = kUk(Bd �B`
0)k

2

F = kBd �B`
0k

2

F =
dX

i=`+1

nX

j=1

��Bd
ij

��2 =
dX

i=`+1

nX

j=1

��hyj , uii2
��2

=
dX

i=`+1

nX

j=1

⌦
hyj , uii2 yj , ui

↵
2
=

dX

i=`+1

hY Y >ui, uii2 =
dX

i=`+1

�2
i ,

(32.2)

By Theorem 31.2.1 the vectors u1, . . . , u` solve (P`). From (32.2),

kY k2F = kÛdCdk
2

F = kCdk2F =
dX

i=1

nX

j=1

��Cd
ij

��2

and

kY k2F = kUdBdk2F = kBdk2F =
dX

i=1

nX

j=1

��Bd
ij

��2 =
dX

i=1

�2
i

we infer that

kY � U `B`k2F =
dX

i=`+1

�2
i =

dX

i=1

�2
i �

X̀

i=1

�2
i = kY k2F �

X̀

i=1

nX

j=1

��hyj , uii2
��2

 kY k2F �
X̀

i=1

nX

j=1

��hyj , ûii2
��2 =

dX

i=1

nX

j=1

��Cd
ij

��2 �
X̀

i=1

nX

j=1

��Cd
ij

��2 =
dX

i=`+1

nX

j=1

��Cd
ij

��2 = kY � Û `C`k
2

F ,

which gives (32.1).

Remark 32.1.3. It follows from Corollary 32.1.1 that the POD basis of rank ` is optimal in the sense of representing
in the mean the columns {yj}nj=1 of Y as a linear combination by an orthonormal basis of rank `:

X̀

i=1

nX

j=1

��hyj , uii2
��2 =

X̀

i=1

�2
i =

X̀

i=1

�i �
X̀

i=1

nX

j=1

��hyj , ûii2
��2

for any other set of orthonormal vectors {ûi}`i=1. ⌃
The next corollary states that the POD coe�cients are uncorrelated.

Corollary 32.1.4 (Uncorrelated POD coe�cients). Let all hypotheses of Theorem 31.2.1 hold. Then.

nX

j=1

hyj , uii2hyj , uki2 =
nX

j=1

B`
ijB

`
kj = �2

i �ik for 1  i, k  `.

Proof. The claim follows from (31.18) and hui, ukiRm = �ik for 1  i, k  `. In fact, we have

nX

j=1

hyj , uii2hyj , uki2 =

⌧ nX

j=1

hyj , uii2 yj
| {z }

=Y Y >ui

, uk

�

2

= h�2
i ui, uki2 = �2

i �ik.
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Next we turn to the practical computation of a POD-basis of rank `. If n < m then one can determine the POD
basis of rank ` as follows: Compute the eigenvectors v1, . . . , v` 2 Rn by solving the symmetric n ⇥ n eigenvalue
problem

Y >Y vi = �ivi for i = 1, . . . , ` (32.3)

and set, by (31.3),

ui =
1p
�i

Y vi for i = 1, . . . , `.

For historical reasons [29] this method of determing the POD-basis is sometimes called the method of snapshots. On
the other hand, if m < n holds, we can obtain the POD basis by solving the m⇥m eigenvalue problem (31.18).

For the application of POD to concrete problems the choice of ` is certainly of central importance for applying
POD. It appears that no general a-priori rules are available. Rather the choice of ` is based on heuristic considerations
combined with observing the ratio of the modeled to the total energy contained in the system Y , which is expressed
by

E(`) =
P`

i=1 �iPd
i=1 �i

.

Let us mention that POD is also called Principal Component Analysis (PCA) and Karhunen-Loève Decomposition.

32.2 Application to dynamical systems

For T > 0 we consider the semi-linear initial value problem

ẏ(t) = Ay(t) + f(t, y(t)) for t 2 (0, T ], (32.4a)

y(0) = y0, (32.4b)

where y0 2 Rm is a chosen initial condition, A 2 Rm⇥m is a given matrix, f : [0, T ] ⇥ Rm ! Rm is continuous in
both arguments and locally Lipschitz-continuous with respect to the second argument. It is well known that there
exists a time T� 2 (, T ] such that (32.4) has a unique (classical) solution y 2 C1(0, T�;Rm) \C([0, T�];Rm) given by
the implicit integral representation

y(t) = etAy0 +

Z t

0
e(t�s)Af(s, y(s)) ds for t 2 [0, T�],

with etA =
P

1

i=0 t
nAn/(n!) (local existence in time; cf. [11, Satz 16.5]). Here we suppose that we can choose T� = T

(global existence in time; cf. [11, Satz 16.1]). Let 0  t1 < t2 < . . . < tn  T be a given time grid in the interval
[0, T ]. For simplicity of the presentation, the time grid is assumed to be equidistant with step-size �t = T/(n� 1),
i.e., tj = (j � 1)�t. We suppose that we know the solution to (32.4) at the given time instances tj , j 2 {1, . . . , n}.
Our goal is to determine a POD basis of rank `  n that desribes the ensemble

yj = y(tj) = etjAy0 +

Z tj

0
e(tj�s)Af(s, y(s)) ds for j = 1, . . . , n,

as well as possible with respect to the weighted inner product:

min
ũ1,...,ũ`2Rm

nX

j=1

↵j

���yj �
X̀

i=1

hyj , ũii2 ũi

���
2

2
s.t. hũi, ũji2 = �ij for 1  i, j  `, (P̂n,`)

where the ↵j ’s denote non-negative weights which will be specified later on. Note that for ↵j = 1 for j = 1, . . . , n
problem (P̂n,`) coincides with (P̂`). To solve (P̂n,`) we apply the techniques used in Chapter 29, i.e., we use the
Lagrangian framework. Thus, we introduce the Lagrange functional

L : Rm ⇥ . . .⇥ Rm
| {z }

`�times

⇥R`⇥` ! R, L(u1, . . . , u`,⇤) =
nX

j=1

↵j

���yj �
X̀

i=1

hyj , uii2 ui

���
2

2
+
X̀

i=1

X̀

j=1

⇤ij

�
1� hui, uji2

�

for u1, . . . , u` 2 Rm and ⇤ 2 R`⇥` with elements ⇤ij , 1  i, j  `. It turns out that the solution to (P̂n,`) is given by
the first-order necessary optimality condions

ruiL(u1, . . . , u`,⇤)
!
= 0 in Rm for 1  i  `, (32.5a)
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and
hui, uji2

!
= �ij for 1  i, j  `. (32.5b)

From (32.5a) we derive
Y DY >ui = �iui for i = 1, . . . , `, (32.6)

where D = diag (↵1, . . . ,↵n) 2 Rn⇥n. Setting Ȳ = Y D1/2 2 Rm⇥n and using D> = D we infer from (32.6) that the
solution {ui}`i=1 to (P̂n,`) is given by the symmetric m⇥m eigenvalue problem

Ȳ Ȳ >ūi = �iūi, 1  i  ` and hūi, ūji2 = �ij , 1  i, j  `.

Note that
Ȳ >Ȳ = D1/2Y >Y D1/2 2 Rn⇥n.

Thus, the POD basis of rank ` can also be computed by the methods of snapshots as follows: First solve the symmetric
n⇥ n eigenvalue problem

Ȳ >Ȳ v̄i = �iv̄i for 1  i  ` and hv̄i, v̄ji2 = �ij for 1  i, j  `.

Then we set (by SVD)

ūi =
1p
�i

Ȳ v̄i =
1p
�i

Y D1/2v̄i for 1  i  `.



Lecture 33

Proper Orthogonal Decomposition –
Continuous Variant

33.1 Continuous variant of the POD method

Of course, the snapshot ensemble {yj}nj=1 for (P̂n,`) and therefore the snapshot set span {y1, . . . , yn} depend on

the chosen time instances {tj}nj=1. Consequently, the POD basis vectors {ui}`i=1 and the corresponding eigenvalues

{�i}`i=1 depend also on the time instances, i.e.,

ui = un
i and �i = �ni , 1  i  `.

Moreover, we have not discussed so far what is the motivation to introduce the non-negative weights {↵j}nj=1 in

(P̂n,`). For this reason we proceed by investigating the following two questions:

• How to choose good time instances for the snapshots?

• What are appropriate non-negative weights {↵j}nj=1?

To address these two questions we will introduce a continuous version of POD. Let y : [0, T ] ! Rm be the unique
solution to (32.4). If we are interested to find a POD basis of rank ` that describes the whole trajectory {y(t) | t 2
[0, T ]} ⇢ Rm as good as possible we have to consider the following minimization problem

min
ũ1,...,ũ`2Rm

Z T

0

���y(t)�
X̀

i=1

hy(t), ũii2 ũi

���
2

2
dt s.t. hũi, ũji2 = �ij , 1  i, j  `, (P̂`)

To solve (P̂`) we use similar arguments as in Chapter 29. For ` = 1 we obtain instead of (P̂`) the minimization
problem

min
ũ2Rm

Z T

0

���y(t)� hy(t), ũi2 ũ
���
2

2
dt s.t. kũk22 = 1, (P̂1)

Suppose that {ũi}mi=2 are chosen in such a way that {ũ, ũ2, . . . , ũm} is an orthonormal basis in Rm with respect to
the Euclidean inner product. Then we have

y(t) = hy(t), ũi2 ũ+
mX

i=2

hy(t), ũii2 ũi for all t 2 [0, T ].

Thus,

Z T

0

���y(t)� hy(t), ũi2 ũ
���
2

2
dt =

Z T

0

���
mX

i=2

hy(t), ũi2 ũi

���
2

2
dt =

mX

i=2

Z T

0

��hy(t), ũii2
��2 dt

we conclude that (P̂1) is equivalent with the following maximization problem

max
ũ2Rm

Z T

0

��hy(t), ũi2
��2 dt s.t. kũk22 = 1. (33.1)

35
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The Lagrange functional L : Rm ⇥ R ! R associated with (33.1) is given by

L(u,�) =
Z T

0

��hy(t), ui2
��2 dt+ �

�
1� kuk22

�
for (u,�) 2 Rm ⇥ R.

First-order necessary optimality conditions are given by

rL(u,�) !
= 0 in Rm ⇥ R.

Therefore, we compute the partial derivative of L with respect to the ith component ui of the vector u:

@L
@ui

(u,�) =
@

@ui

✓Z T

0

���
mX

k=1

yk(t)uk

���
2
dt+ �

⇣
1�

mX

k=1

u2
k

⌘◆
= 2

Z T

0

⇣ mX

k=1

yk(t)uk

⌘
yi(t) dt� 2�u1

= 2

✓Z T

0
hy(t), ui2 y(t) dt� �u

◆

i

for i 2 {1, . . . ,m}. Thus,

ruL(u,�) = 2

✓Z T

0
hy(t), ui2 y(t) dt� �u

◆
!
= 0 in Rm,

which gives Z T

0
hy(t), ui2 y(t) dt = �u in Rm. (33.2)

We define the operator R : Rm ! Rm as

Ru =

Z T

0
hy(t), ui2 y(t) dt for u 2 Rm. (33.3)

Lemma 33.1.1. The operator R is linear and bounded (i.e., continuous). Moreover,

1) R is non-negative:
hRu, ui2 � 0 for all u 2 Rm.

2) R is self-adjoint (or symmetric):

hRu, ũi2 = hu,Rũi2 for all u, ũ 2 Rm.

Proof. For arbitrary u, ũ 2 Rm and ↵, ↵̃ 2 R we have

R
�
↵u+ ↵̃ũ

�
=

Z T

0
hy(t),↵u+ ↵̃ũi2 y(t) dt =

Z T

0
(↵ hy(t), ui2 + ↵̃ hy(t), ũi2) y(t) dt

= ↵

Z T

0
hy(t), ui2 y(t) dt+ ↵̃

Z T

0
hy(t), ũi2 y(t) dt = ↵Ru+ ↵̃Rũ,

so that R is linear. From the Cauchy-Schwarz inequality (cf. [11, Satz 5.49]) we derive

kRuk2 
Z T

0

��hy(t), ui2 y(t)
��
2
dt =

Z T

0

��hy(t), ui2
�� ky(t)k2 dt


Z T

0
ky(t)k22kuk2 dt =

✓Z T

0
ky(t)k22 dt

◆
kuk2 = kyk2L2(0,T ;Rm)kuk2

for an arbitrary u 2 Rm. Since y 2 C([0, T ];Rm) ⇢ L2(0, T ;Rm) holds, the norm kykL2(0,T ;Rm) is bounded. Therefore,
R is bounded. Since

hRu, ui2 =

✓Z T

0
hy(t), ui2 y(t) dt

◆>

u =

Z T

0
hy(t), ui2 y(t)

>u dt =

Z T

0

��hy(t), ui2
��2 dt � 0

for all u 2 Rm holds, R is non-negative. Finally, we infer from

hRu, ũi2 =

Z T

0
hy(t), ui2hy(t), ũi2 dt =

⌧Z T

0
hy(t), ũi2y(t) dt, u

�

2

= hRũ, ui2 = hu,Rũi2

for all u, ũ 2 Rm that R is self-adjoint.
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Utilizing the operator R we can write (33.2) as the eigenvalue problem

Ru = �u in Rm.

It follows from Lemma 33.1.1 that R possesses eigenvectors {ui}mi=1 and associated real eigenvalues {�i}mi=1 such that

Rui = �iui for 1  i  m and �1 � �2 � . . . � �m � 0. (33.4)

Note that Z T

0

��hy(t), uii2
��2 dt =

Z T

0

⌦
hy(t), uii2y(t), ui

↵
2
dt = hRui, uii2 = �i kuik22 = �i

for i 2 {1, . . . ,m} so that u1 solves (P̂1).
Proceeding as in Chapter 29 we obtain the following result.

Theorem 33.1.2. Let y 2 C([0, T ];Rm) be the unique solution to (32.4). Then the POD basis of rank ` solving
the minimization problem (P̂`) is given by the eigenvectors {ui}`i=1 of R corresponding to the ` largest eigenvalues
�1 � . . . � �`.

Remark 33.1.3 (Methods of snapshots). Let us introduce the linear and bounded operator Y : L2(0, T ) ! Rm by

Yv =

Z T

0
v(t)y(t) dt for v 2 L2(0, T ).

The adjoint Y? : Rm ! L2(0, T ) satisfying

hY?u, viL2(0,T ) = hu,Yvi2 for all (u, v) 2 Rm ⇥ L2(0, T )

is given as
(Y?u)(t) = hu, y(t)i2 for u 2 Rm and almost all t 2 [0, T ].

Then we have

YY?u =

Z T

0
hu, y(t)i2 y(t) dt =

Z T

0
hy(t), ui2 y(t) dt = Ru

for all u 2 Rm, i.e., R = YY⇤ holds. Furthermore,

(Y?Yv)(t) =

⌧Z T

0
v(s)y(s) ds, y(t)

�

2

=

Z T

0
hy(s), y(t)i2 v(s) ds =: (Kv)(t)

for all v 2 L2(0, T ) and almost all t 2 [0, T ]. Thus, K = Y?Y. It can be shown that the operator K is linear, bounded,
non-negative and self-adjoint. Moreover, K is compact. Therefore, the POD basis can also be computed as follows:
Solve

Kvi = �ivi for 1  i  `, �1 � . . . � �` > 0,

Z T

0
vi(t)vj(t) dt = �ij (33.5)

and set

ui =
1p
�i

Yvi =
1p
�i

Z T

0
vi(t)y(t) dt for i = 1, . . . , `.

Note that (33.5) is a symmetric eigenvalue problem in the infinite-dimensional function space L2(0, T ). For the
functional analytic theory we refer, e.g., to [27]. ⌃

33.2 Perturbation theory

Let us turn back to the optimality conditions (32.6). For any u 2 Rm and i 2 {1, . . . ,m} we derive

�
Y DY >u

�
i
=

mX

j=1

mX

k=1

↵jYijYkjuk =
nX

j=1

↵jYij hyj , ui2 =
nX

j=1

↵j hyj , ui2 (yj)i,
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where (yj)i stands for the ith component of the vector yj 2 Rm. Thus,

Y DY >u =
nX

j=1

↵j hyj , ui2 yj =: Rnu.

Note that the operator Rn : Rm ! Rm is linear and bounded. Moreover,

hRnu, ui2 =

⌧ nX

j=1

↵j hyj , ui2 yj , u
�

2

=
nX

j=1

↵j

��hyj , ui2
��2 � 0

holds for all u 2 Rm so that Rn is non-negative. Further,

hRnu, ũi2 =

⌧ nX

j=1

↵j hyj , ui2 yj , ũ
�

2

=
nX

j=1

↵j hyj , ui2hyj , ũiW =

⌧ nX

j=1

↵j hyj , ũi2 yj , u
�

2

= hRnũ, ui2 = hu,Rnũi2

for all u, ũ 2 Rm, i.e., Rn is self-adjoint. Therefore, Rn has the same properties as the operator R. Summarizing,
we have

Rnun
i = �ni u

n
i , �n1 � . . .�n` � . . .�nd(n) > �nd(n)+1 = . . . = �nm = 0, (33.6a)

Rui = �iui, �1 � . . .�` � . . .�d > �d+1 = . . . = �m = 0. (33.6b)

Let us note that Z T

0
ky(t)k22 dt =

dX

i=1

�i =
mX

i=1

�i. (33.7)

In fact,

Rui =

Z T

0
hy(t), uii2 y(t) dt for every i 2 {1, . . . ,m}.

Taking the inner product with ui, using (33.6b) and summing over i we arrive at

dX

i=1

Z T

0

��hy(t), uii2
��2 dt =

dX

i=1

hRui, uii2 =
dX

i=1

�i =
mX

i=1

�i.

Expanding y(t) 2 Rm in terms of {ui}mi=1 we have

y(t) =
mX

i=1

hy(t), uii2 ui

and hence Z T

0
ky(t)k22 dt =

mX

i=1

Z T

0

��hy(t), uii2
��2 dt =

mX

i=1

�i,

which is (33.7). Analogously, we obtain

nX

j=1

↵j ky(tj)k22 =

d(n)X

i=1

�ni =
mX

i=1

�ni for every n 2 N. (33.8)

For convenience we do not indicate the dependence of ↵j on n. Let y 2 C([0, T ];Rm) hold. To ensure

nX

j=1

↵j ky(tj)k22 !
Z T

0
ky(t)k22 dt as �t ! 0 (33.9)

we have to choose the ↵j ’s appropriately. Here we take the trapezoidal weights

↵1 =
�t

2
, ↵j = �t for 2  j  n� 1, ↵n =

�t

2
. (33.10)
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Suppose that we have
lim
n!1

kRn �RkL (Rm) = lim
n!1

sup
kuk2=1

kRnu�Ruk2 = 0 (33.11)

provided y 2 C1([0, T ];Rm) is satisfied. In (33.11) the linear space L (Rm) denotes the Banach space of all linear
and bounded operators mapping from Rm into itself. Combining (33.9) with (33.7) and (33.8) we find

mX

i=1

�ni !
mX

i=1

�i as n ! 1. (33.12)

Now choose and fix
` such that �` 6= �`+1. (33.13)

Then by spectral analysis of compact operators ([21, pp. 212–214]) and (33.11) it follows that

�ni ! �i for 1  i  ` as n ! 1. (33.14)

Combining (33.12) and (33.14) there exists n̄ 2 N such that

mX

i=`+1

�ni  2
mX

i=`+1

�i for all n � n̄, (33.15)

if
Pm

i=`+1 �i 6= 0. Moreover, for ` as above, n̄ can also be chosen such that

d(n)X

i=`+1

��hy0, un
i i2
��2  2

mX

i=`+1

��hy0, uii2
��2 for all n � n̄, (33.16)

provided that
Pm

i=`+1 |hy0, uii2|2 6= 0 (33.11) hold. Recall that the vector y0 2 Rm stands for the initial condition in
(32.4b). Then we have

ky0k22 =
mX

i=1

��hy0, uii2
��2. (33.17)

If t1 = 0 holds, we have y0 2 span {yj}nj=1 for every n and

ky0k22 =

d(n)X

i=1

��hy0, un
i i2
��2. (33.18)

Therefore, for ` < d(n) by (33.17) and (33.18)

d(n)X

i=`+1

��hy0, un
i i2
��2 =

d(n)X

i=1

��hy0, un
i i2
��2 �

X̀

i=1

��hy0, un
i i2
��2 +

X̀

i=1

��hy0, uii2
��2 +

mX

i=`+1

��hy0, uii2
��2 �

mX

i=1

��hy0, uii2
��2

=
X̀

i=1

⇣��hy0, uii2
��2 �

��hy0, un
i i2
��2
⌘
+

mX

i=`+1

��hy0, uii2
��2.

As a consequence of (33.11) and (33.13) we have limn!1 kun
i � uik2 = 0 for i = 1, . . . , ` and hence (33.16) follows.

Theorem 33.2.1. Assume that the function y 2 C1([0, T ];Rm) is the unique solution to (32.4). Let {(un
i ,�

n
i )}mi=1

and {(ui,�i)}mi=1 be the eigenvector-eigenvalue pairs given by (33.6). Suppose that ` 2 {1, . . . ,m} is fixed such that
(33.13) and

mX

i=`+1

�i 6= 0,
mX

i=`+1

��hy0, uiiW
��2 6= 0

hold. Then we have
lim
n!1

kRn �RkL (Rm) = 0. (33.19)

This implies

lim
n!1

���ni � �i
�� = lim

n!1
kun

i � uik2 = 0 for 1  i  `,

lim
n!1

mX

i=`+1

�
�ni � �i

�
= 0 and lim

n!1

mX

i=`+1

��hy0, un
i i2
��2 =

mX

i=`+1

��hy0, uii2
��2.
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Proof. We only have to verify (33.19). For that purpose we choose an arbitrary u 2 Rm with kukW = 1 and introduce
fu : [0, T ] ! Rm by

fu(t) = hy(t), ui2 y(t) for t 2 [0, T ].

Then, we have fu 2 C1([0, T ];Rm) with

ḟu(t) = hẏ(t), ui2 y(t) + hy(t), ui2 ẏ(t) for t 2 [0, T ]

By Taylor expansion there exist ⌧j1(t), ⌧j2(t) 2 [tj , tj+1] depending on t

Z tj+1

tj

fu(t) dt =
1

2

Z tj+1

tj

fu(tj) + ḟu(⌧j1(t))(t� tj) dt+
1

2

Z tj+1

tj

fu(tj+1) + ḟu(⌧j2(t))(t� tj+1) dt

=
�t

2
(fu(tj) + fu(tj+1)) +

1

2

Z tj+1

tj

ḟu(⌧j1(t))(t� tj) dt+
1

2

Z tj+1

tj

ḟu(⌧j2(t))(t� tj+1) dt.

Hence,

��Rnu�Ru
��
2
=

�����

nX

j=1

↵jfu(tj)�
Z T

0
fu(t) dt

�����
2

=

�����

n�1X

j=1

✓
�t

2
(fu(tj) + fu(tj+1))�

Z tj+1

tj

fu(t) dt

◆�����
2

 1

2

n�1X

j=1

Z tj+1

tj

��ḟu(⌧j1(t))
��
2

��t� tj
��+
��ḟu(⌧j2(t))

��
2

��t� tj+1

�� dt

 1

2
max
t2[0,T ]

��ḟu(t)
��
2

n�1X

j=1

 
(t� tj)2

2
� (tj+1 � t)2

2

����
t=tj+1

t=tj

!

=
�t

2
max
t2[0,T ]

��ḟu(t)
��
2

n�1X

j=1

�t =
�t T

2
max
t2[0,T ]

��ḟu(t)
��
2

 �t T

2
max
t2[0,T ]

��ḟu(t)
��
2
=

�t T

2
max
t2[0,T ]

��hẏ(t), ui2 y(t) + hy(t), ui2 ẏ(t)
��
2

= �t T max
t2[0,T ]

kẏ(t)k2ky(t)k2  �t T kyk2C1([0,T ];Rm).

Consequently,

kRn �RkL (Rm) = sup
kuk2=1

kRnu�Ruk2  2�t kyk2C1([0,T ];Rm)
�t!0�! 0

which is (33.19).


