## Tutorium 3

## 14. Dezember 2022

### 3.1 Proper Orthogonal Decomposition

## Exercise 1

1. Show, that the eigenvalues $\lambda_{1}^{n}, \ldots, \lambda_{m}^{n}$ of the operator $\mathcal{R}^{n} \psi=\sum_{j=1}^{n} \alpha_{j}\left\langle y\left(t_{j}\right), \psi\right\rangle_{2} y\left(t_{j}\right)$ fulfil

$$
\sum_{j=1}^{n} \alpha_{j}\left\|y\left(t_{j}\right)\right\|_{2}^{2}=\sum_{i=1}^{m} \lambda_{i}^{n}
$$

2. Show that the normed eigenvectors $\psi_{1}, \ldots, \psi_{\ell} \in \mathbb{R}^{m}$ of the matrix $Y Y^{\top} \in \mathbb{R}^{m \times m}$ with $Y \in \mathbb{R}^{m \times n}$ for the $\ell$ biggest eigenvalues $\lambda_{1}, \ldots, \lambda_{\ell}$ fulfil

$$
\sum_{i=1}^{\ell} \sum_{j=1}^{n}\left\langle y\left(t_{j}\right), \psi_{i}\right\rangle_{2}^{2}=\sum_{i=1}^{\ell} \lambda_{i} .
$$

Compare Section 31.1 and 33.2.

## Exercise 2

Consider a trajectory $y \in C\left([0, T] ; \mathbb{R}^{m}\right)$ and the minimization problem

$$
\begin{equation*}
\min _{\tilde{u}_{1}, \ldots, \tilde{u}_{\ell} \in \mathbb{R}^{m}} \int_{0}^{T}\left\|y(t)-\sum_{i=1}^{\ell}\left\langle y(t), \tilde{u}_{i}\right\rangle_{2} \tilde{u}_{i}\right\|_{2}^{2} \mathrm{~d} t \quad \text { s.t. } \quad\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle_{2}=\delta_{i j}, 1 \leq i, j \leq \ell \tag{3.1}
\end{equation*}
$$

1. Rewrite (3.1) in the standard form of

$$
\begin{equation*}
\max _{u \in \mathbb{R}^{N}} J(u) \text { s.t. } e(u)=0 \tag{3.2}
\end{equation*}
$$

with a cost function $J: \mathbb{R}^{N} \rightarrow \mathbb{R}$ and a constraint function $e: \mathbb{R}^{N} \rightarrow \mathbb{R}^{p}$ with $N=m \ell$ and $p=\frac{1}{2} \ell(\ell+1)$. Compare section 33.1..
2. Compute the gradient $\nabla J(u) \in \mathbb{R}^{N}$ and the derivative $\nabla e(u) \in \mathbb{R}^{N \times p}$.
3. Prove by using the first-order necessary optimality condition of constrained optimization that every solution $\bar{u} \in \mathbb{R}^{N}$ of (3.2) is an eigenvector of the operator

$$
\mathcal{R}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}, \mathcal{R} u=\int_{0}^{T}\langle y(t), u\rangle_{2} y(t) d t
$$

## Exercise 3

For $i \in \mathbb{N}_{0}$, consider the data points in $\mathbb{R}^{2}$ given by $y^{(i)}=(i, 1)^{\top}$. The task of approximating the first $n$ points with a linear subspace $U:=\langle u\rangle$ can be described by the typical POD problem

$$
\begin{equation*}
\min _{u \in \mathbb{R}^{2}} \sum_{i=0}^{n}\left\|y^{(i)}-\left\langle y^{(i)}, u\right\rangle_{2} u\right\|_{2}^{2} \text { s.t. }\|u\|_{2}=1 \tag{3.3}
\end{equation*}
$$

Show that for $n \in \mathbb{N}_{0}$ there is a solution $u^{(n)} \in \mathbb{R}^{2}$ of (3.3) satisfying $u^{(n)} \rightarrow(1,0)^{\top}$ as $n \rightarrow \infty$.
Hint: The eigenvector to the larger eigenvalue of a symmetric matrix

$$
A=\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right)
$$

is given by

$$
\psi=\left(\begin{array}{ll}
1 & \frac{b-a+\sqrt{(a-b)^{2}+4 c^{2}}}{2 c}
\end{array}\right)^{\top}
$$

It holds $x+\sqrt{x^{2}+1} \rightarrow 0$ for $x \rightarrow-\infty$.

## Exercise 4

1. Assume the matrix $A \in \mathbb{R}^{n \times n}$ has full range and assume that $A=U \Sigma V^{\top}$ is the singular value decomposition of $A$. Compute the singular value decomposition of $A^{-1}$.
2. Compute the singular value decomposition of

$$
A=\left(\begin{array}{cc}
-2 & 0 \\
0 & 1 \\
0 & -1
\end{array}\right)
$$

