\square
Winter term 2018

Model Reduction Using Proper Orthogonal Decomposition

Prof. Dr. Stefan Volkwein

Inhaltsverzeichnis

1 The POD method in \mathbb{R}^{m} 3
1.1 POD and SVD 3
1.2 The POD method with a weighted inner product 11
1.3 Application to time-dependent systems. 14
1.4 Exercises 23
2 Reduced-order modeling (ROM) 25
2.1 ROM for time-dependent systems 25
2.2 Error analysis for the reduced-order model 26
2.3 Exercises 34
3 The linear-quadratic control problem 35
3.1 The LQR problem 35
3.2 The Hamilton-Jacobi-Bellman equation 35
3.3 The state-feedback law for the LQR problem 38
3.4 Balanced truncation 39
3.5 Exercises 43
Literaturverzeichnis 44

1 The POD method in \mathbb{R}^{m}

In this section we introduce the POD method in the Euclidean space \mathbb{R}^{m} and study the close connection to the SVD of rectangular matrices; see [KV99]. We also refer to the monograph [HLBR12].

1.1 POD and SVD

Let $Y=\left[y_{1}, \ldots, y_{n}\right]$ be a real-valued $m \times n$ matrix of rank $d \leq \min \{m, n\}$ with columns $y_{j} \in \mathbb{R}^{m}$, $1 \leq j \leq n$. Consequently,

$$
\begin{equation*}
\bar{y}=\frac{1}{n} \sum_{j=1}^{n} y_{j} \tag{1.1}
\end{equation*}
$$

can be viewed as the column-averaged mean of the matrix Y.
Theorem 1.1 (Singular value decomposition (SVD)). There exist uniquely determined real numbers $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{d}>0$ and orthogonal matrices $U \in \mathbb{R}^{m \times m}$ with columns $\left\{u_{i}\right\}_{i=1}^{m}$ and $V \in \mathbb{R}^{n \times n}$ with columns $\left\{v_{i}\right\}_{i=1}^{n}$ such that

$$
U^{T} Y V=\left(\begin{array}{ll}
D & 0 \tag{1.2}\\
0 & 0
\end{array}\right)=: \Sigma \in \mathbb{R}^{m \times n}
$$

where $D=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{d}\right) \in \mathbb{R}^{d \times d}$ and the zeros in (1.2) denote matrices of appropriate dimensions. Moreover the vectors $\left\{u_{i}\right\}_{i=1}^{d}$ and $\left\{v_{i}\right\}_{i=1}^{d}$ satisfy

$$
\begin{equation*}
Y v_{i}=\sigma_{i} u_{i} \quad \text { and } \quad Y^{\top} u_{i}=\sigma_{i} v_{i} \quad \text { for } i=1, \ldots, d . \tag{1.3}
\end{equation*}
$$

Proof. We follow the arguments given in [DR08, pp. 144-145]. For $Y=0$ the claim is clear. Suppose that $Y \neq 0$ holds. Then,

$$
\sigma_{1}=\|Y\|_{2}=\max _{\|v\|_{\mathbb{R}^{n}=1}}\|Y v\|_{\mathbb{R}^{n}}>0 .
$$

Let $v \in \mathbb{R}^{n}$ be vector with $\|v\|_{\mathbb{R}^{m}}=1$, where the maximum is attained. We set $u=Y v / \sigma_{1} \in \mathbb{R}^{m}$. It follows that $\|u\|_{\mathbb{R}^{n}}=\|Y v\|_{\mathbb{R}^{m}} / \sigma_{1}=1$. We extend u and v to orthonormal bases $\left\{u, \tilde{u}_{2}, \ldots, \tilde{u}_{m}\right\}$ and $\left\{v, \tilde{v}_{2}, \ldots, \tilde{v}_{n}\right\}$ in \mathbb{R}^{m} and \mathbb{R}^{n}, respectively. Next we define the two orthogonal matrices $U_{1}=$ $\left[u, \tilde{u}_{2}, \ldots, \tilde{u}_{m}\right] \in \mathbb{R}^{m \times m}$ and $V_{1}=\left[v, \tilde{v}_{2}, \ldots, \tilde{v}_{m}\right] \in \mathbb{R}^{n \times n}$. Since $\langle\tilde{u}, Y v\rangle_{\mathbb{R}^{m}}=\sigma_{1}\left\langle\tilde{u}_{i}, u\right\rangle_{\mathbb{R}^{m}}=0$ holds for $i=2, \ldots, m$, we find that

$$
Y_{1}=U_{1}^{T} Y V_{1}=\left(\begin{array}{cc}
\sigma_{1} & w^{T} \\
0 & \tilde{Y}
\end{array}\right) \in \mathbb{R}^{m \times n}
$$

with $w \in \mathbb{R}^{n-1}$ and $\tilde{Y} \in \mathbb{R}^{(m-1) \times(n-1)}$. We observe that

$$
\left\|Y_{1}\binom{\sigma_{1}}{w}\right\|_{\mathbb{R}^{m}}=\left\|\binom{\sigma_{1}^{2}+w^{\top} w}{\tilde{Y} w}\right\|_{\mathbb{R}^{m}} \geq \sigma_{1}^{2}+\|w\|_{\mathbb{R}^{n-1}}^{2}=\left\|\binom{\sigma_{1}}{w}\right\|_{\mathbb{R}^{n}}^{2} .
$$

Moreover, $\|Y\|_{2}=\left\|Y_{1}\right\|_{2}$ holds. Therefore, we have

$$
\sigma_{1}=\left\|Y_{1}\right\|_{2} \geq \frac{\left\|Y_{1}\binom{\sigma_{1}}{w}\right\|_{\mathbb{R}^{m}}}{\left\|\binom{\sigma_{1}}{w}\right\|_{\mathbb{R}^{n}}} \geq \sqrt{\sigma_{1}^{2}+\|w\|_{\mathbb{R}^{n-1}}^{2}}
$$

Consequently, $w=0$ and

$$
U_{1}^{T} Y V_{1}=\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \tilde{Y}
\end{array}\right) \in \mathbb{R}^{m \times n}
$$

Thus, the claim has been proved for $m=1$ or $n=1$. For the case $m, n>1$ we apply an induction argument. For that purpose we assume that $U_{2}^{T} \tilde{Y} V_{2}=\Sigma_{2}$ with two orthogonal matrices $U_{2} \in \mathbb{R}^{(m-1) \times(m-1)}, V_{2} \in \mathbb{R}^{(n-1) \times(n-1)}$ and with a matrix $\Sigma_{2} \in \mathbb{R}^{(m-1) \times(n-1)}$ of the same structure as the marix Σ in (1.2). Then, we find

$$
\sigma_{2}:=\|\tilde{Y}\|_{2} \leq\left\|Y_{1}\right\|_{2}=\left\|U_{1}^{T} Y V_{1}\right\|_{2}=\|Y\|_{2}=\sigma_{1} .
$$

Setting

$$
U=U_{1}\left(\begin{array}{cc}
1 & 0 \\
0 & U_{2}
\end{array}\right) \in \mathbb{R}^{m \times m} \quad \text { and } \quad\left(\begin{array}{cc}
1 & 0 \\
0 & V_{2}
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

we get the decomposition

$$
U^{T} Y V=\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right)
$$

which yields the claim by using the hypothesis of the induction.
It follows directly from (1.3) that $\left\{u_{i}\right\}_{i=1}^{m} \subset \mathbb{R}^{m}$ and $\left\{v_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{n}$ are eigenvectors of $Y Y^{\top}$ and $Y^{\top} Y$, respectively, with eigenvalues $\lambda_{i}=\sigma_{i}^{2}>0, i=1, \ldots, d$. The vectors $\left\{u_{i}\right\}_{i=d+1}^{m}$ and $\left\{v_{i}\right\}_{i=d+1}^{n}$ (if $d<m$ respectively $d<n$) are eigenvectors of $Y Y^{\top}$ and $Y^{\top} Y$ with eigenvalue 0 .

From (1.2) we deduce that

$$
Y=U \Sigma V^{\top}
$$

We infer (1.3) from the columnwise evaluation of (1.2). The follows It follows that Y can also be expressed as

$$
\begin{equation*}
Y=U^{d} D\left(V^{d}\right)^{T} \tag{1.4}
\end{equation*}
$$

where $U^{d} \in \mathbb{R}^{m \times d}$ and $V^{d} \in \mathbb{R}^{n \times d}$ are given by

$$
\begin{aligned}
& U_{i j}^{d}=U_{i j} \quad \text { for } 1 \leq i \leq m, 1 \leq j \leq d \\
& V_{i j}^{d}=V_{i j} \quad \text { for } 1 \leq i \leq n, 1 \leq j \leq d .
\end{aligned}
$$

Setting $B^{d}=D\left(V^{d}\right)^{T} \in \mathbb{R}^{d \times n}$ we can write (1.4) in the form

$$
Y=U^{d} B^{d} \quad \text { with } B^{d}=D\left(V^{d}\right)^{T} \in \mathbb{R}^{d \times n} \text {. }
$$

Thus, the column space of Y can be represented in terms of the d linearly independent columns of U^{d}. The coefficients in the expansion for the columns $y_{j}, j=1, \ldots, n$, in the basis $\left\{u_{i}\right\}_{i=1}^{d}$ are given by the j th-column of B^{d}. Since U is orthogonal, we find that

$$
\begin{aligned}
& y_{j}=\sum_{i=1}^{d} B_{i j}^{d} U_{\cdot, i}^{d}=\sum_{i=1}^{d}\left(D\left(V^{d}\right)^{T}\right)_{i j} u_{i}=\sum_{i=1}^{d}(\underbrace{\left(U^{d}\right)^{T} U^{d}}_{=d^{d} \in \mathbb{R}^{d \times d}} D\left(V^{d}\right)^{T})_{i j} u_{i} \\
& \stackrel{(1.4)}{=} \sum_{i=1}^{d}\left(\left(U^{d}\right)^{T} Y\right)_{i j} u_{i}=\sum_{i=1}^{d}(\underbrace{\sum_{k=1}^{m} U_{k i}^{d} Y_{k j}}_{=u_{i}^{T} y_{j}}) u_{i}=\sum_{i=1}^{d}\left\langle u_{i}, y_{j}\right\rangle_{\mathbb{R}^{m}} u_{i},
\end{aligned}
$$

where $\langle\cdot, \cdot\rangle_{\mathbb{R}^{m}}$ denotes the canonical inner product in \mathbb{R}^{m}. Thus,

$$
\begin{equation*}
y_{j}=\sum_{i=1}^{d}\left\langle y_{j}, u_{i}\right\rangle_{\mathbb{R}^{m}} u_{i} \quad \text { for } j=1, \ldots, n \tag{1.5}
\end{equation*}
$$

Let us now interprete SVD in terms of POD. One of the central issues of POD is the reduction of data expressing their essential information by means of a few basis vectors. The problem of approximating all spatial coordinate vectors y_{j} of Y simultaneously by a single, normalized vector as well as possible can be expressed as

$$
\begin{equation*}
\max _{u \in \mathbb{R}^{m}} \sum_{j=1}^{n}\left|\left\langle y_{j}, u\right\rangle_{\mathbb{R}^{m}}\right|^{2} \quad \text { subject to (s.t.) } \quad\|u\|_{\mathbb{R}^{m}}^{2}=1 \tag{1}
\end{equation*}
$$

where $\|u\|_{\mathbb{R}^{m}}=\sqrt{\langle u, u\rangle_{\mathbb{R}^{m}}}$ for $u \in \mathbb{R}^{m}$.
Note that $\left(\mathbf{P}^{\mathbf{1}}\right)$ is a constrained optimization problem that can be solved by considering first-order necessary optimality conditions; cf. [DR11, Satz 11.43]. We introduce the function $e: \mathbb{R}^{m} \rightarrow \mathbb{R}$ by $e(u)=1-\|u\|_{\mathbb{R}^{m}}^{2}$ for $u \in \mathbb{R}^{m}$. Then, the equality constraint in $\left(\mathbf{P}^{1}\right)$ can be expressed as $e(u)=0$. Notice that $\nabla e(u)=2 u^{T}$ is linear independent if $u \neq 0$ holds. In particular, a solution to $\left(\mathbf{P}^{1}\right)$ satisfies $u \neq 0$. Thus, any solution to $\left(\widehat{\left.\mathbf{P}^{1}\right)}\right.$ is a regular point. Let $\mathcal{L}: \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}$ be the Lagrange functional associated with $\left(\mathbf{P}^{1}\right)$, i.e.,

$$
\mathcal{L}(u, \lambda)=\sum_{j=1}^{n}\left|\left\langle y_{j}, u\right\rangle_{\mathbb{R}^{m}}\right|^{2}+\lambda\left(1-\|u\|_{\mathbb{R}^{m}}^{2}\right) \quad \text { for }(u, \lambda) \in \mathbb{R}^{m} \times \mathbb{R} .
$$

Suppose that $u \in \mathbb{R}^{m}$ is a solution to $\left(\mathbf{P}^{1}\right)$. Since u is regular, there exists a Lagrange multiplier satisfying the first-order necessary optimality condition

$$
\nabla \mathcal{L}(u, \lambda) \stackrel{!}{=} 0 \quad \text { in } \mathbb{R}^{m} \times \mathbb{R}
$$

We compute the gradient of \mathcal{L} with respect to u :

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial u_{i}}(u, \lambda) & =\frac{\partial}{\partial u_{i}}\left(\sum_{j=1}^{n}\left|\sum_{k=1}^{m} Y_{k j} u_{k}\right|^{2}+\lambda\left(1-\sum_{k=1}^{m} u_{k}^{2}\right)\right)=2 \sum_{j=1}^{n}\left(\sum_{k=1}^{m} Y_{k j} u_{k}\right) Y_{i j}-2 \lambda u_{i} \\
& =2 \sum_{k=1}^{m}(\underbrace{\sum_{j=1}^{n} Y_{i j} Y_{j k}^{T}}_{=\left(Y Y^{\top}\right)_{i k}} u_{k})-2 \lambda u_{i} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\nabla_{u} \mathcal{L}(u, \lambda)=2\left(Y Y^{\top} u-\lambda u\right) \stackrel{!}{=} 0 \quad \text { in } \mathbb{R}^{m} . \tag{1.6}
\end{equation*}
$$

Equation (1.6) yields the eigenvalue problem

$$
\begin{equation*}
Y Y^{\top} u=\lambda u \text { in } \mathbb{R}^{m} . \tag{1.7a}
\end{equation*}
$$

Notice that $Y Y^{\top} \in \mathbb{R}^{m \times m}$ is a symmetric matrix satisfying

$$
u^{T}\left(Y Y^{\top}\right) u=\left(Y^{\top} u\right)^{T} Y^{\top} u=\left\|Y^{T} u\right\|_{\mathbb{R}^{n}}^{2} \geq 0 \quad \text { for all } u \in \mathbb{R}^{m}
$$

Thus, $Y Y^{\top}$ is positive semi-definite. It follows that $Y Y^{\top}$ possesses m non-negative eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{m} \geq 0$ and the corresponding eigenvectors can be chosen such that they are pairwise orthonormal.

From $\frac{\partial \mathcal{L}}{\partial \lambda}(u, \lambda) \stackrel{!}{=} 0$ in \mathbb{R} we infer the constraint

$$
\begin{equation*}
\|u\|_{\mathbb{R}^{m}}=1 . \tag{1.7b}
\end{equation*}
$$

Due to SVD the vector u_{1} solves (1.7) and

$$
\begin{aligned}
\sum_{j=1}^{n}\left|\left\langle y_{j}, u_{1}\right\rangle_{\mathbb{R}^{m}}\right|^{2} & =\sum_{j=1}^{n}\left\langle y_{j}, u_{1}\right\rangle_{\mathbb{R}^{m}}\left\langle y_{j}, u_{1}\right\rangle_{\mathbb{R}^{m}}=\sum_{j=1}^{n}\left\langle\left\langle y_{j}, u_{1}\right\rangle_{\mathbb{R}^{m}} y_{j}, u_{1}\right\rangle_{\mathbb{R}^{m}} \\
& =\left\langle\sum_{j=1}^{n}\left\langle y_{j}, u_{1}\right\rangle_{\mathbb{R}^{m}} y_{j}, u_{1}\right\rangle_{\mathbb{R}^{m}}=\left\langle\sum_{j=1}^{n}\left(\sum_{k=1}^{m} Y_{k j}\left(u_{1}\right)_{k}\right) y_{j}, u_{1}\right\rangle_{\mathbb{R}^{m}} \\
& =\left\langle\sum_{k=1}^{m}\left(\sum_{j=1}^{n} Y_{\cdot j} Y_{j k}^{T}\left(u_{1}\right)_{k}\right), u_{1}\right\rangle_{\mathbb{R}^{m}}=\left\langle Y Y^{\top} u_{1}, u_{1}\right\rangle_{\mathbb{R}^{m}} \\
& =\lambda_{1}\left\langle u_{1}, u_{1}\right\rangle_{\mathbb{R}^{m}}=\lambda_{1}\left\|u_{1}\right\|_{\mathbb{R}^{m}}^{2}=\lambda_{1} .
\end{aligned}
$$

We next prove that u_{1} solves $\left(\mathbf{P}^{1}\right)$. Suppose that $\tilde{u} \in \mathbb{R}^{m}$ is an arbitrary vector with $\|\tilde{u}\|_{\mathbb{R}^{m}}=1$. Since $\left\{u_{i}\right\}_{i=1}^{m}$ is an orthonormal basis in \mathbb{R}^{m}, we have

$$
\tilde{u}=\sum_{i=1}^{m}\left\langle\tilde{u}, u_{i}\right\rangle_{\mathbb{R}^{m}} u_{i} .
$$

Thus,

$$
\begin{aligned}
\sum_{j=1}^{n}\left|\left\langle y_{j}, \tilde{u}\right\rangle_{\mathbb{R}^{m}}\right|^{2} & =\sum_{j=1}^{n}\left|\left\langle y_{j}, \sum_{i=1}^{m}\left\langle\tilde{u}, u_{i}\right\rangle_{\mathbb{R}^{m}} u_{i}\right\rangle_{\mathbb{R}^{m}}\right|^{2} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{m} \sum_{k=1}^{m}\left(\left\langle y_{j},\left\langle\tilde{u}, u_{i}\right\rangle_{\mathbb{R}^{m}} u_{i}\right\rangle_{\mathbb{R}^{m}}\left\langle y_{j},\left\langle\tilde{u}, u_{k}\right\rangle_{\mathbb{R}^{m}} u_{k}\right\rangle_{\mathbb{R}^{m}}\right) \\
& =\sum_{j=1}^{n} \sum_{i=1}^{m} \sum_{k=1}^{m}\left(\left\langle y_{j}, u_{i}\right\rangle_{\mathbb{R}^{m}}\left\langle y_{j}, u_{k}\right\rangle_{\mathbb{R}^{m}}\left\langle\tilde{u}, u_{i}\right\rangle_{\mathbb{R}^{m}}\left\langle\tilde{u}, u_{k}\right\rangle_{\mathbb{R}^{m}}\right) \\
& =\sum_{i=1}^{m} \sum_{k=1}^{m}(\underbrace{\left.\left.\sum_{j=1}^{n}\left\langle y_{j}, u_{i}\right\rangle_{\mathbb{R}^{m}} y_{j}, u_{k}\right\rangle_{\mathbb{R}^{m}}\left\langle\tilde{u}, u_{i}\right\rangle_{\mathbb{R}^{m}}\left\langle\tilde{u}, u_{k}\right\rangle_{\mathbb{R}^{m}}\right)}_{=\lambda_{i} u_{i}} \\
& =\sum_{i=1}^{m} \sum_{k=1}^{m}(\underbrace{\left.\left\langle\lambda_{i} u_{i}, u_{k}\right\rangle_{\mathbb{R}^{m}}\left\langle\tilde{u}, u_{i}\right\rangle_{\mathbb{R}^{m}}\left\langle\tilde{u}, u_{k}\right\rangle_{\mathbb{R}^{m}}\right)}_{=\lambda_{i} \delta_{i k}} \\
& =\sum_{i=1}^{m} \lambda_{i}\left|\left\langle\tilde{u}, u_{i}\right\rangle_{\mathbb{R}^{m}}\right|^{2} \leq \lambda_{1} \sum_{i=1}^{m}\left|\left\langle\tilde{u}, u_{i}\right\rangle_{\mathbb{R}^{m}}\right|^{2}=\lambda_{1}\|\tilde{u}\|_{\mathbb{R}}^{2}=\lambda_{1}=\sum_{j=1}^{n}\left|\left\langle y_{j}, u_{1}\right\rangle_{\mathbb{R}^{m}}\right|^{2} .
\end{aligned}
$$

Consequently, u_{1} solves $\left(\mathbf{P}^{1}\right)$ and $\operatorname{argmax}\left(\mathbf{P}^{1}\right)=\sigma_{1}^{2}=\lambda_{1}$.
If we look for a second vector, orthogonal to u_{1} that again describes the data set $\left\{y_{i}\right\}_{i=1}^{n}$ as well as possible then we need to solve

$$
\begin{equation*}
\max _{u \in \mathbb{R}^{m}} \sum_{j=1}^{n}\left|\left\langle y_{j}, u\right\rangle_{\mathbb{R}^{m}}\right|^{2} \quad \text { s.t. } \quad\|u\|_{\mathbb{R}^{m}}=1 \text { and }\left\langle u, u_{1}\right\rangle_{\mathbb{R}^{m}}=0 \tag{2}
\end{equation*}
$$

SVD implies that u_{2} is a solution to $\left(\sqrt{\mathbf{P}^{2}}\right)$ and $\operatorname{argmax}\left(\sqrt{\mathbf{P}^{2}}\right)=\sigma_{2}^{2}=\lambda_{2}$. In fact, u_{2} solves the first-order necessary optimality conditions (1.7) and for

$$
\tilde{u}=\sum_{i=2}^{m}\left\langle\tilde{u}, u_{i}\right\rangle_{\mathbb{R}^{m}} u_{i} \in \operatorname{span}\left\{u_{1}\right\}^{\perp}
$$

we have

$$
\sum_{j=1}^{n}\left|\left\langle y_{j}, \tilde{u}\right\rangle_{\mathbb{R}^{m}}\right|^{2} \leq \lambda_{2}=\sum_{j=1}^{n}\left|\left\langle y_{j}, u_{2}\right\rangle_{\mathbb{R}^{m}}\right|^{2}
$$

Clearly this procedure can be continued by finite induction. We summarize our results in the following theorem.

Theorem 1.2. Let $Y=\left[y_{1}, \ldots, y_{n}\right] \in \mathbb{R}^{m \times n}$ be a given matrix with rank $d \leq \min \{m, n\}$. Further, let $Y=U \Sigma V^{T}$ be the singular value decomposition of Y, where $U=\left[u_{1}, \ldots, u_{m}\right] \in \mathbb{R}^{m \times m}$, $V=\left[v_{1}, \ldots, v_{n}\right] \in \mathbb{R}^{n \times n}$ are orthogonal matrices and the matrix $\Sigma \in \mathbb{R}^{m \times n}$ has the form as (1.2). Then, for any $\ell \in\{1, \ldots, d\}$ the solution to

$$
\max _{\tilde{u}_{1}, \ldots, \tilde{u}_{\ell} \in \mathbb{R}^{m}} \sum_{i=1}^{\ell} \sum_{j=1}^{n}\left|\left\langle y_{j}, \tilde{u}_{i}\right\rangle_{\mathbb{R}^{m}}\right|^{2} \quad \text { s.t. } \quad\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle_{\mathbb{R}^{m}}=\delta_{i j} \text { for } 1 \leq i, j \leq \ell
$$

is given by the singular vectors $\left\{u_{i}\right\}_{i=1}^{\ell}$, i.e., by the first ℓ columns of U. Moreover,

$$
\begin{equation*}
\operatorname{argmax}\left(\overline{\mathbf{P}^{\ell}}=\sum_{i=1}^{\ell} \sigma_{i}^{2}=\sum_{i=1}^{\ell} \lambda_{i} .\right. \tag{1.8}
\end{equation*}
$$

Proof. Since $\left(\overline{\mathbf{P}^{\ell}}\right)$ is an equality constrained optimization problem, we introduce the Lagrangian

$$
\mathcal{L}: \underbrace{\mathbb{R}^{m} \times \ldots \times \mathbb{R}^{m}}_{\ell \text {-times }} \times \mathbb{R}^{\ell \times \ell}
$$

by

$$
\mathcal{L}\left(\psi_{1}, \ldots, \psi_{\ell}, \Lambda\right)=\sum_{i=1}^{\ell} \sum_{j=1}^{n}\left|\left\langle y_{j}, \psi_{i}\right\rangle_{\mathbb{R}^{m}}\right|^{2}+\sum_{i, j=1}^{\ell} \lambda_{i j}\left(\delta_{i j}-\left\langle\psi_{i}, \psi_{j}\right\rangle_{\mathbb{R}^{m}}\right)
$$

for $\psi_{1}, \ldots, \psi_{\ell} \in \mathbb{R}^{m}$ and $\Lambda=\left(\left(\lambda_{i j}\right)\right) \in \mathbb{R}^{\ell \times \ell}$. First-order necessary optimality conditions for $\left(\mathbf{P}^{\ell}\right)$ are given by

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \psi_{k}}\left(\psi_{1}, \ldots, \psi_{\ell}, \Lambda\right) \delta \psi_{k}=0 \quad \text { for all } \delta \psi_{k} \in \mathbb{R}^{m} \text { and } k \in\{1, \ldots, \ell\} . \tag{1.9}
\end{equation*}
$$

From

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \psi_{k}}\left(\psi_{1}, \ldots, \psi_{\ell}, \wedge\right) \delta \psi_{k}= & 2 \sum_{i=1}^{\ell} \sum_{j=1}^{n}\left\langle y_{j}, \psi_{i}\right\rangle_{\mathbb{R}^{m}}\left\langle y_{j}, \delta \psi_{k}\right\rangle_{\mathbb{R}^{m}} \delta_{i k} \\
& -\sum_{i, j=1}^{\ell} \lambda_{i j}\left\langle\psi_{i}, \delta \psi_{k}\right\rangle_{\mathbb{R}^{m}} \delta_{j k}-\sum_{i, j=1}^{\ell} \lambda_{i j}\left\langle\delta \psi_{k}, \psi_{j}\right\rangle_{\mathbb{R}^{m}} \delta_{k i} \\
= & 2 \sum_{j=1}^{n}\left\langle y_{j}, \psi_{k}\right\rangle_{\mathbb{R}^{m}}\left\langle y_{j}, \delta \psi_{k}\right\rangle_{\mathbb{R}^{m}}-\sum_{i=1}^{\ell}\left(\lambda_{i k}+\lambda_{k i}\right)\left\langle\psi_{i}, \delta \psi_{k}\right\rangle_{\mathbb{R}^{m}} \\
= & \left\langle 2 \sum_{j=1}^{n}\left\langle y_{j}, \psi_{k}\right\rangle_{\mathbb{R}^{m}} y_{j}-\sum_{i=1}^{\ell}\left(\lambda_{i k}+\lambda_{k i}\right) \psi_{i}, \delta \psi_{k}\right\rangle_{\mathbb{R}^{m}}
\end{aligned}
$$

and (1.9) we infer that

$$
\begin{equation*}
\sum_{j=1}^{n}\left\langle y_{j}, \psi_{k}\right\rangle_{\mathbb{R}^{m}} y_{j}=\frac{1}{2} \sum_{i=1}^{\ell}\left(\lambda_{i k}+\lambda_{k i}\right) \psi_{i} \quad \text { in } \mathbb{R}^{m} \text { and for all } k \in\{1, \ldots, \ell\} \text {. } \tag{1.10}
\end{equation*}
$$

Note that

$$
Y Y^{T} \psi=\sum_{j=1}^{n}\left\langle y_{j}, \psi\right\rangle_{\mathbb{R}^{m}} y_{j} \quad \text { for } \psi \in \mathbb{R}^{m} .
$$

Thus, condition (1.10) can be expressed as

$$
\begin{equation*}
Y Y^{\top} \psi_{k}=\frac{1}{2} \sum_{i=1}^{\ell}\left(\lambda_{i k}+\lambda_{k i}\right) \psi_{i} \quad \text { in } \mathbb{R}^{m} \text { and for all } k \in\{1, \ldots, \ell\} . \tag{1.11}
\end{equation*}
$$

Now we proceed by induction. For $\ell=1$ we have $k=1$. It follows from (1.11) that

$$
\begin{equation*}
Y Y^{\top} \psi_{1}=\lambda_{1} \psi_{1} \quad \text { in } \mathbb{R}^{m} \tag{1.12}
\end{equation*}
$$

with $\lambda_{1}=\lambda_{11}$. Next we suppose that for $\ell \geq 1$ the first-order optimality conditions are given by

$$
\begin{equation*}
Y Y^{\top} \psi_{k}=\lambda_{k} \psi_{k} \quad \text { in } \mathbb{R}^{m} \text { and for all } k \in\{1, \ldots, \ell\} . \tag{1.13}
\end{equation*}
$$

We want to show that the first-order necessary optimality conditions for a POD basis $\left\{\psi_{i}\right\}_{i=1}^{\ell+1}$ of rank $\ell+1$ are given by

$$
\begin{equation*}
Y Y^{\top} \psi_{k}=\lambda_{k} \psi_{k} \quad \text { in } \mathbb{R}^{m} \text { and for all } k \in\{1, \ldots, \ell+1\} \tag{1.14}
\end{equation*}
$$

By assumption we have (1.13). Thus, we only have to prove that

$$
\begin{equation*}
Y Y^{\top} \psi_{\ell+1}=\lambda_{\ell+1} \psi_{\ell+1} \quad \text { in } \mathbb{R}^{m} . \tag{1.15}
\end{equation*}
$$

Due to (1.11) we have

$$
\begin{equation*}
Y Y^{\top} \psi_{\ell+1}=\frac{1}{2} \sum_{i=1}^{\ell+1}\left(\lambda_{i, \ell+1}+\lambda_{\ell+1, i}\right) \psi_{i} \quad \text { in } \mathbb{R}^{m} . \tag{1.16}
\end{equation*}
$$

Since $\left\{\psi_{i}\right\}_{i=1}^{\ell+1}$ is a POD basis we have $\left\langle\psi_{\ell+1}, \psi_{j}\right\rangle_{\mathbb{R}^{m}}=0$ for $1 \leq j \leq \ell$. Using (1.13) and the symmetry of $Y Y^{\top}$ we have for any $j \in\{1, \ldots, \ell\}$

$$
\begin{aligned}
0 & =\lambda_{j}\left\langle\psi_{\ell+1}, \psi_{j}\right\rangle_{\mathbb{R}^{m}}=\left\langle\psi_{\ell+1}, Y Y^{\top} \psi_{j}\right\rangle_{\mathbb{R}^{m}}=\left\langle Y Y^{\top} \psi_{\ell+1}, \psi_{j}\right\rangle_{\mathbb{R}^{m}} \\
& =\frac{1}{2} \sum_{i=1}^{\ell+1}\left(\lambda_{i, \ell+1}+\lambda_{\ell+1, i}\right)\left\langle\psi_{i}, \psi_{j}\right\rangle_{\mathbb{R}^{m}}=\left(\lambda_{j, \ell+1}+\lambda_{\ell+1, j}\right) .
\end{aligned}
$$

This gives

$$
\begin{equation*}
\lambda_{\ell+1, i}=-\lambda_{i, \ell+1} \quad \text { for any } i \in\{1, \ldots, \ell\} . \tag{1.17}
\end{equation*}
$$

Inserting (1.17) into (1.16) we obtain

$$
\begin{aligned}
Y Y^{\top} \psi_{\ell+1} & =\frac{1}{2} \sum_{i=1}^{\ell}\left(\lambda_{i, \ell+1}+\lambda_{\ell+1, i}\right) \psi_{i}+\lambda_{\ell+1, \ell+1} \psi_{\ell+1} \\
& =\frac{1}{2} \sum_{i=1}^{\ell}\left(\lambda_{i, \ell+1}-\lambda_{i, \ell+1}\right) \psi_{i}+\lambda_{\ell+1, \ell+1} \psi_{\ell+1}=\lambda_{\ell+1, \ell+1} \psi_{\ell+1}
\end{aligned}
$$

Setting $\lambda_{\ell+1}=\lambda_{\ell+1, \ell+1}$ we obtain (1.15).
Summarizing, the necessary optimaity conditions for (\mathbf{P}^{ℓ}) are given by the symmetric $m \times m$ eigenvalue problem

$$
\begin{equation*}
Y Y^{\top} u_{i}=\lambda_{i} u_{i} \quad \text { for } i=1, \ldots, \ell \tag{1.18}
\end{equation*}
$$

It follows from SVD that $\left\{u_{i}\right\}_{i=1}^{\ell}$ solves (1.18). The proof that $\left\{u_{i}\right\}_{i=1}^{\ell}$ is a solution to $\left(\mathbf{P}^{\ell}\right)$ and that argmax $\left(\mathbf{P}^{\ell}\right)=\sum_{i=1}^{\ell} \sigma_{i}^{2}$ holds is analogous to the proof for $\left(\mathbf{P}^{1}\right)$; see Exercise 1.2).

Motivated by the previous theorem we give the next definition.
Definition 1.3. For $\ell \in\{1, \ldots, d\}$ the vectors $\left\{u_{i}\right\}_{i=1}^{\ell}$ are called POD basis of rank ℓ.

The following result states that for every $\ell \leq d$ the approximation of the columns of Y by the first ℓ singular vectors $\left\{u_{i}\right\}_{i=1}^{\ell}$ is optimal in the mean among all rank ℓ approximations to the columns of Y.

Corollary 1.4 (Optimality of the POD basis). Let all hypotheses of Theorem 1.2 be satisfied. Suppose that $\hat{U}^{d} \in \mathbb{R}^{m \times d}$ denotes a matrix with pairwise orthonormal vectors \hat{u}_{i} and that the expansion of the columns of Y in the basis $\left\{\hat{u}_{i}\right\}_{i=1}^{d}$ be given by

$$
Y=\hat{U}^{d} C^{d}, \quad \text { where } C_{i j}^{d}=\left\langle\hat{u}_{i}, y_{j}\right\rangle_{\mathbb{R}^{m}} \text { for } 1 \leq i \leq d, 1 \leq j \leq n .
$$

Then for every $\ell \in\{1, \ldots, d\}$ we have

$$
\begin{equation*}
\left\|Y-U^{l} B^{l}\right\|_{F} \leq\left\|Y-\hat{U}^{l} C^{\ell}\right\|_{F} \tag{1.19}
\end{equation*}
$$

In (1.19), $\|\cdot\|_{F}$ denotes the Frobenius norm given by

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|A_{i j}\right|^{2}}=\sqrt{\operatorname{trace}\left(A^{T} A\right)} \quad \text { for } A \in \mathbb{R}^{m \times n}
$$

the matrix U^{ℓ} denotes the first ℓ columns of U, B^{ℓ} the first ℓ rows of B and similarly for \hat{U}^{ℓ} and C^{ℓ}.

Remark 1.5. Notice that

$$
\begin{aligned}
\left\|Y-\hat{U}^{\ell} C^{\ell}\right\|_{F}^{2} & =\sum_{i=1}^{m} \sum_{j=1}^{n}\left|Y_{i j}-\sum_{k=1}^{\ell} \hat{U}_{i k}^{\ell} C_{k j}\right|^{2}=\sum_{j=1}^{n} \sum_{i=1}^{m}\left|Y_{i j}-\sum_{k=1}^{\ell}\left\langle\hat{u}_{k}, y_{j}\right\rangle_{\mathbb{R}^{m}} \hat{U}_{i k}^{\ell}\right|^{2} \\
& =\sum_{j=1}^{n}\left\|y_{j}-\sum_{k=1}^{\ell}\left\langle y_{j}, \hat{u}_{k}\right\rangle_{\mathbb{R}^{m}} \hat{u}_{k}\right\|_{\mathbb{R}^{m}}^{2} .
\end{aligned}
$$

Analogously,

$$
\left\|Y-U^{\ell} B^{\ell}\right\|_{F}^{2}=\sum_{j=1}^{n}\left\|y_{j}-\sum_{k=1}^{\ell}\left\langle y_{j}, u_{k}\right\rangle_{\mathbb{R}^{m}} u_{k}\right\|_{\mathbb{R}^{m}}^{2}
$$

Thus, (1.19) implies that

$$
\sum_{j=1}^{n}\left\|y_{j}-\sum_{k=1}^{\ell}\left\langle y_{j}, u_{k}\right\rangle_{\mathbb{R}^{m}} u_{k}\right\|_{\mathbb{R}^{m}}^{2} \leq \sum_{j=1}^{n}\left\|y_{j}-\sum_{k=1}^{\ell}\left\langle y_{j}, \hat{u}_{k}\right\rangle_{\mathbb{R}^{m}} \hat{u}_{k}\right\|_{\mathbb{R}^{m}}^{2}
$$

for any other set $\left\{\hat{u}_{i}\right\}_{i=1}^{\ell}$ of ℓ pairwise orthonormal vectors. Hence, the POD basis of rank ℓ can also be determined by solving

$$
\begin{equation*}
\min _{\tilde{u}_{1}, \ldots, \tilde{u}_{\ell} \in \mathbb{R}^{m}} \sum_{j=1}^{n}\left\|y_{j}-\sum_{i=1}^{\ell}\left\langle y_{j}, \tilde{u}_{i}\right\rangle_{\mathbb{R}^{m}} \tilde{u}_{i}\right\|_{\mathbb{R}^{m}}^{2} \text { s.t. }\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle_{\mathbb{R}^{m}}=\delta_{i j}, 1 \leq i, j \leq \ell . \tag{1.20}
\end{equation*}
$$

Proof of Corollary 1.3. Note that (see Exercise 1.3) in Section 1.4)

$$
\left\|Y-\hat{U}^{\ell} C^{\ell}\right\|_{F}^{2}=\left\|\hat{U}^{d}\left(C^{d}-C_{0}^{\ell}\right)\right\|_{F}^{2}=\left\|C^{d}-C_{0}^{\ell}\right\|_{F}^{2}=\sum_{i=\ell+1}^{d} \sum_{j=1}^{n}\left|C_{i j}^{d}\right|^{2},
$$

where $C_{0}^{\ell} \in \mathbb{R}^{d \times n}$ results from $C \in \mathbb{R}^{d \times n}$ by replacing the last $d-\ell$ rows by 0 . Similarly,

$$
\begin{align*}
\left\|Y-U^{\ell} B^{\ell}\right\|_{F}^{2} & =\left\|U^{k}\left(B^{d}-B_{0}^{\ell}\right)\right\|_{F}^{2}=\left\|B^{d}-B_{0}^{\ell}\right\|_{F}^{2}=\sum_{i=\ell+1}^{d} \sum_{j=1}^{n}\left|B_{i j}^{d}\right|^{2} \\
& =\sum_{i=\ell+1}^{d} \sum_{j=1}^{n}\left|\left\langle y_{j}, u_{i}\right\rangle_{\mathbb{R}^{m}}\right|^{2}=\sum_{i=\ell+1}^{d} \sum_{j=1}^{n}\left\langle\left\langle y_{j}, u_{i}\right\rangle_{\mathbb{R}^{m}} y_{j}, u_{i}\right\rangle_{\mathbb{R}^{m}} \tag{1.21}\\
& =\sum_{i=\ell+1}^{d}\left\langle Y Y^{\top} u_{i}, u_{i}\right\rangle_{\mathbb{R}^{m}}=\sum_{i=\ell+1}^{d} \sigma_{i}^{2},
\end{align*}
$$

By Theorem 1.2 the vectors u_{1}, \ldots, u_{ℓ} solve $\left(\mathbf{P}^{\ell}\right)$. From (1.21),

$$
\|Y\|_{F}^{2}=\left\|\hat{U}^{d} C^{d}\right\|_{F}^{2}=\left\|C^{d}\right\|_{F}^{2}=\sum_{i=1}^{d} \sum_{j=1}^{n}\left|C_{i j}^{d}\right|^{2}
$$

and

$$
\|Y\|_{F}^{2}=\left\|U^{d} B^{d}\right\|_{F}^{2}=\left\|B^{d}\right\|_{F}^{2}=\sum_{i=1}^{d} \sum_{j=1}^{n}\left|B_{i j}^{d}\right|^{2}=\sum_{i=1}^{d} \sigma_{i}^{2}
$$

we infer that

$$
\begin{aligned}
\left\|Y-U^{\ell} B^{\ell}\right\|_{F}^{2} & =\sum_{i=\ell+1}^{d} \sigma_{i}^{2}=\sum_{i=1}^{d} \sigma_{i}^{2}-\sum_{i=1}^{\ell} \sigma_{i}^{2}=\|Y\|_{F}^{2}-\sum_{i=1}^{\ell} \sum_{j=1}^{n}\left|\left\langle y_{j}, u_{i}\right\rangle_{\mathbb{R}^{m}}\right|^{2} \\
& \leq\|Y\|_{F}^{2}-\sum_{i=1}^{\ell} \sum_{j=1}^{n}\left|\left\langle y_{j}, \hat{u}_{i}\right\rangle_{\mathbb{R}^{m}}\right|^{2}=\sum_{i=1}^{d} \sum_{j=1}^{n}\left|C_{i j}^{d}\right|^{2}-\sum_{i=1}^{\ell} \sum_{j=1}^{n}\left|C_{i j}^{d}\right|^{2} \\
& =\sum_{i=\ell+1}^{d} \sum_{j=1}^{n}\left|C_{i j}^{d}\right|^{2}=\left\|Y-\hat{U}^{\ell} C^{\ell}\right\|_{F}^{2}
\end{aligned}
$$

which gives (1.19).
Remark 1.6. It follows from Corollary 1.4 that the POD basis of rank ℓ is optimal in the sense of representing in the mean the columns $\left\{y_{j}\right\}_{j=1}^{n}$ of Y as a linear combination by an orthonormal basis of rank ℓ :

$$
\sum_{i=1}^{\ell} \sum_{j=1}^{n}\left|\left\langle y_{j}, u_{i}\right\rangle_{\mathbb{R}^{m}}\right|^{2}=\sum_{i=1}^{\ell} \sigma_{i}^{2}=\sum_{i=1}^{\ell} \lambda_{i} \geq \sum_{i=1}^{\ell} \sum_{j=1}^{n}\left|\left\langle y_{j}, \hat{u}_{i}\right\rangle_{\mathbb{R}^{m}}\right|^{2}
$$

for any other set of orthonormal vectors $\left\{\hat{u}_{i}\right\}_{i=1}^{\ell}$.
The next corollary states that the POD coefficients are uncorrelated.
Corollary 1.7 (Uncorrelated POD coefficients). Let all hypotheses of Theorem 1.2 hold. Then.

$$
\sum_{j=1}^{n}\left\langle y_{j}, u_{i}\right\rangle_{\mathbb{R}^{m}}\left\langle y_{j}, u_{k}\right\rangle_{\mathbb{R}^{m}}=\sum_{j=1}^{n} B_{i j}^{\ell} B_{k j}^{\ell}=\sigma_{i}^{2} \delta_{i k} \quad \text { for } 1 \leq i, k \leq \ell
$$

Proof. The claim follows from (1.18) and $\left\langle u_{i}, u_{k}\right\rangle_{\mathbb{R}^{m}}=\delta_{i k}$ for $1 \leq i, k \leq \ell$:

$$
\sum_{j=1}^{n}\left\langle y_{j}, u_{i}\right\rangle_{\mathbb{R}^{m}}\left\langle y_{j}, u_{k}\right\rangle_{\mathbb{R}^{m}}=\langle\underbrace{\sum_{j=1}^{n}\left\langle y_{j}, u_{i}\right\rangle_{\mathbb{R}^{m}} y_{j}}_{=Y Y^{\top} u_{i}}, u_{k}\rangle_{\mathbb{R}^{m}}=\left\langle\sigma_{i}^{2} u_{i}, u_{k}\right\rangle_{\mathbb{R}^{m}}=\sigma_{i}^{2} \delta_{i k} .
$$

Next we turn to the practical computation of a POD-basis of rank ℓ. If $n<m$ then one can determine the POD basis of rank ℓ as follows: Compute the eigenvectors $v_{1}, \ldots, v_{\ell} \in \mathbb{R}^{n}$ by solving the symmetric $n \times n$ eigenvalue problem

$$
\begin{equation*}
Y^{\top} Y v_{i}=\lambda_{i} v_{i} \quad \text { for } i=1, \ldots, \ell \tag{1.22}
\end{equation*}
$$

and set, by (1.3),

$$
u_{i}=\frac{1}{\sqrt{\lambda_{i}}} Y v_{i} \quad \text { for } i=1, \ldots, \ell .
$$

For historical reasons [Sir87] this method of determing the POD-basis is sometimes called the method of snapshots. On the other hand, if $m<n$ holds, we can obtain the POD basis by solving the $m \times m$ eigenvalue problem (1.18).

For the application of POD to concrete problems the choice of ℓ is certainly of central importance for applying POD. It appears that no general a-priori rules are available. Rather the choice of ℓ is based on heuristic considerations combined with observing the ratio of the modeled to the total energy contained in the system Y, which is expressed by

$$
\mathcal{E}(\ell)=\frac{\sum_{i=1}^{\ell} \lambda_{i}}{\sum_{i=1}^{d} \lambda_{i}} .
$$

Let us mention that POD is also called Principal Component Analysis (PCA) and KarhunenLoève Decomposition.

1.2 The POD method with a weighted inner product

Let us endow the Euclidean space \mathbb{R}^{m} with the weighted inner product

$$
\begin{equation*}
\langle u, \tilde{u}\rangle_{W}=u^{\top} W \tilde{u}=\langle u, W \tilde{u}\rangle_{\mathbb{R}^{m}}=\langle W u, \tilde{u}\rangle_{\mathbb{R}^{m}} \quad \text { for } u, \tilde{u} \in \mathbb{R}^{m}, \tag{1.23}
\end{equation*}
$$

where $W \in \mathbb{R}^{m \times m}$ is a symmetric, positive-definite matrix. Furthermore, let $\|u\|_{W}=\sqrt{\langle u, u\rangle_{W}}$ for $u \in \mathbb{R}^{m}$ be the associated induced norm. For the choice $W=I$, the inner product (1.23) coincides the Euclidean inner product.

Example 1.8. Let us motivate the weighted inner product by an example. Suppose that $\Omega=$ $(0,1) \subset \mathbb{R}$ holds. We consider the space $L^{2}(\Omega)$ of square integrable functions on Ω :

$$
L^{2}(\Omega)=\left\{\varphi:\left.\Omega \rightarrow \mathbb{R}\left|\int_{\Omega}\right| \varphi\right|^{2} \mathrm{~d} x<\infty\right\}
$$

Recall that $L^{2}(\Omega)$ is a Hilbert space endowed with the inner product

$$
\langle\varphi, \tilde{\varphi}\rangle_{L^{2}(\Omega)}=\int_{\Omega} \varphi \tilde{\varphi} \mathrm{d} x \quad \text { for } \varphi, \tilde{\varphi} \in L^{2}(\Omega)
$$

and the induced norm $\|\varphi\|_{L^{2}(\Omega)}=\sqrt{\langle\varphi, \varphi\rangle_{L^{2}(\Omega)}}$ for $\varphi \in L^{2}(\Omega)$. For the step size $h=1 /(m-1)$ let us introduce a spatial grid in Ω by

$$
x_{i}=(i-1) h \quad \text { for } i=1, \ldots, m .
$$

For any $\varphi, \tilde{\varphi} \in L^{2}(\Omega)$ we introduce a discrete inner product by trapezoidal approximation:

$$
\begin{equation*}
\langle\varphi, \tilde{\varphi}\rangle_{L_{h}^{2}(\Omega)}=h\left(\frac{\varphi_{1}^{h} \tilde{\varphi}_{1}^{h}}{2}+\sum_{i=2}^{m-1}\left(\varphi_{i}^{h} \tilde{\varphi}_{i}^{h}\right)+\frac{\varphi_{m}^{h} \tilde{\varphi}_{m}^{h}}{2}\right), \tag{1.24}
\end{equation*}
$$

where

$$
\varphi_{i}^{h}= \begin{cases}\frac{2}{h} \int_{0}^{h / 2} \varphi(x) \mathrm{d} x & \text { for } i=1, \\ \frac{1}{h} \int_{x_{i}-h / 2}^{x_{i}+h / 2} \varphi(x) \mathrm{d} x & \text { for } i=2, \ldots, m-1, \\ \frac{2}{h} \int_{1-h / 2}^{1} \varphi(x) \mathrm{d} x & \text { for } i=m\end{cases}
$$

and the $\tilde{\varphi}_{j}^{h \prime}$'s are defined analogously. Setting $W=\operatorname{diag}(h / 2, h, \ldots, h, h / 2) \in \mathbb{R}^{m \times m}, \varphi^{h}=$ $\left(\varphi_{1}^{h}, \ldots, \varphi_{m}^{h}\right)^{T} \in \mathbb{R}^{m}$ and $\tilde{\varphi}^{h}=\left(\tilde{\varphi}_{1}^{h}, \ldots, \tilde{\varphi}_{m}^{h}\right)^{T} \in \mathbb{R}^{m}$ we find

$$
\langle\varphi, \tilde{\varphi}\rangle_{L_{h}^{2}(\Omega)}=\left\langle\varphi^{h}, \tilde{\varphi}^{h}\right\rangle_{W}=\left(\varphi^{h}\right)^{T} W \tilde{\varphi}^{h} .
$$

Thus, the discrete L^{2}-inner product can be written as a weighted inner product of the form (1.23). \diamond

Now we replace $\left(\mathbf{P}^{1}\right)$ by

$$
\begin{equation*}
\max _{u \in \mathbb{R}^{m}} \sum_{j=1}^{n}\left|\left\langle y_{j}, u\right\rangle_{W}\right|^{2} \quad \text { s.t. } \quad\|u\|_{W}=1 . \tag{W}
\end{equation*}
$$

Analogously to Section 1.1 we treat $\left(\overline{\mathbf{P}_{W}^{1}}\right)$ as an equality constrained optimization problem. The Lagrangian $\mathcal{L}: \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}$ for $\left(\mathbf{P}_{W}^{1}\right)$ is given by

$$
\mathcal{L}(u, \lambda)=\sum_{j=1}^{n}\left|\left\langle y_{j}, u\right\rangle_{W}\right|^{2}+\lambda\left(1-\|u\|_{W}^{2}\right) \quad \text { for }(u, \lambda) \in \mathbb{R}^{m} \times \mathbb{R} .
$$

Suppose that $u \in \mathbb{R}^{m}$ is a solution to $\left(\mathbf{P}_{W}^{1}\right)$. Then, a first-order necessary optimality condition is given by

$$
\nabla \mathcal{L}(u, \lambda) \stackrel{!}{=} 0 \quad \text { in } \mathbb{R}^{m} \times \mathbb{R} ;
$$

cf. [DR11, Satz 11.43]. We compute the gradient of \mathcal{L} with respect to u : Since W is symmetric, we derive

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial u_{i}}(u, \lambda)= & \frac{\partial}{\partial u_{i}}\left(\sum_{j=1}^{n}\left|\sum_{k=1}^{m} \sum_{\nu=1}^{m} Y_{j \nu}^{T} W_{\nu k} u_{k}\right|^{2}+\lambda\left(1-\sum_{k=1}^{m} \sum_{\nu=1}^{m} u_{\nu} W_{\nu k} u_{k}\right)\right) \\
= & 2 \sum_{j=1}^{n}\left(\sum_{k=1}^{m} \sum_{\nu=1}^{m} Y_{j \nu}^{T} W_{\nu k} u_{k}\right)\left(\sum_{\mu=1}^{m} Y_{j \mu}^{\top} W_{\mu i}\right) \\
& -\lambda\left(\sum_{\nu=1}^{m} u_{\nu} W_{\nu i}+\sum_{k=1}^{m} W_{i k} u_{k}\right) \\
= & 2 \sum_{k=1}^{m} \sum_{\nu=1}^{m} \sum_{\mu=1}^{m} W_{i \mu} \sum_{j=1}^{n} Y_{\mu j} Y_{j \nu}^{\top} W_{\nu k} u_{k}-2 \lambda\left(\sum_{k=1}^{m} W_{i k} u_{k}\right) \\
= & 2\left(W Y Y^{\top} W u-\lambda W u\right)_{i} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\nabla_{u} \mathcal{L}(u, \lambda)=2\left(W Y Y^{\top} W u-\lambda W u\right) \stackrel{!}{=} 0 \quad \text { in } \mathbb{R}^{m} . \tag{1.25}
\end{equation*}
$$

Equation (1.25) yields the generalized eigenvalue problem

$$
\begin{equation*}
(W Y)(W Y)^{T} u=\lambda W u \tag{1.26}
\end{equation*}
$$

Since W is symmetric and positive definite, W possesses an eigenvalue decomposition of the form $W=Q D Q^{\top}$, where $D=\operatorname{diag}\left(\eta_{1}, \ldots, \eta_{m}\right)$ contains the eigenvalues $\eta_{1} \geq \ldots \geq \eta_{m}>0$ of W and $Q \in \mathbb{R}^{m \times m}$ is an orthogonal matrix. We define

$$
W^{\alpha}=Q \operatorname{diag}\left(\eta_{1}^{\alpha}, \ldots, \eta_{m}^{\alpha}\right) Q^{T} \quad \text { for } \alpha \in \mathbb{R}
$$

Note that $\left(W^{\alpha}\right)^{-1}=W^{-\alpha}$ and $W^{\alpha+\beta}=W^{\alpha} W^{\beta}$ for $\alpha, \beta \in \mathbb{R}$; see Exercise 1.4). Moreover, we have

$$
\langle u, \tilde{u}\rangle_{W}=\left\langle W^{1 / 2} u, W^{1 / 2} \tilde{u}\right\rangle_{\mathbb{R}^{m}} \quad \text { for } u, \tilde{u} \in \mathbb{R}^{m}
$$

and $\|u\|_{W}=\left\|W^{1 / 2} u\right\|_{\mathbb{R}^{m}}$ for $u \in \mathbb{R}^{m}$.
Setting $\bar{u}=W^{1 / 2} u \in \mathbb{R}^{m}$ and $\bar{Y}=W^{1 / 2} Y \in \mathbb{R}^{m \times n}$ and multiplying (1.26) by $W^{-1 / 2}$ from the left we deduce the symmetric, $m \times m$ eigenvalue problem

$$
\begin{equation*}
\bar{Y} \bar{Y}^{\top} \bar{u}=\lambda \bar{u} \quad \text { in } \mathbb{R}^{m} . \tag{1.27a}
\end{equation*}
$$

From $\frac{\partial \mathcal{L}}{\partial \lambda}(u, \lambda) \stackrel{!}{=} 0$ in \mathbb{R} we infer the constraint $\|u\|_{W}=1$ that can be expressed as

$$
\begin{equation*}
\|\bar{u}\|_{\mathbb{R}^{m}}=1 \tag{1.27b}
\end{equation*}
$$

Thus, the first-order optimality conditions (1.27) for $\left(\overline{\mathbf{P}_{W}^{1}}\right)$ are - as for $\left(\mathbf{P}^{1}\right)$ (compare (1.7) an $m \times m$ eigenvalue problem, but the matrix Y as well as the vector u have to be weighted by the matrix $W^{1 / 2}$.

It can be shown (see Exersice 1.4.1)) that

$$
u_{1}=W^{-1 / 2} \bar{u}_{1}
$$

solves $\left(\mathbf{P}_{W}^{1}\right)$, where \bar{u}_{1} is an eigenvector of $\bar{Y} \bar{Y}^{\top}$ corresponding to the largest eigenvalue λ_{1} with $\left\|\bar{u}_{1}\right\|_{\mathbb{R}^{m}}=1$. Due to SVD the vector u_{1} can be also determined by solving the symmetric $n \times n$ eigenvalue problem

$$
\bar{Y}^{\top} \bar{Y} \bar{v}_{1}=\lambda_{1} \bar{v}_{1}
$$

where $\bar{Y}^{\top} \bar{Y}=Y^{\top} W Y$, and setting

$$
\begin{equation*}
u_{1}=W^{-1 / 2} \bar{u}_{1}=\frac{1}{\sqrt{\lambda_{1}}} W^{-1 / 2} \bar{Y} \bar{v}_{1}=\frac{1}{\sqrt{\lambda_{1}}} Y{\overline{V_{1}}}_{1} . \tag{1.28}
\end{equation*}
$$

As in Section 1.1 we can continue by looking at a second vector $u \in \mathbb{R}^{m}$ with $\left\langle u, u_{1}\right\rangle_{W}=0$ that maximizes $\sum_{j=1}^{n}\left|\left\langle y_{j}, u\right\rangle_{W}\right|^{2}$. Let us generalize Theorem 1.2 as follows.
Theorem 1.9. Let $Y \in \mathbb{R}^{m \times n}$ be a given matrix with rank $d \leq \min \{m, n\}, W$ a symmetric, positive definite matrix, $\bar{Y}=W^{1 / 2} Y$ and $\ell \in\{1, \ldots, d\}$. Further, let $\bar{Y}=\bar{U} \Sigma \bar{V}^{\top}$ be the singular value decomposition of \bar{Y}, where $\bar{U}=\left[\bar{u}_{1}, \ldots, \bar{u}_{m}\right] \in \mathbb{R}^{m \times m}, \bar{V}=\left[\bar{v}_{1}, \ldots, \bar{v}_{n}\right] \in \mathbb{R}^{n \times n}$ are orthogonal matrices and the matrix Σ has the form

$$
\bar{U}^{T} \bar{Y} \bar{V}=\left(\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right)=\Sigma \in \mathbb{R}^{m \times n}
$$

Then the solution to

$$
\max _{\tilde{u}_{1}, \ldots, \tilde{u}_{\ell} \in \mathbb{R}^{m}} \sum_{i=1}^{\ell} \sum_{j=1}^{n}\left|\left\langle y_{j}, \tilde{u}_{i}\right\rangle_{W}\right|^{2} \quad \text { s.t. } \quad\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle_{W}=\delta_{i j} \text { for } 1 \leq i, j \leq \ell \quad\left(\mathbf{P}_{W}^{\ell}\right)
$$

is given by the vectors $u_{i}=W^{-1 / 2} \bar{u}_{i}, i=1, \ldots, \ell$. Moreover,

$$
\begin{equation*}
\operatorname{argmax}\left(\mathbf{P}_{W}^{\ell}\right)=\sum_{i=1}^{\ell} \sigma_{i}^{2}=\sum_{i=1}^{\ell} \lambda_{i} . \tag{1.29}
\end{equation*}
$$

Proof. Using similar arguments as in the proof of Theorem 1.2 one can prove that $\left\{u_{i}\right\}_{i=1}^{\ell}$ solves $\overline{\left(\mathbf{P}_{W}^{\ell}\right) ;}$; see Exersice 1.4).
Remark 1.10. Due to SVD and $\bar{Y}^{\top} \bar{Y}=Y^{\top} W Y$ the POD basis $\left\{u_{i}\right\}_{i=1}^{\ell}$ of rank ℓ can be determined by the method of snapshots as follows: Solve the symmetric $n \times n$ eigenvalue problem

$$
Y^{\top} W Y \bar{v}_{i}=\lambda_{i} \bar{v}_{i} \quad \text { for } i=1, \ldots, \ell
$$

and set

$$
u_{i}=W^{-1 / 2} \bar{u}_{i}=\frac{1}{\sqrt{\lambda_{i}}} W^{-1 / 2}\left(\bar{Y} \bar{V}_{i}\right)=\frac{1}{\sqrt{\lambda_{i}}} W^{-1 / 2} W^{1 / 2} Y \bar{v}_{i}=\frac{1}{\sqrt{\lambda_{i}}} Y_{\bar{v}_{i}}
$$

for $i=1, \ldots, \ell$. Notice that

$$
\left\langle u_{i}, u_{j}\right\rangle_{W}=u_{i}^{T} W u_{j}=\frac{\delta_{i j} \lambda_{j}}{\sqrt{\lambda_{i} \lambda_{j}}} \quad \text { for } 1 \leq i, j \leq \ell
$$

For $m \gg n$ the method of snapshots turns out to be faster than computing the POD basis via (1.27). Notice that the matrix $W^{1 / 2}$ is also not required for the method of snapshots.

1.3 Application to time-dependent systems

For $T>0$ we consider the semi-linear initial value problem

$$
\begin{align*}
& \dot{y}(t)=A y(t)+f(t, y(t)) \quad \text { for } t \in(0, T], \tag{1.30a}\\
& y(0)=y_{0} \tag{1.30b}
\end{align*}
$$

where $y_{0} \in \mathbb{R}^{m}$ is a chosen initial condition, $A \in \mathbb{R}^{m \times m}$ is a given matrix, $f:[0, T] \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is continuous in both arguments and locally Lipschitz-continuous with respect to the second argument. It is well known that there exists a time $T_{0} \in(, T]$ such that (1.30) has a unique (classical) solution $y \in C^{1}\left(0, T_{\circ} ; \mathbb{R}^{m}\right) \cap C\left(\left[0, T_{0}\right] ; \mathbb{R}^{m}\right)$ given by the implicit integral representation

$$
y(t)=e^{t A} y_{0}+\int_{0}^{t} e^{(t-s) A} f(s, y(s)) \mathrm{d} s, \quad t \in\left[0, T_{0}\right]
$$

with $e^{t A}=\sum_{i=0}^{\infty} t^{n} A^{n} /(n!)$ (local existence in time; cf. [DR11, Satz 16.5]). Here we suppose that we can choose $T_{\circ}=T$ (global existence in time; cf. [DR11, Satz 16.1]). Let $0 \leq t_{1}<t_{2}<\ldots<$ $t_{n} \leq T$ be a given time grid in the interval $[0, T]$. For simplicity of the presentation, the time grid is assumed to be equidistant with step-size $\Delta t=T /(n-1)$, i.e., $t_{j}=(j-1) \Delta t$. We suppose that we know the solution to (1.30) at the given time instances $t_{j}, j \in\{1, \ldots, n\}$. Our goal is to determine a POD basis of rank $\ell \leq n$ that desribes the ensemble

$$
y_{j}=y\left(t_{j}\right)=e^{t_{j} A} y_{0}+\int_{0}^{t_{j}} e^{\left(t_{j}-s\right) A} f(s, y(s)) \mathrm{d} s, \quad j=1, \ldots, n,
$$

as well as possible with respect to the weighted inner product:

$$
\min _{\tilde{u}_{1}, \ldots, \tilde{u}_{\ell} \in \mathbb{R}^{m}} \sum_{j=1}^{n} \alpha_{j}\left\|y_{j}-\sum_{i=1}^{\ell}\left\langle y_{j}, \tilde{u}_{i}\right\rangle_{W} \tilde{u}_{i}\right\|_{W}^{2} \quad \text { s.t. } \quad\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle_{W}=\delta_{i j} \text { for } 1 \leq i, j \leq \ell, \quad\left(\hat{\mathbf{P}}_{W}^{n, \ell}\right)
$$

where the α_{j} 's denote non-negative weights which will be specified later on. Note that for $\alpha_{j}=1$ for $j=1, \ldots, n$ and $W=I$ problem $\binom{\hat{\mathbf{P}}_{W}^{n, \ell l}}{)}$ coincides with (1.20).

Example 1.11. Let us consider the following one-dimensional heat equation:

$$
\begin{align*}
\theta_{t}(t, x) & =\theta_{x x}(t, x) & & \text { for all }(t, x) \in Q=(0, T) \times \Omega \tag{1.31a}\\
\theta_{x}(t, 0)=\theta_{x}(t, 1) & =0 & & \text { for all } t \in(0, T) \tag{1.31b}\\
\theta(0, x) & =\theta_{0}(x) & & \text { for all } x \in \Omega=(0,1) \subseteq \mathbb{R} \tag{1.31c}
\end{align*}
$$

where $\theta_{0} \in C(\bar{\Omega})$ is a given initial condition. To solve (1.31) numerically we apply a classical finite difference approximation for the spatial variable x. In Example 1.8 we have introduced the spatial grid $\left\{x_{i}\right\}_{i=1}^{m}$ in the interval $[0,1]$. Let us denote by $y_{i}:[0, T] \rightarrow \mathbb{R}$ the numerical approximation for $\theta\left(\cdot, x_{i}\right)$ for $i=1, \ldots, m$. The second partial derivative $\theta_{x x}$ in 1.31a) and the boundary conditions (1.31b) are discretized by centered difference quotients of second-order so that we obtain the following ordinary differential equations for the time-dependent functions y_{i} :

$$
\left\{\begin{align*}
\dot{y}_{1}(t) & =\frac{-2 y_{1}(t)+2 y_{2}(t)}{h^{2}}, \tag{1.32a}\\
\dot{y}_{i}(t) & =\frac{y_{i-1}(t)-2 y_{i}(t)+y_{i+1}(t)}{h^{2}}, \quad i=2, \ldots, m-1 \\
\dot{y}_{m}(t) & =\frac{-2 y_{m}(t)+2 y_{m-1}(t)}{h^{2}}
\end{align*}\right.
$$

for $t \in(0, T]$. From (1.31c) we infer the initial condion

$$
\begin{equation*}
y_{i}(0)=\theta_{0}\left(x_{i}\right), \quad i=1, \ldots, m . \tag{1.32b}
\end{equation*}
$$

Introducing the matrix

$$
A=\frac{1}{h^{2}}\left(\begin{array}{ccccc}
-2 & 2 & & & 0 \\
1 & -2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 & 1 \\
0 & & & 2 & -2
\end{array}\right) \in \mathbb{R}^{m \times m}
$$

and the vectors

$$
y(t)=\left(\begin{array}{c}
y_{1}(t) \\
\vdots \\
y_{m}(t)
\end{array}\right) \text { for } t \in[0, T], \quad y_{0}=\left(\begin{array}{c}
\theta_{0}\left(x_{1}\right) \\
\vdots \\
\theta_{0}\left(x_{m}\right)
\end{array}\right) \in \mathbb{R}^{m}
$$

we can express (1.32) in the form

$$
\begin{align*}
& \dot{y}(t)=A y(t) \quad \text { for } t \in(0, T], \tag{1.33}\\
& y(0)=y_{0}
\end{align*}
$$

Setting $f \equiv 0$ the linear initial-value problem coincides with (1.30). Note that now the vector $y(t)$, $t \in[0, T]$, represents a function in Ω evaluated at m grid points. Therefore, we should supply \mathbb{R}^{m} by a weighted inner product representing a discretized inner product in an appropriate function space. Here we choose the inner product introduced in (1.24); see Example 1.8. Next we choose a time grid $\left\{t_{j}\right\}_{j=1}^{n}$ in the interval $[0, T]$ and define $y_{j}=y\left(t_{j}\right)$ for $j=1, \ldots, n$. If we are interested in finding a POD basis of rank $\ell \leq n$ that desribes the ensemble $\left\{y_{j}\right\}_{j=1}^{n}$ as well as possible, we end up with $\left(\begin{array}{|c|}\mathbf{P}_{j}^{n, \ell} \\ j\end{array}\right.$.

To solve $\binom{\hat{\mathbf{P}}_{\hat{W}}^{n, l}}{W}$ we apply the techniques used in Sections 1.1 and 1.1 , i.e., we use the Lagrangian framework. Thus, we introduce the Lagrange functional

$$
\mathcal{L}: \underbrace{\mathbb{R}^{m} \times \ldots \times \mathbb{R}^{m}}_{\ell-\text { times }} \times \mathbb{R}^{\ell \times \ell} \rightarrow \mathbb{R}
$$

by

$$
\mathcal{L}\left(u_{1}, \ldots, u_{\ell}, \Lambda\right)=\sum_{j=1}^{n} \alpha_{j}\left\|y_{j}-\sum_{i=1}^{\ell}\left\langle y_{j}, u_{i}\right\rangle_{W} u_{i}\right\|_{W}^{2}+\sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \wedge_{i j}\left(1-\left\langle u_{i}, u_{j}\right\rangle_{W}\right)
$$

for $u_{1}, \ldots, u_{\ell} \in \mathbb{R}^{m}$ and $\Lambda \in \mathbb{R}^{\ell \times \ell}$ with elements $\Lambda_{i j}, 1 \leq i, j \leq \ell$. It turns out that the solution to $\left(\hat{\mathbf{P}}_{W}^{n, \ell}\right)$ is given by the first-order necessary optimality condions

$$
\begin{equation*}
\nabla_{u_{i}} \mathcal{L}\left(u_{1}, \ldots, u_{\ell}, \Lambda\right) \stackrel{!}{=} 0 \quad \text { in } \mathbb{R}^{m}, 1 \leq i \leq \ell \tag{1.34a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle u_{i}, u_{j}\right\rangle_{W} \stackrel{!}{=} \delta_{i j}, \quad 1 \leq i, j \leq \ell . \tag{1.34b}
\end{equation*}
$$

From (1.34a) we derive

$$
\begin{equation*}
Y D Y^{\top} W u_{i}=\lambda_{i} u_{i} \quad \text { for } i=1, \ldots, \ell \tag{1.35}
\end{equation*}
$$

where $D=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n \times n}$. Inserting $u_{i}=W^{-1 / 2} \bar{u}_{i}$ in (1.35) and multiplying (1.35) by $W^{1 / 2}$ from the left yield

$$
\begin{equation*}
W^{1 / 2} Y D Y^{\top} W^{1 / 2} \bar{u}_{i}=\lambda_{i} \bar{u}_{i} . \tag{1.36a}
\end{equation*}
$$

From (1.34b) we find

$$
\begin{equation*}
\left\langle\bar{u}_{i}, \bar{u}_{j}\right\rangle_{\mathbb{R}^{m}}=\bar{u}_{i}^{T} \bar{u}_{j}=u_{i}^{T} W u_{j}=\left\langle u_{i}, u_{j}\right\rangle_{W}=\delta_{i j}, \quad 1 \leq i, j \leq \ell . \tag{1.36b}
\end{equation*}
$$

Setting $\bar{Y}=W^{1 / 2} Y D^{1 / 2} \in \mathbb{R}^{m \times n}$ and using $W^{T}=W$ as well as $D^{T}=D$ we infer from (1.36) that the solution $\left\{u_{i}\right\}_{i=1}^{\ell}$ to $\left(\begin{array}{|c|c|c|}\hat{\mathbf{P}}_{w}^{n, \ell}\end{array}\right)$ is given by the symmetric $m \times m$ eigenvalue problem

$$
\bar{Y} \bar{Y}^{\top} \bar{u}_{i}=\lambda_{i} \bar{u}_{i}, 1 \leq i \leq \ell \quad \text { and } \quad\left\langle\bar{u}_{i}, \bar{u}_{j}\right\rangle_{\mathbb{R}^{m}}=\delta_{i j}, 1 \leq i, j \leq \ell .
$$

Note that

$$
\bar{Y}^{\top} \bar{Y}=D^{1 / 2} Y^{\top} W Y D^{1 / 2} \in \mathbb{R}^{n \times n} .
$$

Thus, the POD basis of rank ℓ can also be computed by the methods of snapshots as follows: First solve the symmetric $n \times n$ eigenvalue problem

$$
\bar{Y}^{\top} \bar{Y}_{\bar{v}_{i}}=\lambda_{i} \bar{v}_{i}, 1 \leq i \leq \ell \quad \text { and } \quad\left\langle\bar{v}_{i}, \bar{v}_{j}\right\rangle_{\mathbb{R}^{n}}=\delta_{i j}, 1 \leq i, j \leq \ell .
$$

Then we set (by SVD)

$$
u_{i}=W^{-1 / 2} \bar{u}_{i}=\frac{1}{\sqrt{\lambda_{i}}} W^{-1 / 2} \bar{Y}_{\bar{v}_{i}}=\frac{1}{\sqrt{\lambda_{i}}} Y D^{1 / 2} \bar{v}_{i}, \quad 1 \leq i \leq \ell ;
$$

compare (1.28).
Note that

$$
\left\langle u_{i}, u_{j}\right\rangle_{W}=u_{i}^{T} W u_{j}=\frac{1}{\sqrt{\lambda_{i} \lambda_{j}}} \bar{v}_{i}^{\top} \underbrace{D^{1 / 2} Y^{\top} W Y D^{1 / 2}}_{=\bar{Y}^{\top} \bar{Y}} \bar{v}_{j}=\frac{\lambda_{i}}{\sqrt{\lambda_{i} \lambda_{j}}} \bar{v}_{i}^{\top} \bar{v}_{j}=\frac{\lambda_{i} \delta_{i j}}{\sqrt{\lambda_{i} \lambda_{j}}}
$$

for $1 \leq i, j \leq \ell$, i.e., the POD basis vectors u_{1}, \ldots, u_{ℓ} are orthonormal in \mathbb{R}^{m} with respect to the inner product $\langle\cdot, \cdot\rangle_{W}$.

Of course, the snapshot ensemble $\left\{y_{j}\right\}_{j=1}^{n}$ for $\left(\hat{\mathbf{P}}_{\dot{W}}^{n, l}\right)$ and therefore the snapshot set span $\left\{y_{1}, \ldots, y_{n}\right\}$ depend on the chosen time instances $\left\{t_{j}\right\}_{j=1}^{n}$. Consequently, the POD basis vectors $\left\{u_{i}\right\}_{i=1}^{\ell}$ and the corresponding eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{\ell}$ depend also on the time instances, i.e.,

$$
u_{i}=u_{i}^{n} \quad \text { and } \quad \lambda_{i}=\lambda_{i}^{n}, \quad 1 \leq i \leq \ell .
$$

Moreover, we have not discussed so far what is the motivation to introduce the non-negative weights $\left\{\alpha_{j}\right\}_{j=1}^{n}$ in $\left(\frac{\hat{\mathbf{P}}_{W}^{n, \ell}}{W}\right)$. For this reason we proceed by investigating the following two questions:

- How to choose good time instances for the snapshots?
- What are appropriate non-negative weights $\left\{\alpha_{j}\right\}_{j=1}^{n}$?

To address these two questions we will introduce a continuous version of POD. Let $y:[0, T] \rightarrow \mathbb{R}^{m}$ be the unique solution to 1.30 . If we are interested to find a POD basis of rank ℓ that describes the whole trajectory $\{y(t) \mid t \in[0, T]\} \subset \mathbb{R}^{m}$ as good as possible we have to consider the following minimization problem

$$
\begin{align*}
& \min _{\tilde{u}_{1}, \ldots, \tilde{u}_{\ell} \in \mathbb{R}^{m}} \int_{0}^{T}\left\|y(t)-\sum_{i=1}^{\ell}\left\langle y(t), \tilde{u}_{i}\right\rangle_{W} \tilde{u}_{i}\right\|_{W}^{2} \mathrm{~d} t \tag{P}\\
& \text { s.t. }\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle_{W}=\delta_{i j}, 1 \leq i, j \leq \ell,
\end{align*}
$$

To solve $\left(\hat{\mathbf{P}}_{W}^{\ell}\right)$ we use similar arguments as in Sections 1.1 and 1.2 . For $\ell=1$ we obtain instead of $\left(\hat{\mathbf{P}}_{W}^{\ell}\right)$ the minimization problem

$$
\begin{equation*}
\min _{\tilde{u} \in \mathbb{R}^{m}} \int_{0}^{T}\left\|y(t)-\langle y(t), \tilde{u}\rangle_{W} \tilde{u}\right\|_{W}^{2} \mathrm{~d} t \quad \text { s.t. } \quad\|\tilde{u}\|_{W}^{2}=1 \tag{1.37}
\end{equation*}
$$

Suppose that $\left\{\tilde{u}_{i}\right\}_{i=2}^{m}$ are chosen in such a way that $\left\{\tilde{u}, \tilde{u}_{2}, \ldots, \tilde{u}_{m}\right\}$ is an orthonormal basis in \mathbb{R}^{m} with respect to the inner product $\langle\cdot, \cdot\rangle_{W}$. Then we have

$$
y(t)=\langle y(t), \tilde{u}\rangle_{W} \tilde{u}+\sum_{i=2}^{m}\left\langle y(t), \tilde{u}_{i}\right\rangle_{W} \tilde{u}_{i} \quad \text { for all } t \in[0, T]
$$

Thus,

$$
\begin{aligned}
\int_{0}^{T}\left\|y(t)-\langle y(t), \tilde{u}\rangle_{W} \tilde{u}\right\|_{W}^{2} \mathrm{~d} t & =\int_{0}^{T}\left\|\sum_{i=2}^{m}\langle y(t), \tilde{u}\rangle_{W} \tilde{u}_{i}\right\|_{W}^{2} \mathrm{~d} t \\
& =\sum_{i=2}^{m} \int_{0}^{T}\left|\left\langle y(t), \tilde{u}_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} t
\end{aligned}
$$

we conclude that (1.37) is equivalent with the following maximization problem

$$
\begin{equation*}
\max _{\tilde{u} \in \mathbb{R}^{m}} \int_{0}^{T}\left|\langle y(t), \tilde{u}\rangle_{W}\right|^{2} \mathrm{~d} t \quad \text { s.t. } \quad\|\tilde{u}\|_{W}^{2}=1 \tag{1.38}
\end{equation*}
$$

The Lagrange functional $\mathcal{L}: \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}$ associated with (1.38) is given by

$$
\mathcal{L}(u, \lambda)=\int_{0}^{T}\left|\langle y(t), u\rangle_{W}\right|^{2} \mathrm{~d} t+\lambda\left(1-\|u\|_{W}^{2}\right) \quad \text { for }(u, \lambda) \in \mathbb{R}^{m} \times \mathbb{R}
$$

First-order necessary optimality conditions are given by

$$
\nabla \mathcal{L}(u, \lambda) \stackrel{!}{=} 0 \quad \text { in } \mathbb{R}^{m} \times \mathbb{R}
$$

Therefore, we compute the partial derivative of \mathcal{L} with respect to the i th component u_{i} of the vector u :

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial u_{i}}(u, \lambda) & =\frac{\partial}{\partial u_{i}}\left(\int_{0}^{T}\left|\sum_{k=1}^{m} \sum_{\nu=1}^{m} y_{k}(t) W_{k \nu} u_{\nu}\right|^{2} \mathrm{~d} t+\lambda\left(1-\sum_{k=1}^{m} \sum_{\nu=1}^{m} u_{k} W_{k \nu} u_{\nu}\right)\right) \\
& =2 \int_{0}^{T}\left(\sum_{k=1}^{m} \sum_{\nu=1}^{m} y_{k}(t) W_{k \nu} u_{\nu}\right) \sum_{\mu=1}^{m} y_{\mu}(t) W_{\mu i} \mathrm{~d} t-2 \lambda \sum_{k=1}^{m} W_{i k} u_{k} \\
& =2\left(\int_{0}^{T}\langle y(t), u\rangle_{W} W y(t) \mathrm{d} t-\lambda W u\right)_{i}
\end{aligned}
$$

for $i \in\{1, \ldots, m\}$. Thus,

$$
\nabla_{u} \mathcal{L}(u, \lambda)=2\left(\int_{0}^{T}\langle y(t), u\rangle_{W} W y(t) \mathrm{d} t-\lambda W u\right) \stackrel{!}{=} 0 \quad \text { in } \mathbb{R}^{m},
$$

which gives

$$
\begin{equation*}
\int_{0}^{T}\langle y(t), u\rangle_{W} W y(t) \mathrm{d} t=\lambda W u \quad \text { in } \mathbb{R}^{m} . \tag{1.39}
\end{equation*}
$$

Multiplying (1.39) by W^{-1} from the left yields

$$
\begin{equation*}
\int_{0}^{T}\langle y(t), u\rangle_{W} y(t) d t=\lambda u \quad \text { in } \mathbb{R}^{m} \tag{1.40}
\end{equation*}
$$

We define the operator $\mathcal{R}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ as

$$
\begin{equation*}
\mathcal{R} u=\int_{0}^{T}\langle y(t), u\rangle_{W} y(t) \mathrm{d} t \quad \text { for } u \in \mathbb{R}^{m} \tag{1.41}
\end{equation*}
$$

Lemma 1.12. The operator \mathcal{R} is linear and bounded (i.e., continuous). Moreover,

1) \mathcal{R} is non-negative:

$$
\langle\mathcal{R} u, u\rangle_{W} \geq 0 \quad \text { for all } u \in \mathbb{R}^{m} .
$$

2) \mathcal{R} is self-adjoint (or symmetric):

$$
\langle\mathcal{R} u, \tilde{u}\rangle_{W}=\langle u, \mathcal{R} \tilde{u}\rangle_{W} \quad \text { for all } u, \tilde{u} \in \mathbb{R}^{m} \text {. }
$$

Proof. For arbitrary $u, \tilde{u} \in \mathbb{R}^{m}$ and $\alpha, \tilde{\alpha} \in \mathbb{R}$ we have

$$
\begin{aligned}
\mathcal{R}(\alpha u+\tilde{\alpha} \tilde{u}) & =\int_{0}^{T}\langle y(t), \alpha u+\tilde{\alpha} \tilde{u}\rangle_{W} y(t) \mathrm{d} t \\
& =\int_{0}^{T}\left(\alpha\langle y(t), u\rangle_{W}+\tilde{\alpha}\langle y(t), \tilde{u}\rangle_{W}\right) y(t) \mathrm{d} t \\
& =\alpha \int_{0}^{T}\langle y(t), u\rangle_{W} y(t) \mathrm{d} t+\tilde{\alpha} \int_{0}^{T}\langle y(t), \tilde{u}\rangle_{W} y(t) \mathrm{d} t=\alpha \mathcal{R} u+\tilde{\alpha} \mathcal{R} \tilde{u},
\end{aligned}
$$

so that \mathcal{R} is linear. From the Cauchy-Schwarz inequality (cf. [DR11, Satz 5.49]) we derive

$$
\begin{aligned}
\|\mathcal{R} u\|_{W} & \leq \int_{0}^{T}\left\|\langle y(t), u\rangle_{W} y(t)\right\|_{W} \mathrm{~d} t=\int_{0}^{T}\left|\langle y(t), u\rangle_{W}\right|\|y(t)\|_{W} \mathrm{~d} t \\
& \leq \int_{0}^{T}\|y(t)\|_{W}^{2}\|u\|_{W} \mathrm{~d} t=\left(\int_{0}^{T}\|y(t)\|_{W}^{2} \mathrm{~d} t\right)\|u\|_{W}=\|y\|_{L^{2}\left(0, T ; \mathbb{R}^{m}\right)}^{2}\|u\|_{W}
\end{aligned}
$$

for an arbitrary $u \in \mathbb{R}^{m}$. Since $y \in C\left([0, T] ; \mathbb{R}^{m}\right) \subset L^{2}\left(0, T ; \mathbb{R}^{m}\right)$ holds, the norm $\|y\|_{L^{2}\left(0, T ; \mathbb{R}^{m}\right)}$ is bounded. Therefore, \mathcal{R} is bounded. Since

$$
\begin{aligned}
\langle\mathcal{R} u, u\rangle_{W} & =\left(\int_{0}^{T}\langle y(t), u\rangle_{W} y(t) \mathrm{d} t\right)^{T} W u=\int_{0}^{T}\langle y(t), u\rangle_{W} y(t)^{T} W u \mathrm{~d} t \\
& =\int_{0}^{T}\left|\langle y(t), u\rangle_{W}\right|^{2} \mathrm{~d} t \geq 0
\end{aligned}
$$

for all $u \in \mathbb{R}^{m}$ holds, \mathcal{R} is non-negative. Finally, we infer from

$$
\begin{aligned}
\langle\mathcal{R} u, \tilde{u}\rangle_{W} & =\int_{0}^{T}\langle y(t), u\rangle_{W}\langle y(t), \tilde{u}\rangle_{W} \mathrm{~d} t=\left\langle\int_{0}^{T}\langle y(t), \tilde{u}\rangle_{W} y(t) \mathrm{d} t, u\right\rangle_{W} \\
& =\langle\mathcal{R} \tilde{,}, u\rangle_{W}=\langle u, \mathcal{R} \tilde{u}\rangle_{W}
\end{aligned}
$$

for all $u, \tilde{u} \in \mathbb{R}^{m}$ that \mathcal{R} is self-adjoint.
Utilizing the operator \mathcal{R} we can write (1.40) as the eigenvalue problem

$$
\mathcal{R} u=\lambda u \quad \text { in } \mathbb{R}^{m} .
$$

It follows from Lemma 1.12 that \mathcal{R} possesses eigenvectors $\left\{u_{i}\right\}_{i=1}^{m}$ and associated real eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{m}$ such that

$$
\begin{equation*}
\mathcal{R} u_{i}=\lambda_{i} u_{i} \text { for } 1 \leq i \leq m \quad \text { and } \quad \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{m} \geq 0 . \tag{1.42}
\end{equation*}
$$

Note that

$$
\int_{0}^{T}\left|\left\langle y(t), u_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} t=\int_{0}^{T}\left\langle\left\langle y(t), u_{i}\right\rangle_{W} y(t), u_{i}\right\rangle_{W} \mathrm{~d} t=\left\langle\mathcal{R} u_{i}, u_{i}\right\rangle_{W}=\lambda_{i}\left\|u_{i}\right\|_{W}^{2}=\lambda_{i}
$$

for $i \in\{1, \ldots, m\}$ so that u_{1} solves (1.37).
Proceeding as in Sections 1.1 and 1.2 we obtain the following result.
Theorem 1.13. Let $y \in C\left([0, T] ; \mathbb{R}^{m}\right)$ be the unique solution to (1.30). Then the POD basis of rank ℓ solving the minimization problem $\left(\hat{\mathbf{P}}_{w}^{\ell}\right)$ is given by the eigenvectors $\left\{u_{i}\right\}_{i=1}^{\ell}$ of \mathcal{R} corresponding to the ℓ largest eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{\ell}$.

Remark 1.14 (Methods of snapshots). Let us introduce the linear and bounded operator \mathcal{Y} : $L^{2}(0, T) \rightarrow \mathbb{R}^{m}$ by

$$
\mathcal{Y} v=\int_{0}^{T} v(t) y(t) \mathrm{d} t \quad \text { for } v \in L^{2}(0, T) .
$$

The adjoint $\mathcal{Y}^{\star}: \mathbb{R}^{m} \rightarrow L^{2}(0, T)$ satisfying

$$
\left\langle\mathcal{Y}^{\star} u, v\right\rangle_{L^{2}(0, T)}=\langle u, \mathcal{Y} v\rangle_{W} \quad \text { for all }(u, v) \in \mathbb{R}^{m} \times L^{2}(0, T)
$$

is given as

$$
\left(\mathcal{Y}^{\star} u\right)(t)=\langle u, y(t)\rangle_{W} \quad \text { for } u \in \mathbb{R}^{m} \text { and almost all } t \in[0, T] .
$$

Then we have

$$
\mathcal{Y} \mathcal{Y}^{\star} u=\int_{0}^{T}\langle u, y(t)\rangle_{W} y(t) \mathrm{d} t=\int_{0}^{T}\langle y(t), u\rangle_{W} y(t) \mathrm{d} t=\mathcal{R} u
$$

for all $u \in \mathbb{R}^{m}$, i.e., $\mathcal{R}=\mathcal{Y} \mathcal{Y}^{*}$ holds. Furthermore,

$$
\left(\mathcal{Y}^{\star} \mathcal{Y} v\right)(t)=\left\langle\int_{0}^{T} v(s) y(s) \mathrm{d} s, y(t)\right\rangle_{W}=\int_{0}^{T}\langle y(s), y(t)\rangle_{W} v(s) \mathrm{d} s=:(\mathcal{K} v)(t)
$$

for all $v \in L^{2}(0, T)$ and almost all $t \in[0, T]$. Thus, $\mathcal{K}=\mathcal{Y}^{\star} \mathcal{Y}$. It can be shown that the operator \mathcal{K} is linear, bounded, non-negative and self-adjoint. Moreover, \mathcal{K} is compact. Therefore, the POD basis can also be computed as follows: Solve

$$
\begin{equation*}
\mathcal{K} v_{i}=\lambda_{i} v_{i} \text { for } 1 \leq i \leq \ell, \quad \lambda_{1} \geq \ldots \geq \lambda_{\ell}>0, \quad \int_{0}^{T} v_{i}(t) v_{j}(t) \mathrm{d} t=\delta_{i j} \tag{1.43}
\end{equation*}
$$

and set

$$
u_{i}=\frac{1}{\sqrt{\lambda_{i}}} \mathcal{Y} v_{i}=\frac{1}{\sqrt{\lambda_{i}}} \int_{0}^{T} v_{i}(t) y(t) \mathrm{d} t \quad \text { for } i=1, \ldots, \ell .
$$

Note that (1.43) is a symmetric eigenvalue problem in the infinite-dimensional function space $L^{2}(0, T)$. For the functional analytic theory we refer, e.g., to [RS80].

Let us turn back to the optimality conditions (1.35). For any $u \in \mathbb{R}^{m}$ and $i \in\{1, \ldots, m\}$ we derive

$$
\begin{aligned}
\left(Y D Y^{\top} W u\right)_{i} & =\sum_{\nu=1}^{m} \sum_{j=1}^{m} \sum_{k=1}^{m} \alpha_{j} Y_{i j} Y_{k j} W_{k \nu} u_{\nu}=\sum_{j=1}^{n} \alpha_{j} Y_{i j}\left\langle y_{j}, u\right\rangle_{W} \\
& =\sum_{j=1}^{n} \alpha_{j}\left\langle y_{j}, u\right\rangle_{W}\left(y_{j}\right)_{i},
\end{aligned}
$$

where $\left(y_{j}\right)_{i}$ stands for the i th component of the vector $y_{j} \in \mathbb{R}^{m}$. Thus,

$$
Y D Y^{\top} W u=\sum_{j=1}^{n} \alpha_{j}\left\langle y_{j}, u\right\rangle_{W} y_{j}=: \mathcal{R}^{n} u
$$

Note that the operator $\mathcal{R}^{n}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is linear and bounded. Moreover,

$$
\left\langle\mathcal{R}^{n} u, u\right\rangle_{W}=\left\langle\sum_{j=1}^{n} \alpha_{j}\left\langle y_{j}, u\right\rangle_{W} y_{j}, u\right\rangle_{W}=\sum_{j=1}^{n} \alpha_{j}\left|\left\langle y_{j}, u\right\rangle_{W}\right|^{2} \geq 0
$$

holds for all $u \in \mathbb{R}^{m}$ so that \mathcal{R}^{n} is non-negative. Further,

$$
\begin{aligned}
\left\langle\mathcal{R}^{n} u, \tilde{u}\right\rangle_{W} & =\left\langle\sum_{j=1}^{n} \alpha_{j}\left\langle y_{j}, u\right\rangle_{W} y_{j}, \tilde{u}\right\rangle_{W}=\sum_{j=1}^{n} \alpha_{j}\left\langle y_{j}, u\right\rangle_{W}\left\langle y_{j}, \tilde{u}\right\rangle_{W} \\
& =\left\langle\sum_{j=1}^{n} \alpha_{j}\left\langle y_{j}, \tilde{u}\right\rangle_{W} y_{j}, u\right\rangle_{W}=\left\langle\mathcal{R}^{n} \tilde{u}, u\right\rangle_{W}=\left\langle u, \mathcal{R}^{n} \tilde{u}\right\rangle_{W}
\end{aligned}
$$

for all $u, \tilde{u} \in \mathbb{R}^{m}$, i.e., \mathcal{R}^{n} is self-adjoint. Therefore, \mathcal{R}^{n} has the same properties as the operator \mathcal{R}. Summarizing, we have

$$
\begin{align*}
\mathcal{R}^{n} u_{i}^{n} & =\lambda_{i}^{n} u_{i}^{n}, & & \lambda_{1}^{n} \geq \ldots \lambda_{l}^{n} \geq \ldots \lambda_{d(n)}^{n}>\lambda_{d(n)+1}^{n}=\ldots=\lambda_{m}^{n}=0 \tag{1.44a}\\
\mathcal{R} u_{i} & =\lambda_{i} u_{i}, & & \lambda_{1} \geq \ldots \lambda_{l} \geq \ldots \lambda_{d}>\lambda_{d+1}=\ldots=\lambda_{m}=0 \tag{1.44b}
\end{align*}
$$

Let us note that

$$
\begin{equation*}
\int_{0}^{T}\|y(t)\|_{W}^{2} \mathrm{~d} t=\sum_{i=1}^{d} \lambda_{i}=\sum_{i=1}^{m} \lambda_{i} \tag{1.45}
\end{equation*}
$$

In fact,

$$
\mathcal{R} u_{i}=\int_{0}^{T}\left\langle y(t), u_{i}\right\rangle_{W} y(t) \mathrm{d} t \quad \text { for every } i \in\{1, \ldots, m\}
$$

Taking the inner product with u_{i}, using (1.44b and summing over i we arrive at

$$
\sum_{i=1}^{d} \int_{0}^{T}\left|\left\langle y(t), u_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} t=\sum_{i=1}^{d}\left\langle\mathcal{R} u_{i}, u_{i}\right\rangle_{W}=\sum_{i=1}^{d} \lambda_{i}=\sum_{i=1}^{m} \lambda_{i}
$$

Expanding $y(t) \in \mathbb{R}^{m}$ in terms of $\left\{u_{i}\right\}_{i=1}^{m}$ we have

$$
y(t)=\sum_{i=1}^{m}\left\langle y(t), u_{i}\right\rangle_{W} u_{i}
$$

and hence

$$
\int_{0}^{T}\|y(t)\|_{W}^{2} \mathrm{~d} t=\sum_{i=1}^{m} \int_{0}^{T}\left|\left\langle y(t), u_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} t=\sum_{i=1}^{m} \lambda_{i}
$$

which is (1.45). Analogously, we obtain

$$
\begin{equation*}
\sum_{j=1}^{n} \alpha_{j}\left\|y\left(t_{j}\right)\right\|_{W}^{2}=\sum_{i=1}^{d(n)} \lambda_{i}^{n}=\sum_{i=1}^{m} \lambda_{i}^{n} \quad \text { for every } n \in \mathbb{N} . \tag{1.46}
\end{equation*}
$$

For convenience we do not indicate the dependence of α_{j} on n. Let $y \in C\left([0, T] ; \mathbb{R}^{m}\right)$ hold. To ensure

$$
\begin{equation*}
\sum_{j=1}^{n} \alpha_{j}\left\|y\left(t_{j}\right)\right\|_{W}^{2} \rightarrow \int_{0}^{T}\|y(t)\|_{W}^{2} \mathrm{~d} t \quad \text { as } \Delta t \rightarrow 0 \tag{1.47}
\end{equation*}
$$

we have to choose the α_{j} 's appropriately. Here we take the trapezoidal weights

$$
\begin{equation*}
\alpha_{1}=\frac{\Delta t}{2}, \alpha_{j}=\Delta t \text { for } 2 \leq j \leq n-1, \alpha_{n}=\frac{\Delta t}{2} . \tag{1.48}
\end{equation*}
$$

Suppose that we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\mathcal{R}^{n}-\mathcal{R}\right\|_{L\left(\mathbb{R}^{m}\right)}=\lim _{n \rightarrow \infty} \sup _{\|u\|_{W}=1}\left\|\mathcal{R}^{n} u-\mathcal{R} u\right\|_{W}=0 \tag{1.49}
\end{equation*}
$$

provided $y \in C^{1}\left([0, T] ; \mathbb{R}^{m}\right)$ is satisfied. In (1.49) $L\left(\mathbb{R}^{m}\right)$ denotes the Banach space of all linear and bounded operators mapping from \mathbb{R}^{m} into itself. Combining (1.47) with (1.45) and (1.46) we find

$$
\begin{equation*}
\sum_{i=1}^{m} \lambda_{i}^{n} \rightarrow \sum_{i=1}^{m} \lambda_{i} \quad \text { as } n \rightarrow \infty \tag{1.50}
\end{equation*}
$$

Now choose and fix

$$
\begin{equation*}
\ell \text { such that } \lambda_{\ell} \neq \lambda_{\ell+1} . \tag{1.51}
\end{equation*}
$$

Then by spectral analysis of compact operators ($\mathbb{K a 8 0}, \mathrm{pp} .212-214]$) and (1.49) it follows that

$$
\begin{equation*}
\lambda_{i}^{n} \rightarrow \lambda_{i} \quad \text { for } 1 \leq i \leq \ell \text { as } n \rightarrow \infty . \tag{1.52}
\end{equation*}
$$

Combining (1.50) and (1.52) there exists $\bar{n} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{i=\ell+1}^{m} \lambda_{i}^{n} \leq 2 \sum_{i=\ell+1}^{m} \lambda_{i} \quad \text { for all } n \geq \bar{n}, \tag{1.53}
\end{equation*}
$$

if $\sum_{i=\ell+1}^{m} \lambda_{i} \neq 0$. Moreover, for ℓ as above, \bar{n} can also be chosen such that

$$
\begin{equation*}
\sum_{i=\ell+1}^{d(n)}\left|\left\langle y_{0}, u_{i}^{n}\right\rangle_{W}\right|^{2} \leq 2 \sum_{i=\ell+1}^{m}\left|\left\langle y_{0}, u_{i}\right\rangle_{W}\right|^{2} \quad \text { for all } n \geq \bar{n} \tag{1.54}
\end{equation*}
$$

provided that $\sum_{i=\ell+1}^{m}\left|\left\langle y_{0}, u_{i}\right\rangle W\right|^{2} \neq 0(1.49)$ hold. Recall that the vector $y_{0} \in \mathbb{R}^{m}$ stands for the initial condition in (1.30b). Then we have

$$
\begin{equation*}
\left\|y_{0}\right\|_{W}^{2}=\sum_{i=1}^{m}\left|\left\langle y_{0}, u_{i}\right\rangle_{W}\right|^{2} . \tag{1.55}
\end{equation*}
$$

If $t_{1}=0$ holds, we have $y_{0} \in \operatorname{span}\left\{y_{j}\right\}_{j=1}^{n}$ for every n and

$$
\begin{equation*}
\left\|y_{0}\right\|_{W}^{2}=\sum_{i=1}^{d(n)}\left|\left\langle y_{0}, u_{i}^{n}\right\rangle_{W}\right|^{2} . \tag{1.56}
\end{equation*}
$$

Therefore, for $\ell<d(n)$ by (1.55) and (1.56)

$$
\begin{aligned}
\sum_{i=\ell+1}^{d(n)}\left|\left\langle y_{0}, u_{i}^{n}\right\rangle_{W}\right|^{2}= & \sum_{i=1}^{d(n)}\left|\left\langle y_{0}, u_{i}^{n}\right\rangle_{W}\right|^{2}-\sum_{i=1}^{\ell}\left|\left\langle y_{0}, u_{i}^{n}\right\rangle_{W}\right|^{2}+\sum_{i=1}^{\ell}\left|\left\langle y_{0}, u_{i}\right\rangle_{W}\right|^{2} \\
& +\sum_{i=\ell+1}^{m}\left|\left\langle y_{0}, u_{i}\right\rangle_{W}\right|^{2}-\sum_{i=1}^{m}\left|\left\langle y_{0}, u_{i}\right\rangle_{W}\right|^{2} \\
= & \sum_{i=1}^{\ell}\left(\left|\left\langle y_{0}, u_{i}\right\rangle_{W}\right|^{2}-\left|\left\langle y_{0}, u_{i}^{n}\right\rangle_{W}\right|^{2}\right)+\sum_{i=\ell+1}^{m}\left|\left\langle y_{0}, u_{i}\right\rangle_{W}\right|^{2} .
\end{aligned}
$$

As a consequence of (1.49) and (1.51) we have $\lim _{n \rightarrow \infty}\left\|u_{i}^{n}-u_{i}\right\|_{W}=0$ for $i=1, \ldots, \ell$ and hence (1.54) follows.

Summarizing we have the following theorem.
Theorem 1.15. Assume that $y \in C^{1}\left([0, T] ; \mathbb{R}^{m}\right)$ is the unique solution to 1.30$)$. Let $\left\{\left(u_{i}^{n}, \lambda_{i}^{n}\right)\right\}_{i=1}^{m}$ and $\left\{\left(u_{i}, \lambda_{i}\right)\right\}_{i=1}^{m}$ be the eigenvector-eigenvalue pairs given by 1.44 . Suppose that $\ell \in\{1, \ldots, m\}$ is fixed such that (1.51) and

$$
\sum_{i=\ell+1}^{m} \lambda_{i} \neq 0, \quad \sum_{i=\ell+1}^{m}\left|\left\langle y_{0}, u_{i}\right\rangle_{W}\right|^{2} \neq 0
$$

hold. Then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\mathcal{R}^{n}-\mathcal{R}\right\|_{L\left(\mathbb{R}^{m}\right)}=0 \tag{1.57}
\end{equation*}
$$

This implies

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\lambda_{i}^{n}-\lambda_{i}\right|=\lim _{n \rightarrow \infty}\left\|u_{i}^{n}-u_{i}\right\|_{W}=0 \quad \text { for } 1 \leq i \leq \ell \\
& \lim _{n \rightarrow \infty} \sum_{i=\ell+1}^{m}\left(\lambda_{i}^{n}-\lambda_{i}\right)=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} \sum_{i=\ell+1}^{m}\left|\left\langle y_{0}, u_{i}^{n}\right\rangle_{W}\right|^{2}=\sum_{i=\ell+1}^{m}\left|\left\langle y_{0}, u_{i}\right\rangle_{W}\right|^{2} .
\end{aligned}
$$

Proof. We only have to verify (1.57). For that purpose we choose an arbitrary $u \in \mathbb{R}^{m}$ with $\|u\|_{W}=1$ and introduce $f_{u}:[0, T] \rightarrow \mathbb{R}^{m}$ by

$$
f_{u}(t)=\langle y(t), u\rangle_{W} y(t) \quad \text { for } t \in[0, T]
$$

Then, we have $f_{u} \in C^{1}\left([0, T] ; \mathbb{R}^{m}\right)$ with

$$
\dot{f}_{u}(t)=\langle\dot{y}(t), u\rangle_{W} y(t)+\langle y(t), u\rangle_{W} \dot{y}(t) \quad \text { for } t \in[0, T]
$$

By Taylor expansion there exist $\tau_{j 1}(t), \tau_{j 2}(t) \in\left[t_{j}, t_{j+1}\right]$ depending on t

$$
\begin{aligned}
\int_{t_{j}}^{t_{j+1}} f_{u}(t) \mathrm{d} t= & \frac{1}{2} \int_{t_{j}}^{t_{j+1}} f_{u}\left(t_{j}\right)+\dot{f}_{u}\left(\tau_{j 1}(t)\right)\left(t-t_{j}\right) \mathrm{d} t \\
& +\frac{1}{2} \int_{t_{j}}^{t_{j+1}} f_{u}\left(t_{j+1}\right)+\dot{f}_{u}\left(\tau_{j 2}(t)\right)\left(t-t_{j+1}\right) \mathrm{d} t \\
= & \frac{\Delta t}{2}\left(f_{u}\left(t_{j}\right)+f_{u}\left(t_{j+1}\right)\right)+\frac{1}{2} \int_{t_{j}}^{t_{j+1}} \dot{f}_{u}\left(\tau_{j 1}(t)\right)\left(t-t_{j}\right) \mathrm{d} t \\
& +\frac{1}{2} \int_{t_{j}}^{t_{j+1}} \dot{f}_{u}\left(\tau_{j 2}(t)\right)\left(t-t_{j+1}\right) \mathrm{d} t
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left\|\mathcal{R}^{n} u-\mathcal{R} u\right\|_{W} & =\left\|\sum_{j=1}^{n} \alpha_{j} f_{u}\left(t_{j}\right)-\int_{0}^{T} f_{u}(t) \mathrm{d} t\right\|_{W} \\
& =\left\|\sum_{j=1}^{n-1}\left(\frac{\Delta t}{2}\left(f_{u}\left(t_{j}\right)+f_{u}\left(t_{j+1}\right)\right)-\int_{t_{j}}^{t_{j+1}} f_{u}(t) \mathrm{d} t\right)\right\|_{W} \\
& \leq \frac{1}{2} \sum_{j=1}^{n-1} \int_{t_{j}}^{t_{j+1}}\left\|\dot{f}_{u}\left(\tau_{j 1}(t)\right)\right\|_{W}\left|t-t_{j}\right|+\left\|\dot{f}_{u}\left(\tau_{j 2}(t)\right)\right\|_{W}\left|t-t_{j+1}\right| \mathrm{d} t \\
& \leq \frac{1}{2} \max _{t \in[0, T]}\left\|\dot{f}_{u}(t)\right\|_{W} \sum_{j=1}^{n-1}\left(\frac{\left(t-t_{j}\right)^{2}}{2}-\left.\frac{\left(t_{j+1}-t\right)^{2}}{2}\right|_{t=t_{j}} ^{t=t_{j+1}}\right) \\
& =\frac{\Delta t}{2} \max _{t \in[0, T]}\left\|\dot{f}_{u}(t)\right\|_{W} \sum_{j=1}^{n-1} \Delta t=\frac{\Delta t T}{2} \max _{t \in[0, T]}\left\|\dot{f}_{u}(t)\right\|_{W} \\
& \leq \frac{\Delta t T}{2} \max _{t \in[0, T]}\left\|\dot{f}_{u}(t)\right\|_{W} \\
& =\frac{\Delta t T}{2} \max _{t \in[0, T]}\left\|\langle\dot{y}(t), u\rangle_{W} y(t)+\langle y(t), u\rangle_{W} \dot{y}(t)\right\|_{W} \\
& =\Delta t T \max _{t \in[0, T]}\|\dot{y}(t)\|_{W}\|y(t)\|_{W} \leq \Delta t T\|y\|_{C^{1}\left([0, T] ; \mathbb{R}^{m}\right)}^{2} .
\end{aligned}
$$

Consequently,

$$
\left\|\mathcal{R}^{n}-\mathcal{R}\right\|_{L\left(\mathbb{R}^{m}\right)}=\sup _{\|u\|_{W=1}}\left\|\mathcal{R}^{n} u-\mathcal{R} u\right\|_{W} \leq 2 \Delta t\|y\|_{C^{1}\left([0, T] ; \mathbb{R}^{m}\right)}^{2} \xrightarrow{\Delta t \rightarrow 0} 0
$$

which is (1.57).

1.4 Exercises

1.1) Show that any optimal solution to (\mathbf{P}) is a regular point.
1.2) Verify the claim in Theorem 1.2 that argmax $\left(\mathbf{P}^{\ell}\right)=\sum_{i=1}^{\ell} \sigma_{i}^{2}$ holds true.
1.3) Show that the Frobenius norm is a matrix norm and that

$$
\|A B\|_{F} \leq\|A\|_{F}\|B\|_{F} \quad \text { for any } A, B \in \mathbb{R}^{n \times n}
$$

is valid. Suppose that $U^{d} \in \mathbb{R}^{m \times d}$ is a matrix with pairwise orthonormal vectors $u_{i} \in \mathbb{R}^{m}$, $1 \leq i \leq d$. Prove that

$$
\|U A\|_{F}=\|A\|_{F} \quad \text { for any matrix } A \in \mathbb{R}^{d \times n} .
$$

1.4) Suppose that $W \in \mathbb{R}^{m \times m}$ is symmetric and positive definite. Let $\eta_{1} \geq \ldots \geq \eta_{m}>0$ denote the eigenvalues of W and $W^{\alpha}=Q \operatorname{diag}\left(\eta_{1}^{\alpha}, \ldots, \eta_{m}^{\alpha}\right) Q^{T}$ be the eigenvalue decomposition of W. We define

$$
W^{\alpha}=Q \operatorname{diag}\left(\eta_{1}^{\alpha}, \ldots, \eta_{m}^{\alpha}\right) Q^{T} \quad \text { for } \alpha \in \mathbb{R}
$$

Show that $\left(W^{\alpha}\right)^{-1}$ exists and $\left(W^{\alpha}\right)^{-1}=W^{-\alpha}$. Prove that $W^{\alpha+\beta}=W^{\alpha} W^{\beta}$ holds for $\alpha, \beta \in \mathbb{R}$.
1.5) Verify the claims of Theorem 1.9
1.5.1) Prove that $u_{i}=W^{-1 / 2} \bar{u}_{i}, 1 \leq i \leq \ell$, solves $\left(\overline{\mathbf{P}_{W}^{\ell}}\right)$, where the matrix W and the vectors $\bar{u}_{1}, \ldots, \bar{u}_{m}$ are introduced in Theorem 1.9.
1.5.2) Show that (1.29) holds.
1.6) Prove that u_{1} given by (1.42) is a global solution to (1.37).
1.7) Verify (1.46).

2 Reduced-order modeling (ROM)

In Chapter 1 we have introduced the POD basis of rank ℓ in \mathbb{R}^{m} and discussed its application to initial-value problems. If the POD basis is computed, it can be used to derive a so-called lowdimensional approximation or a reduced-order model for (1.30). This is the focus of this section.

2.1 ROM for time-dependent systems

Suppose that we have determined a POD basis $\left\{u_{j}\right\}_{j=1}^{\ell}$ of rank $\ell \in\{1, \ldots, m\}$ in \mathbb{R}^{m}. Then we make the ansatz

$$
\begin{equation*}
y^{\ell}(t)=\sum_{j=1}^{\ell} \underbrace{\left\langle y^{\ell}(t), u_{j}\right\rangle_{W}}_{=: y_{j}^{\ell}(t)} u_{j} \text { for all } t \in[0, T], \tag{2.1}
\end{equation*}
$$

where the Fourier coefficients $\mathrm{y}_{j}^{\ell}, 1 \leq j \leq \ell$, are functions mapping $[0, T]$ into \mathbb{R}. Since

$$
y(t)=\sum_{j=1}^{m}\left\langle y(t), u_{j}\right\rangle_{W} u_{j} \quad \text { for all } t \in[0, T]
$$

holds, $y^{\ell}(t)$ is an approximation for $y(t)$ provided $\ell<m$. Inserting (2.1) into (1.30) yields

$$
\begin{align*}
& \sum_{j=1}^{\ell} \dot{y}_{j}^{\ell}(t) u_{j}=\sum_{j=1}^{\ell} y_{j}^{\ell}(t) A u_{j}+f\left(t, y^{\ell}(t)\right), \quad t \in(0, T] \tag{2.2a}\\
& \sum_{j=1}^{\ell} y_{j}^{\ell}(0) u_{j}=y_{0} \tag{2.2b}
\end{align*}
$$

Note that (2.2) is an initial-value problem in \mathbb{R}^{m} for $\ell \leq m$ coefficient functions $y_{j}^{\ell}(t), 1 \leq j \leq \ell$ and $t \in[0, T]$, so that the coefficients are overdetermined. Therefore, we assume that (2.2) holds after projection on the ℓ dimensional subspace $V^{\ell}=\operatorname{span}\left\{u_{j}\right\}_{j=1}^{\ell}$. From (2.2a) and $\left\langle u_{j}, u_{i}\right\rangle_{W}=\delta_{i j}$ we infer that

$$
\begin{equation*}
\dot{y}_{i}^{\ell}(t)=\sum_{j=1}^{\ell} \mathrm{y}_{j}^{\ell}(t)\left\langle A u_{j}, u_{i}\right\rangle_{W}+\left\langle f\left(t, y^{\ell}(t)\right), u_{i}\right\rangle_{W} \tag{2.3}
\end{equation*}
$$

for $1 \leq i \leq \ell$ and $t \in(0, T]$. Let us introduce the matrix

$$
\mathrm{A}=\left(\left(\mathrm{a}_{i j}\right)\right) \in \mathbb{R}^{\ell \times \ell} \quad \text { with } \quad \mathrm{a}_{i j}=\left\langle A u_{j}, u_{i}\right\rangle_{W} \text {. }
$$

the vector-valued mapping

$$
\mathrm{y}^{\ell}=\left(\begin{array}{c}
\mathrm{y}_{1}^{\ell} \\
\vdots \\
\mathrm{y}_{\ell}^{\ell}
\end{array}\right):[0, T] \rightarrow \mathbb{R}^{\ell}
$$

and the non-linearity $\mathrm{F}=\left(\mathrm{F}_{1}, \ldots, \mathrm{~F}_{\ell}\right)^{T}:[0, T] \times \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{\ell}$ by

$$
F_{i}(t, \mathrm{y})=\left\langle f\left(t, \sum_{j=1}^{\ell} \mathrm{y}_{j} u_{j}\right), u_{i}\right\rangle_{w} \quad \text { for } t \in[0, T] \text { and } \mathrm{y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\ell}\right) \in \mathbb{R}^{\ell} .
$$

Then, (2.3) can be expressed as

$$
\begin{equation*}
\dot{\mathrm{y}}^{\ell}(t)=\mathrm{Ay}^{\ell}(t)+\mathrm{F}\left(t, \mathrm{y}^{\ell}(t)\right) \quad \text { for } t \in(0, T] \tag{2.4a}
\end{equation*}
$$

From (2.2b) we derive

$$
\begin{equation*}
y^{\ell}(0)=y_{0}, \tag{2.4b}
\end{equation*}
$$

where

$$
\mathrm{y}_{0}=\left(\begin{array}{c}
\left\langle y_{0}, u_{1}\right\rangle_{W} \\
\vdots \\
\left\langle y_{0}, u_{\ell}\right\rangle_{W}
\end{array}\right) \in \mathbb{R}^{\ell}
$$

holds. System (2.4) is called the POD-Galerkin projection for (1.30). In case of $\ell \ll m$ the ℓ-dimensional system (2.4) is a low-dimensional approximation for (1.30). Therefore, (2.4) is a reduced-order model for (1.30).

2.2 Error analysis for the reduced-order model

In this section we focus on error analysis for POD Galerkin approximations. For a more detailed presentation we refer the reader to [KV01, KV02a, KV02b] and KV07].

Let us suppose that $y \in C\left([0, T] ; \mathbb{R}^{m}\right) \cap C^{1}\left(0, T ; \mathbb{R}^{m}\right)$ is the unique solution to (1.30) and $\left\{u_{i}\right\}_{i=1}^{\ell}$ the POD basis of rank ℓ solving

$$
\begin{equation*}
\min \int_{0}^{T}\left\|y(t)-\sum_{i=1}^{\ell}\left\langle y(t), u_{i}\right\rangle_{W} u_{i}\right\|_{W}^{2} \mathrm{~d} t \quad \text { s.t. } \quad\left\langle u_{j}, u_{i}\right\rangle_{W}=\delta_{i j}, 1 \leq i, j \leq \ell . \tag{2.5}
\end{equation*}
$$

The reduced-order model for (1.30) is given by (2.4). We are interested in estimating the error

$$
\int_{0}^{T}\left\|y(t)-y^{\ell}(t)\right\|_{W}^{2} \mathrm{~d} t
$$

Let us introduce the finite-dimensional space

$$
V^{\ell}=\operatorname{span}\left\{u_{1}, \ldots, u_{\ell}\right\} \subset \mathbb{R}^{m}
$$

and the projection $\mathcal{P}^{\ell}: \mathbb{R}^{m} \rightarrow V^{\ell}$ by

$$
\mathcal{P}^{\ell} u=\sum_{i=1}^{\ell}\left\langle u, u_{i}\right\rangle_{W} u_{i} \quad \text { for } u \in \mathbb{R}^{m}
$$

Then,

$$
\begin{aligned}
\mathcal{P}^{\ell}(\alpha u+\tilde{\alpha} \tilde{u}) & =\sum_{i=1}^{\ell}\left\langle\alpha u+\tilde{\alpha} \tilde{u}, u_{i}\right\rangle_{W} u_{i}=\sum_{i=1}^{\ell}\left(\alpha\left\langle u, u_{i}\right\rangle_{W}+\tilde{\alpha}\left\langle\tilde{u}, u_{i}\right\rangle_{W}\right) u_{i} \\
& =\alpha \mathcal{P}^{\ell} u+\tilde{\alpha} \mathcal{P}^{\ell} \tilde{u}
\end{aligned}
$$

for all $\alpha, \tilde{\alpha} \in \mathbb{R}$ and $u, \tilde{u} \in \mathbb{R}^{m}$ so that \mathcal{P}^{ℓ} is linear. Further,

$$
\begin{align*}
\left\|\mathcal{P}^{\ell}\right\|_{L\left(\mathbb{R}^{m}\right)}^{2} & =\sup _{\|u\|_{W}=1}\left\|\mathcal{P}^{\ell} u\right\|_{W}^{2}=\sup _{\|u\|_{W}=1} \sum_{i=1}^{\ell}\left|\left\langle u, u_{i}\right\rangle_{W}\right|^{2} \tag{2.6}\\
& \leq \sup _{\|u\|_{W}=1} \sum_{i=1}^{m}\left|\left\langle u, u_{i}\right\rangle_{W}\right|^{2}=\sup _{\|u\|_{W}=1}\|u\|_{W}^{2}=1
\end{align*}
$$

i.e., \mathcal{P}^{ℓ} is bounded and therefore continuous. In particular, (2.6) and $\left\|\mathcal{P}^{\ell} u\right\|_{W}=\|u\|_{W}$ for any $u \in V^{\ell}$ imply $\left\|\mathcal{P}^{\ell}\right\|_{L\left(\mathbb{R}^{m}\right)}=1$.

Throughout we shall use the decomposition

$$
\begin{equation*}
y(t)-y^{\ell}(t)=y(t)-\mathcal{P}^{\ell} y(t)+\mathcal{P}^{\ell} y(t)-y^{\ell}(t)=\varrho^{\ell}(t)+\vartheta^{\ell}(t) \tag{2.7}
\end{equation*}
$$

where $\varrho^{\ell}(t)=y(t)-\mathcal{P}^{\ell} y(t)$ and $\vartheta^{\ell}(t)=\mathcal{P}^{\ell} y(t)-y^{\ell}(t)$. Note that

$$
\int_{0}^{T}\left\|y(t)-\sum_{i=1}^{\ell}\left\langle y(t), u_{i}\right\rangle_{W} u_{i}\right\|_{W}^{2} \mathrm{~d} t=\int_{0}^{T}\left\|y(t)-\mathcal{P}^{\ell} y(t)\right\|_{W}^{2} \mathrm{~d} t=\int_{0}^{T}\left\|\varrho^{\ell}(t)\right\|_{W}^{2} \mathrm{~d} t
$$

Since $\left\{u_{i}\right\}_{i=1}^{\ell}$ is a POD basis of rank ℓ we have

$$
\begin{equation*}
\int_{0}^{T}\left\|\varrho^{\ell}(t)\right\|_{W}^{2} \mathrm{~d} t=\sum_{i=\ell+1}^{m} \lambda_{i} \tag{2.8}
\end{equation*}
$$

Next we estimate the term $\vartheta^{\ell}(t)$. Utilizing (1.30a) and (2.4) we obtain for every $u^{\ell} \in V^{\ell}$ and $t \in(0, T]$

$$
\begin{align*}
\left\langle\dot{\vartheta}^{\ell}(t), u^{\ell}\right\rangle_{W}= & \left\langle\mathcal{P}^{\ell} \dot{y}(t)-\dot{y}(t), u^{\ell}\right\rangle_{W}+\left\langle\dot{y}(t)-\dot{y}^{\ell}(t), u^{\ell}\right\rangle_{W} \\
= & \left\langle\mathcal{P}^{\ell} \dot{y}(t)-\dot{y}(t), u^{\ell}\right\rangle_{W} \tag{2.9}\\
& +\left\langle A\left(y(t)-y^{\ell}(t)\right)+f(t, y(t))-f\left(t, y^{\ell}(t)\right), u^{\ell}\right\rangle_{W}
\end{align*}
$$

We choose $u^{\ell}=\vartheta^{\ell}(t) \in V^{\ell}$. Let

$$
\|A\|=\max _{\|u\|_{W}=1}\|A u\|_{W}
$$

the matrix norm induced by the vector norm $\|\cdot\|_{W}$. Further,

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|\vartheta^{\ell}(t)\right\|_{W}^{2}=\left\langle\dot{\vartheta}^{\ell}(t), \vartheta^{\ell}(t)\right\rangle_{W} \quad \text { for every } t \in(0, T]
$$

holds. Then, we infer from (2.9)

$$
\begin{align*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|\vartheta^{\ell}(t)\right\|_{W}^{2} \leq & \|A\|\left(\left\|\varrho^{\ell}(t)\right\|_{W}+\left\|\vartheta^{\ell}(t)\right\|_{W}\right)\left\|\vartheta^{\ell}(t)\right\|_{W} \\
& +\left\|f(t, y(t))-f\left(t, y^{\ell}(t)\right)\right\|_{W}\left\|\vartheta^{\ell}(t)\right\|_{W} \tag{2.10}\\
& +\left\|\mathcal{P}^{\ell} \dot{y}(t)-\dot{y}(t)\right\|_{W}\left\|\vartheta^{\ell}(t)\right\|_{W}
\end{align*}
$$

Suppose that f is Lipschitz-continuous with respect to the second argument, i.e., there exists a constant $L_{f} \geq 0$ satisfying

$$
\|f(t, u)-f(t, \tilde{u})\|_{W} \leq L_{f}\|u-\tilde{u}\|_{W} \quad \text { for all } u, \tilde{u} \in \mathbb{R}^{m} \text { and } t \in[0, T]
$$

Moreover, we have

$$
\left\|\mathcal{P}^{\ell} \dot{y}(t)-\dot{y}(t)\right\|_{W}^{2}=\left\|\sum_{i=\ell+1}^{m}\left\langle\dot{y}(t), u_{i}\right\rangle_{W} u_{i}\right\|_{W}^{2}=\sum_{i=\ell+1}^{m}\left|\left\langle\dot{y}(t), u_{i}\right\rangle_{W}\right|^{2}
$$

for all $t \in(0, T)$. Consequently, (2.10) and (2.7) imply

$$
\begin{aligned}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|\vartheta^{\ell}(t)\right\|_{W}^{2} \leq & \frac{\|A\|}{2}\left(\left\|\varrho^{\ell}(t)\right\|_{W}^{2}+\left\|\vartheta^{\ell}(t)\right\|_{W}^{2}\right)+\|A\|\left\|\vartheta^{\ell}(t)\right\|_{W}^{2} \\
& +L_{f}\left\|\varrho^{\ell}(t)+\vartheta^{\ell}(t)\right\|_{W}\left\|\vartheta^{\ell}(t)\right\|_{W} \\
& +\frac{1}{2}\left(\left\|\mathcal{P}^{\ell} \dot{y}(t)-\dot{y}(t)\right\|_{W}^{2}+\left\|\vartheta^{\ell}(t)\right\|_{W}^{2}\right) \\
\leq & \frac{\|A\|}{2}\left\|\varrho^{\ell}(t)\right\|_{W}^{2}+\left(\frac{3}{2}\left(\|A\|+L_{f}\right)+\frac{1}{2}\right)\left\|\vartheta^{\ell}(t)\right\|_{W}^{2} \\
& +L_{f}\left\|\varrho^{\ell}(t)\right\|_{W}\left\|\vartheta^{\ell}(t)\right\|_{W}+\sum_{i=\ell+1}^{m}\left|\left\langle\dot{y}(t), u_{i}\right\rangle_{W}\right|^{2} \\
\leq & \frac{\|A\|+L_{f}}{2}\left\|\varrho^{\ell}(t)\right\|_{W}^{2}+\left(\frac{3}{2}\left(\|A\|+L_{f}\right)+\frac{1}{2}\right)\left\|\vartheta^{\ell}(t)\right\|_{W}^{2} \\
& +\sum_{i=\ell+1}^{m}\left|\left\langle\dot{y}(t), u_{i}\right\rangle_{W}\right|^{2} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|\vartheta^{\ell}(t)\right\|_{W}^{2} \leq & \left(3\left(\|A\|+L_{f}\right)+1\right)\left\|\vartheta^{\ell}(t)\right\|_{W}^{2}+\left(\|A\|+L_{f}\right)\left\|\varrho^{\ell}(t)\right\|_{W}^{2} \\
& +\sum_{i=\ell+1}^{m}\left|\left\langle\dot{y}(t), u_{i}\right\rangle_{W}\right|^{2} .
\end{aligned}
$$

Using Gronwall's lemma (see Exercise 2.1)) and (2.8) we arrive at

$$
\begin{align*}
\left\|\vartheta^{\ell}(t)\right\|_{W}^{2} \leq & c_{1}\left(\left\|\vartheta^{\ell}(0)\right\|_{W}^{2}+\left(\|A\|+L_{f}\right) \int_{0}^{t}\left\|\varrho^{\ell}(s)\right\|_{W}^{2} \mathrm{~d} s\right) \\
& +c_{1} \sum_{i=\ell+1}^{m} \int_{0}^{t}\left|\left\langle\dot{y}(s), u_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} s \tag{2.11}\\
\leq & c_{2}\left(\left\|\vartheta^{\ell}(0)\right\|_{W}^{2}+\sum_{i=\ell+1}^{m}\left(\lambda_{i}+\int_{0}^{T}\left|\left\langle\dot{y}(t), u_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} t\right)\right)
\end{align*}
$$

where $\left.c_{1}=\exp \left(3\left(\|A\|+L_{f}\right)+1\right) T\right)$ and $c_{2}=c_{1} \max \left\{\|A\|+L_{f}, 1\right\}$.
Theorem 2.1. Let $y \in C\left([0, T] ; \mathbb{R}^{m}\right) \cap C^{1}\left(0, T ; \mathbb{R}^{m}\right)$ be the unique solution to (1.30), $\ell \in$ $\{1, \ldots, m\}$ be fixed and $\left\{u_{i}\right\}_{i=1}^{\ell}$ a $P O D$ basis of rank ℓ solving (2.5). Let y^{ℓ} be the unique solution to the reduced-order model (2.4). Then

$$
\int_{0}^{T}\left\|y(t)-y^{\ell}(t)\right\|_{W}^{2} \mathrm{~d} t \leq C \sum_{i=\ell+1}^{m}\left(\lambda_{i}+\int_{0}^{T}\left|\left\langle\dot{y}(t), u_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} t\right)
$$

for a constant $C>0$.
Proof. From (2.8), (2.11) and $\vartheta^{\ell}(0)=\mathcal{P}^{\ell} y_{0}-y^{\ell}(0)=0$ we find

$$
\begin{aligned}
& \int_{0}^{T}\left\|y(t)-y^{\ell}(t)\right\|_{W}^{2} \mathrm{~d} t=\int_{0}^{T}\left\|\varrho^{\ell}(t)+\vartheta^{\ell}(t)\right\|_{W}^{2} \mathrm{~d} t \\
& \leq 2 \int_{0}^{T}\left\|\varrho^{\ell}(t)\right\|_{W}^{2}+\left\|\vartheta^{\ell}(t)\right\|_{W}^{2} \mathrm{~d} t \\
& \leq 2 \sum_{i=\ell+1}^{m} \lambda_{i}+c_{3} \sum_{i=\ell+1}^{m}\left(\lambda_{i}+\int_{0}^{T}\left|\left\langle\dot{y}(t), u_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} t\right)
\end{aligned}
$$

with $c_{3}=2 c_{2}$. Setting $C=2+c_{3}$ the claim follows directly.

Remark 2.2. The term

$$
\sum_{i=\ell+1}^{m} \int_{0}^{T}\left|\left\langle\dot{y}(t), u_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} t
$$

can not be estimated by the sum over the eigenvalues $\lambda_{\ell+1}, \ldots, \lambda_{m}$. If we replace (2.5) by

$$
\begin{equation*}
\min \int_{0}^{T}\left\|y(t)-\sum_{i=1}^{\ell}\left\langle y(t), u_{i}\right\rangle_{W} u_{i}\right\|_{W}^{2}+\left\|\dot{y}(t)-\sum_{i=1}^{\ell}\left\langle\dot{y}(t), u_{i}\right\rangle_{W} u_{i}\right\|_{W}^{2} \mathrm{~d} t \tag{2.12a}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\left\langle u_{j}, u_{i}\right\rangle_{W}=\delta_{i j} \quad \text { for } 1 \leq i, j \leq \ell \tag{2.12b}
\end{equation*}
$$

we end up with the estimate

$$
\int_{0}^{T}\left\|y(t)-y^{\ell}(t)\right\|_{W}^{2} \mathrm{~d} t \leq \tilde{C} \sum_{i=\ell+1}^{m} \tilde{\lambda}_{i}
$$

for a constant $\tilde{C}>0$. In this case the time derivatives are also included in the snapshot ensemble. Of course, the operator \mathcal{R} defined in (1.41) has to be replaced. It turns out that the POD basis $\left\{u_{i}\right\}_{i=1}^{\ell}$ is given by the eigenvalue problem

$$
\begin{equation*}
\tilde{\mathcal{R}} \tilde{u}_{i}=\tilde{\lambda}_{i} \tilde{u}_{i} \text { for } 1 \leq i \leq m \quad \text { and } \quad \tilde{\lambda}_{1} \geq \tilde{\lambda}_{2} \geq \ldots \geq \tilde{\lambda}_{m} \geq 0 \tag{2.13}
\end{equation*}
$$

where the operator $\tilde{\mathcal{R}}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is defined by

$$
\tilde{\mathcal{R}} u=\int_{0}^{T}\langle y(t), u\rangle_{W} y(t)+\langle\dot{y}(t), u\rangle_{W} \dot{y}(t) \mathrm{d} t
$$

for $u \in \mathbb{R}^{m}$.
Remark 2.3. Suppose that we build the matrix $Y \in \mathbb{R}^{m \times(2 n)}$ using the column vectors $y_{j} \approx y\left(t_{j}\right)$, $1 \leq j \leq n$, and $y_{j} \approx \dot{y}\left(t_{j-n}\right), n+1 \leq j \leq 2 n$. Then, the discrete variant $\tilde{\mathcal{R}}^{n}$ of the operator $\tilde{\mathcal{R}}$ introduced in Remark 2.2 is given by

$$
\begin{aligned}
\tilde{\mathcal{R}}^{n} u & =\sum_{j=1}^{n} \alpha_{j}\left\langle y_{j}, u\right\rangle_{W^{\prime}} y_{j}+\alpha_{j}\left\langle y_{n+j}, u\right\rangle_{W^{\prime}} Y_{n+j} \\
& =\sum_{j=1}^{n} \alpha_{j}\left(\left(\sum_{k=1}^{m} \sum_{\nu=1}^{m} Y_{k j} W_{k \nu} u_{\nu}\right) Y_{\cdot, j}+\left(\sum_{k=1}^{m} \sum_{\nu=1}^{m} Y_{k, n+j} W_{k \nu} u_{\nu}\right) Y_{\cdot, m+j}\right) \\
& =\sum_{j=1}^{n} \sum_{k=1}^{m} \sum_{\nu=1}^{m}\left(\left(Y_{\cdot, j} D_{j j} Y_{j k}^{T}+Y_{\cdot, m+j} D_{j j j} Y_{m+j, k}^{\top}\right) W_{k \nu} u_{\nu}\right) \\
& =Y \underbrace{\left(\begin{array}{cc}
D & 0 \\
0 & D
\end{array}\right)}_{=: \tilde{D} \in \mathbb{R}^{2 n \times 2 n}} Y^{\top} W u=Y \tilde{D} Y^{\top} W u
\end{aligned}
$$

with non-negative weights introduced in $\left(\widehat{\mathbf{P}_{W}^{n, Q}}\right)$ and the diagonal matrix $D=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in$ $\mathbb{R}^{n \times n}$. Thus, we have $\tilde{\mathcal{R}}=Y \tilde{D} Y^{\top} W \in \mathbb{R}^{m \times m}$, which is of the same form as in (1.35). The discrete version to (2.13) is

$$
\begin{equation*}
Y \tilde{D} Y^{\top} W \tilde{u}_{i}=\tilde{\lambda}_{i} \tilde{u}_{i} \text { for } 1 \leq i \leq m \quad \text { and } \quad \tilde{\lambda}_{1} \geq \tilde{\lambda}_{2} \geq \ldots \geq \tilde{\lambda}_{m} \geq 0 \tag{2.14}
\end{equation*}
$$

Setting $\tilde{u}_{i}=W^{-1 / 2} \bar{u}_{i}$ in (2.14) and multiplying by $W^{1 / 2}$ from the left yield

$$
\begin{equation*}
W^{1 / 2} Y \tilde{D} Y^{\top} W^{1 / 2} \bar{u}_{i}=\lambda_{i} \bar{u}_{i} . \tag{2.15}
\end{equation*}
$$

Let $\bar{Y}=W^{1 / 2} Y \tilde{D}^{1 / 2} \in \mathbb{R}^{m \times 2 n}$. Using $W^{T}=W$ as well as $\tilde{D}^{T}=\tilde{D}$ we infer from (2.15) that the solution $\left\{\tilde{u}_{i}\right\}_{i=1}^{\ell}$ is given by the symmetric $m \times m$ eigenvalue problem

$$
\bar{Y} \bar{Y}^{\top} \bar{u}_{i}=\lambda_{i} \bar{u}_{i}, 1 \leq i \leq \ell \quad \text { and } \quad\left\langle\bar{u}_{i}, \bar{u}_{j}\right\rangle_{\mathbb{R}^{m}}=\delta_{i j}, 1 \leq i, j \leq \ell
$$

and $\tilde{u}_{i}=W^{-1 / 2} \bar{u}_{i}$. Note that

$$
\bar{Y}^{\top} \bar{Y}=\tilde{D}^{1 / 2} Y^{\top} W Y \tilde{D}^{1 / 2} \in \mathbb{R}^{2 n \times 2 n}
$$

Thus, the POD basis of rank ℓ can also be computed by the methods of snapshots as follows: First solve the symmetric $2 n \times 2 n$ eigenvalue problem

$$
\bar{Y}^{\top} \bar{Y} \bar{v}_{i}=\lambda_{i} \bar{v}_{i}, 1 \leq i \leq \ell \quad \text { and } \quad\left\langle\bar{v}_{i}, \bar{v}_{j}\right\rangle_{\mathbb{R}^{2 n}}=\delta_{i j}, 1 \leq i, j \leq \ell .
$$

Then we set (by SVD)

$$
\tilde{u}_{i}=W^{-1 / 2} \bar{u}_{i}=\frac{1}{\sqrt{\lambda_{i}}} W^{-1 / 2} \bar{Y} \bar{v}_{i}=\frac{1}{\sqrt{\lambda_{i}}} Y \tilde{D}^{1 / 2} \bar{v}_{i}
$$

for $1 \leq i \leq \ell$.
From a practical point of view we do not have the information on the whole trajectory in $[0, T]$. Therefore, let $\Delta t=T /(n-1)$ be a fixed time step size and $t_{j}=(j-1) \Delta t$ for $1 \leq j \leq n$ a given time grid in $[0, T]$. To simplify the presentation we choose an equidistant grid. Of course, non-equidistant meshes can be treated analogously KV02a. We compute a POD basis $\left\{u_{i}^{n}\right\}_{i=1}^{\ell}$ of rank ℓ by solving the constrained minimization problem ($\left.\hat{\mathbf{P}}_{w}^{n, \ell}\right)$. After the POD basis has been determined, we derive the reduced-order model as described in Section 2.2. Thus,

$$
y^{\ell}(t)=\sum_{i=1}^{\ell} y_{j}^{\ell}(t) u_{i}^{n}, \quad t \in[0, T],
$$

solves the POD Galerkin projection of (1.30)

$$
\begin{align*}
\left\langle\dot{y}^{\ell}(t), u_{i}^{n}\right\rangle_{W} & =\left\langle A y^{\ell}(t)+f\left(t, y^{\ell}(t)\right), u_{i}^{n}\right\rangle_{W} & & \text { for } i=1 \ldots, \ell \text { and } t \in(0, T], \tag{2.16a}\\
\left\langle y^{\ell}(0), u_{i}^{n}\right\rangle_{W} & =\left\langle y_{0}, u_{i}^{n}\right\rangle_{W} & & \text { for } i=1 \ldots, \ell . \tag{2.16b}
\end{align*}
$$

To solve (2.16) we apply the implicit Euler method. By Y_{j} we denote an approximation for y^{ℓ} at the time $t_{j}, 1 \leq j \leq n$. Then, the discrete system for the sequence $\left\{Y_{j}\right\}_{j=1}^{n}$ in $V_{n}^{\ell}=\operatorname{span}\left\{u_{1}^{n}, \ldots, u_{\ell}^{n}\right\}$ looks like

$$
\begin{align*}
\left\langle\frac{Y_{j}-Y_{j-1}}{\Delta t}, u_{i}^{n}\right\rangle_{W} & =\left\langle A Y_{j}+f\left(t, Y_{j}\right), u_{i}^{n}\right\rangle_{W} & & \text { for } i=1 \ldots, \ell, 2 \leq j \leq n, \tag{2.17a}\\
\left\langle Y_{1}, u_{i}^{n}\right\rangle_{W} & =\left\langle y_{0}, u_{i}^{n}\right\rangle_{W} & & \text { for } i=1 \ldots, \ell . \tag{2.17b}
\end{align*}
$$

We are interested in estimating

$$
\sum_{j=1}^{n} \alpha_{j}\left\|y\left(t_{j}\right)-Y_{j}\right\|_{W}^{2}
$$

Let us introduce the projection $\mathcal{P}_{n}^{\ell}: \mathbb{R}^{m} \rightarrow V_{n}^{\ell}$ by

$$
\begin{equation*}
\mathcal{P}_{n}^{\ell}=\sum_{i=1}^{\ell}\left\langle u, u_{i}^{n}\right\rangle_{W} u_{i}^{n} \quad \text { for } u \in \mathbb{R}^{m} . \tag{2.18}
\end{equation*}
$$

It follows that \mathcal{P}_{n}^{ℓ} is linear and bounded (and therefore continuous). In particular, $\left\|\mathcal{P}_{n}^{\ell}\right\|_{L\left(\mathbb{R}^{m}\right)}=1$.
We shall make use of the decomposition

$$
y\left(t_{j}\right)-Y_{j}=y\left(t_{j}\right)-\mathcal{P}_{n}^{\ell} y\left(t_{j}\right)+\mathcal{P}_{n}^{\ell} y\left(t_{j}\right)-Y_{j}=\varrho_{j}^{\ell}+\vartheta_{j}^{\ell}
$$

where $\varrho_{j}^{\ell}=y\left(t_{j}\right)-\mathcal{P}_{n}^{\ell} y\left(t_{j}\right)$ and $\vartheta_{j}^{\ell}=\mathcal{P}_{n}^{\ell} y\left(t_{j}\right)-Y_{j}$. Note that

$$
\sum_{j=1}^{n} \alpha_{j}\left\|y\left(t_{j}\right)-\sum_{i=1}^{\ell}\left\langle y\left(t_{j}\right), u_{i}^{n}\right\rangle_{W} u_{i}^{n}\right\|_{W}^{2}=\sum_{j=1}^{n} \alpha_{j}\left\|y\left(t_{j}\right)-\mathcal{P}_{n}^{\ell} y\left(t_{j}\right)\right\|_{W}^{2}=\sum_{j=1}^{n} \alpha_{j}\left\|\ell_{j}^{\ell}\right\|_{W}^{2} .
$$

Since $\left\{u_{i}^{n}\right\}_{i=1}^{\ell}$ is the POD basis of rank ℓ, we have

$$
\begin{equation*}
\sum_{j=1}^{n} \alpha_{j}\left\|\ell_{j}^{\ell}\right\|_{W}^{2}=\sum_{i=\ell+1}^{m} \lambda_{i}^{n} . \tag{2.19}
\end{equation*}
$$

Next we estimate the terms ϑ_{j}^{ℓ}. Using the notation $\bar{\partial} \vartheta_{j}^{\ell}=\left(\vartheta_{j}^{\ell}-\vartheta_{j-1}^{\ell}\right) / \Delta t$ for $2 \leq j \leq n$ we obtain by 1.30a) and 2.17a)

$$
\begin{align*}
\left\langle\bar{\partial} \vartheta_{j}^{\ell}, u_{i}^{n}\right\rangle= & \left\langle\mathcal{P}_{n}^{\ell}\left(\frac{y\left(t_{j}\right)-y\left(t_{j-1}\right)}{\Delta t}\right)-\frac{Y_{j}-Y_{j-1}}{\Delta t}, u_{i}^{n}\right\rangle_{W} \\
= & \left.\left\langle\dot{y}\left(t_{j}\right)-\left(A Y_{j}+f\left(t_{j}, Y_{j}\right)\right)\right), u_{i}^{n}\right\rangle_{W} \\
& +\left\langle\mathcal{P}_{n}^{\ell}\left(\frac{y\left(t_{j}\right)-y\left(t_{j-1}\right)}{\Delta t}\right)-\dot{y}\left(t_{j}\right), u_{i}^{n}\right\rangle_{W} \\
= & \left\langle A\left(y\left(t_{j}\right)-Y_{j}\right)+f\left(t_{j}, y\left(t_{j}\right)\right)-f\left(t_{j}, Y_{j}\right), u_{i}^{n}\right\rangle_{W} \tag{2.20}\\
& +\left\langle\mathcal{P}_{n}^{\ell}\left(\frac{y\left(t_{j}\right)-y\left(t_{j-1}\right)}{\Delta t}\right)-\frac{y\left(t_{j}\right)-y\left(t_{j-1}\right)}{\Delta t}, u_{i}^{n}\right\rangle_{W} \\
& +\left\langle\frac{y\left(t_{j}\right)-y\left(t_{j-1}\right)}{\Delta t}-\dot{y}\left(t_{j}\right), u_{i}^{n}\right\rangle_{W} \\
= & \left\langle A\left(y\left(t_{j}\right)-Y_{j}\right)+f\left(t_{j}, y\left(t_{j}\right)\right)-f\left(t_{j}, Y_{j}\right)+z_{j}^{\ell}+w_{j}^{\ell}, u_{i}^{n}\right\rangle_{W}
\end{align*}
$$

for $1 \leq i \leq \ell$ and $2 \leq j \leq n$, where

$$
z_{j}^{\ell}=\mathcal{P}_{n}^{\ell}\left(\frac{y\left(t_{j}\right)-y\left(t_{j-1}\right)}{\Delta t}\right)-\frac{y\left(t_{j}\right)-y\left(t_{j-1}\right)}{\Delta t}, \quad w_{j}^{\ell}=\frac{y\left(t_{j}\right)-y\left(t_{j-1}\right)}{\Delta t}-\dot{y}\left(t_{j}\right) .
$$

Multiplying 2.20) by $\left\langle\vartheta_{j}^{\ell}, u_{i}^{\eta}\right\rangle_{w}$ and adding all ℓ equations we arrive at

$$
\begin{equation*}
\left\langle\bar{\partial} \vartheta_{j}^{\ell}, \vartheta_{j}^{\ell}\right\rangle=\left\langle A\left(y\left(t_{j}\right)-Y_{j}\right)+f\left(t_{j}, y\left(t_{j}\right)\right)-f\left(t_{j}, Y_{j}\right)+z_{j}^{\ell}+w_{j}^{\ell}, \vartheta_{j}^{\ell}\right\rangle_{W} \tag{2.21}
\end{equation*}
$$

for $j=2, \ldots, n$. Note that

$$
\begin{aligned}
2\langle u-\tilde{u}, u\rangle_{W} & =2\|u\|_{W}^{2}-2\langle\tilde{u}, u\rangle_{W}=\|u\|_{W}^{2}+\|u\|_{W}^{2}-2\langle\tilde{u}, u\rangle_{W}+\|\tilde{u}\|_{W}^{2}-\|\tilde{u}\|_{W}^{2} \\
& =\|u\|_{W}^{2}-\|u \tilde{u}\|_{W}^{2}+\|u-\tilde{u}\|_{W}^{2}
\end{aligned}
$$

for all $u, \tilde{u} \in \mathbb{R}^{m}$. Choosing $u=\vartheta_{j}^{\ell}$ and $\tilde{u}=\vartheta_{j-1}^{\ell}$ we infer from (2.21)

$$
\begin{equation*}
2\left\langle\bar{\partial} \vartheta_{j}^{\ell}, \vartheta_{j}^{\ell}\right\rangle=\frac{1}{\Delta t}\left(\left\|\vartheta_{j}^{\ell}\right\|_{W}^{2}-\left\|\vartheta_{j-1}^{\ell}\right\|_{W}^{2}+\left\|\vartheta_{j}^{\ell}-\vartheta_{j-1}^{\ell}\right\|_{W}^{2}\right) . \tag{2.22}
\end{equation*}
$$

Inserting (2.22) into (2.21) and using the Cauchy-Schwarz inequality we obtain

$$
\begin{aligned}
\left\|\vartheta_{j}^{\ell}\right\|_{W}^{2} \leq & \left\|\vartheta_{j-1}^{\ell}\right\|_{W}^{2}+\Delta t\|A\|\left(\left\|\ell_{j}^{\ell}\right\|_{W}+\left\|\vartheta_{j}^{\ell}\right\|_{W}\right)\left\|\vartheta_{j}^{\ell}\right\|_{W} \\
& +\Delta t\left(\left\|f\left(t_{j}, y\left(t_{j}\right)\right)-f\left(t_{j}, Y_{j}\right)\right\|_{W}+\left\|z_{j}^{\ell}\right\|_{W}+\left\|w_{j}^{\ell}\right\|_{W}\right)\left\|\vartheta_{j}^{\ell}\right\|_{W} .
\end{aligned}
$$

Suppose that f is Lipschitz-continuous with respect to the second argument. Then there exists a constant $L_{f} \geq 0$ such that

$$
\left\|f\left(t_{j}, y\left(t_{j}\right)\right)-f\left(t_{j}, Y_{j}\right)\right\|_{W} \leq L_{f}\left\|y\left(t_{j}\right)-Y_{j}\right\|_{W} \quad \text { for } j=2, \ldots, n
$$

Hence, by Young's inequality we find

$$
\left\|\vartheta_{j}^{\ell}\right\|_{W}^{2} \leq\left\|\vartheta_{j-1}^{\ell}\right\|_{W}^{2}+\Delta t\left(c_{1}\left\|\varrho_{j}^{\ell}\right\|_{W}^{2}+c_{2}\left\|\vartheta_{j}^{\ell}\right\|_{W}^{2}+\left\|z_{j}^{\ell}\right\|_{W}^{2}+\left\|w_{j}^{\ell}\right\|_{W}^{2}\right) \quad \text { for } j=2, \ldots, n
$$

where $c_{1}=\max \left\{\|A\|, L_{f}\right\}$ and $c_{2}=\max \left\{3\|A\|, 3 L_{f}, 2\right\}$. Suppose that

$$
\begin{equation*}
0<\Delta t \leq \frac{1}{2 c_{2}} \tag{2.23}
\end{equation*}
$$

holds. With (2.23) holding we have

$$
0 \leq 1-2 c_{2} \Delta t<1-c_{2} \Delta t \quad \text { and } \quad 1-c_{2} \Delta t \geq 1-\frac{1}{2}=\frac{1}{2}
$$

Thus,

$$
\begin{equation*}
\frac{1}{1-c_{2} \Delta t}=\frac{1-c_{2} \Delta t+c_{2} \Delta t}{1-c_{2} \Delta t}=1+\frac{c_{2} \Delta t}{1-c_{2} \Delta t} . \leq 1+2 c_{2} \Delta t \tag{2.24}
\end{equation*}
$$

Using (2.24) we infer that

$$
\left\|\vartheta_{j}^{\ell}\right\|_{W}^{2} \leq\left(1+2 c_{2} \Delta t\right)\left(\left\|\vartheta_{j-1}^{\ell}\right\|_{W}^{2}+\Delta t\left(\left\|z_{j}^{\ell}\right\|_{W}^{2}+\left\|w_{j}^{\ell}\right\|_{W}^{2}+c_{1}\left\|\varrho_{j}^{\ell}\right\|_{W}^{2}\right)\right) \quad \text { for } j=2, \ldots, n
$$

Summation on j yields

$$
\left\|\vartheta_{j}^{\ell}\right\|_{W}^{2} \leq\left(1+2 c_{2} \Delta t\right)^{j-1}\left(\left\|\vartheta_{1}^{\ell}\right\|_{W}^{2}+\Delta t \sum_{k=2}^{j}\left(\left\|z_{k}^{\ell}\right\|_{W}^{2}+\left\|w_{k}^{\ell}\right\|_{W}^{2}+c_{1}\left\|\varrho_{k}^{\ell}\right\|_{W}^{2}\right)\right) \quad \text { for } j=2, \ldots, n
$$

Note that

$$
\left(1+2 c_{2} \Delta t\right)^{j-1}=\left(1+\frac{2 c_{2}(j-1) \Delta t}{j-1}\right)^{j-1} \leq e^{2 c_{2}(j-1) \Delta t} \quad \text { for } j=2, \ldots, n
$$

Thus,

$$
\left\|\vartheta_{j}^{\ell}\right\|_{W}^{2} \leq e^{2 c_{2}(j-1) \Delta t}\left(\left\|\vartheta_{1}^{\ell}\right\|_{W}^{2}+\Delta t \sum_{k=2}^{j}\left(\left\|z_{k}^{\ell}\right\|_{W}^{2}+\left\|w_{k}^{\ell}\right\|_{W}^{2}+c_{1}\left\|\varrho_{k}^{\ell}\right\|_{W}^{2}\right)\right) \quad \text { for } j=2, \ldots, n
$$

We next estimate the term involving w_{k}^{ℓ} :

$$
\begin{aligned}
\Delta t \sum_{k=2}^{j}\left\|w_{k}^{\ell}\right\|_{W}^{2} & =\Delta t \sum_{k=1}^{j}\left\|\frac{y\left(t_{k}\right)-y\left(t_{k-1}\right)}{\Delta t}-\dot{y}\left(t_{k}\right)\right\|_{W}^{2} \\
& =\frac{1}{\Delta t} \sum_{k=2}^{j}\left\|y\left(t_{k}\right)-y\left(t_{k-1}\right)-\Delta t \dot{y}\left(t_{k}\right)\right\|_{W}^{2} \\
& =\frac{1}{\Delta t} \sum_{k=2}^{j}\left\|\int_{t_{k-1}}^{t_{k}}\left(t_{k-1}-s\right) \ddot{y}(s) \mathrm{d} s\right\|_{W}^{2} \\
& \leq \frac{1}{\Delta t} \sum_{k=2}^{j}\left(\int_{t_{k-1}}^{t_{k}}\left|t_{k-1}-s\right|^{2} \mathrm{~d} s \int_{t_{k-1}}^{t_{k}}\|\ddot{y}(s)\|_{W}^{2} \mathrm{~d} s\right) \\
& \leq \frac{(\Delta t)^{2}}{3} \sum_{k=2}^{j}\|\ddot{y}\|_{L^{2}\left(t_{k-1}, t_{k} ; \mathbb{R}^{m}\right)}^{2}=\frac{(\Delta t)^{2}}{3}\|\ddot{y}\|_{L^{2}\left(0, t_{j} ; \mathbb{R}^{m}\right)}^{2}
\end{aligned}
$$

for $j=2, \ldots, n$. The term z_{k}^{ℓ} can be estimated as follows:

$$
\begin{aligned}
\left\|z_{k}^{\ell}\right\|_{W}^{2}= & \left\|\mathcal{P}_{n}^{\ell}\left(\frac{y\left(t_{k}\right)-y\left(t_{k-1}\right)}{\Delta t}\right)-\frac{y\left(t_{k}\right)-y\left(t_{k-1}\right)}{\Delta t}\right\|_{W}^{2} \\
= & \left\|\mathcal{P}_{n}^{\ell}\left(\frac{y\left(t_{k}\right)-y\left(t_{k-1}\right)}{\Delta t}\right)-\mathcal{P}_{n}^{\ell} \dot{y}\left(t_{k}\right)+\mathcal{P}_{n}^{\ell} \dot{y}\left(t_{k}\right)-\frac{y\left(t_{k}\right)-y\left(t_{k-1}\right)}{\Delta t}\right\|_{W}^{2} \\
\leq & 2\left\|\mathcal{P}_{n}^{\ell}\right\|_{L\left(\mathbb{R}^{m}\right)}^{2}\left\|\frac{y\left(t_{k}\right)-y\left(t_{k-1}\right)}{\Delta t}-\dot{y}\left(t_{k}\right)\right\|_{W}^{2} \\
& +2\left\|\mathcal{P}_{n}^{\ell} \dot{y}\left(t_{k}\right)-\dot{y}\left(t_{k}\right)+\dot{y}\left(t_{k}\right)-\frac{y\left(t_{k}\right)-y\left(t_{k-1}\right)}{\Delta t}\right\|_{W}^{2} \\
\leq & 2\left\|w_{k}^{\ell}\right\|_{W}^{2}+4\left\|\mathcal{P}_{n}^{\ell} \dot{y}\left(t_{k}\right)-\dot{y}\left(t_{k}\right)\right\|_{W}^{2}+4\left\|\dot{y}\left(t_{k}\right)-\frac{y\left(t_{k}\right)-y\left(t_{k-1}\right)}{\Delta t}\right\|_{W}^{2} \\
= & 4\left\|\mathcal{P}_{n}^{\ell} \dot{y}\left(t_{k}\right)-\dot{y}\left(t_{k}\right)\right\|_{W}^{2}+6\left\|w_{k}^{\ell}\right\|_{W}^{2} .
\end{aligned}
$$

Recall that $\Delta t \leq 2 \alpha_{k}$ for $1 \leq k \leq n$. Hence,

$$
\Delta t \sum_{k=2}^{j}\left\|z_{k}^{\ell}\right\|_{W}^{2} \leq 8 \sum_{k=1}^{n} \alpha_{k}\left\|\mathcal{P}_{n}^{\ell} \dot{y}\left(t_{k}\right)-\dot{y}\left(t_{k}\right)\right\|_{W}^{2}+2(\Delta t)^{2}\|\ddot{y}\|_{L^{2}\left(0, t ; ; \mathbb{R}^{m}\right)}^{2} \quad \text { for } j=2, \ldots, n .
$$

Further, $\vartheta_{1}^{\ell}=\mathcal{P}_{n}^{\ell} y_{1}-Y_{1}=0$ and $0 \leq(j-1) \Delta t \leq T$ for $j=2, \ldots, n$. Summarizing

$$
\left\|\vartheta_{j}^{\ell}\right\|_{W}^{2} \leq c_{3}\left(\sum_{k=1}^{n} 8 \alpha_{k}\left(\left\|\mathcal{P}_{n}^{\ell} \dot{y}\left(t_{k}\right)-\dot{y}\left(t_{k}\right)\right\|_{W}^{2}+2 c_{1}\left\|\varrho_{k}^{\ell}\right\|_{W}^{2}\right)+\frac{7}{3}(\Delta t)^{2}\|\ddot{y}\|_{L^{2}\left(0, t_{j} ; \mathbb{R}^{m}\right)}^{2}\right)
$$

where $c_{3}=e^{2 c_{2} T} \max \left\{7 / 3,2 c_{1}, 8\right\}$ is independent of ℓ and $\left\{t_{j}\right\}_{j=1}^{n}$. From $\sum_{k=1}^{n} \alpha_{k}=T$ and (2.19) we infer

$$
\begin{align*}
& \sum_{j=1}^{n} \alpha_{j}\left\|\vartheta_{j}^{\ell}\right\|_{W}^{2} \leq c_{3} T\left(\sum_{j=1}^{n} \alpha_{j}\left(\left\|\mathcal{P}_{n}^{\ell} \dot{y}\left(t_{j}\right)-\dot{y}\left(t_{j}\right)\right\|_{W}^{2}+\left\|\ell_{j}^{\ell}\right\|_{W}^{2}\right)\right. \\
& \left.+(\Delta t)^{2}\|\ddot{y}\|_{L^{2}\left(0, T ; \mathbb{R}^{m}\right)}^{2}\right) \tag{2.25}\\
& \leq c_{4}\left(\sum_{i=\ell+1}^{m}\left(\lambda_{i}^{n}+\sum_{j=1}^{n} \alpha_{j}\left|\left\langle\dot{y}\left(t_{j}\right), u_{i}^{n}\right\rangle_{W}\right|^{2}\right)+(\Delta t)^{2}\right)
\end{align*}
$$

with $c_{4}=c_{3} T \max \left\{1,\|\ddot{y}\|_{L^{2}\left(0, T ; \mathbb{R}^{m}\right)}^{2}\right\}$.
Theorem 2.4. Let $y \in C\left([0, T] ; \mathbb{R}^{m}\right) \cap C^{1}\left(0, T ; \mathbb{R}^{m}\right)$ be the unique solution to (1.30) satisfying $\ddot{y} \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)$ and $\ell \in\{1, \ldots, m\}$ be fixed. Suppose that $\left\{u_{i}^{n}\right\}_{i=1}^{\ell}$ is a POD basis of rank ℓ solving $\binom{\hat{\mathbf{P}}_{W}^{n, \ell}}{)}$. Assume that (2.17) possesses a unique solution $\left\{Y_{j}\right\}_{j=1}^{n}$. Then there exists a constant $C>0$ such that

$$
\sum_{j=1}^{n} \alpha_{j}\left\|y\left(t_{j}\right)-Y_{j}\right\|_{W}^{2} \leq C\left((\Delta t)^{2}+\sum_{i=\ell+1}^{m}\left(\lambda_{i}^{n}+\sum_{j=1}^{n} \alpha_{j}\left|\left\langle\dot{y}\left(t_{j}\right), u_{i}^{n}\right\rangle_{W}\right|^{2}\right)\right)
$$

provided Δt is sufficiently small and f is Lipschitz-continuous with respect to the second argument.
Proof. The claim follows directly from (2.19), (2.25), and

$$
\begin{aligned}
\sum_{j=1}^{n} \alpha_{j}\left\|y\left(t_{j}\right)-Y_{j}\right\|_{W}^{2} & \leq 2 \sum_{j=1}^{n} \alpha_{j}\left(\left\|\vartheta_{j}^{\ell}\right\|_{W}^{2}+\left\|\ell_{j}^{\ell}\right\|_{W}^{2}\right) \\
& \leq 2 c_{4}\left(\sum_{i=\ell+1}^{m}\left(\lambda_{i}^{n}+\sum_{j=1}^{n}\left|\left\langle\dot{y}\left(t_{j}\right), u_{i}^{n}\right\rangle_{W}\right|^{2}\right)+(\Delta t)^{2}\right)+2 \sum_{i=\ell+1}^{m} \lambda_{i}^{n}
\end{aligned}
$$

provided $\Delta t>0$ is sufficiently small and f is Lipschitz-continuous with respect to the second argument.

Remark 2.5. Compared to the estimate in Theorem 2.1 we observe the term

$$
\begin{equation*}
\sum_{j=1}^{n} \alpha_{j}\left|\left\langle\dot{y}\left(t_{j}\right), u_{i}^{n}\right\rangle_{W}\right|^{2} \tag{2.26}
\end{equation*}
$$

instead of the term

$$
\begin{equation*}
\int_{0}^{T}\left|\left\langle\dot{y}(t), u_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} t \tag{2.27}
\end{equation*}
$$

Note that (2.26) is the trapezoidal approximation of (2.27). Furthermore, the error $O\left((\Delta t)^{2}\right)$ appears in the estimate of Theorem 2.4 due to the Euler method.

Next we address the fact that the eigenvalues $\left\{\lambda_{i}^{n}\right\}_{i=1}^{m}$ and the associated eigenvectors $\left\{u_{i}^{n}\right\}$ (i.e., the POD basis) depend on the chosen time grid $\left\{t_{j}\right\}_{j=1}^{n}$. We apply the asymptotic theory presented in Section 1.3. Then, it follows from Theorem 1.15 that there exists a number $\bar{n} \in \mathbb{N}$ satisfying

$$
\begin{gathered}
\sum_{i=\ell+1}^{m} \lambda_{i}^{n} \leq 2 \sum_{i=\ell+1}^{m} \lambda_{i}, \\
\sum_{i=\ell+1}^{m} \sum_{j=1}^{n} \alpha_{j}\left|\left\langle\dot{y}\left(t_{j}\right), u_{i}^{n}\right\rangle_{W}\right|^{2} \leq 2 \sum_{i=\ell+1}^{m} \int_{0}^{T}\left|\left\langle\dot{y}(t), u_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} t
\end{gathered}
$$

for $n \geq \bar{n}$ provided $\sum_{i=\ell+1}^{m} \lambda_{i} \neq 0$ and $\int_{0}^{T}\left|\left\langle\dot{y}(t), u_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} t \neq 0$ hold. Thus, we infer from Theorems 2.1 and 2.4 the following result.
Theorem 2.6. Let all hypothesis of Theorems 1.15, (2.1) and (2.4) be satisfied. If $\int_{0}^{T}\left|\left\langle\dot{y}(t), u_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} t \neq$ 0 , then there exists a constant $C>0$ and a number $\bar{n} \in \mathbb{N}$ such that

$$
\sum_{j=1}^{n} \alpha_{j}\left\|y\left(t_{j}\right)-Y_{j}\right\|_{W}^{2} \leq C\left((\Delta t)^{2}+\sum_{i=\ell+1}^{m}\left(\lambda_{i}+\int_{0}^{T}\left|\left\langle\dot{y}(t), u_{i}\right\rangle\right|^{2} \mathrm{~d} t\right)\right)
$$

for all $n \geq \bar{n}$.

2.3 Exercises

2.1) Prove the Gronwall lemma: For $T>0$ let $\eta:[0, T] \rightarrow \mathbb{R}$ be a non-negative, differentiable function satisfying

$$
\eta^{\prime}(t) \leq \varphi(t) \eta(t)+\psi(t) \quad \text { for all } t \in[0, T]
$$

where φ and ψ are real-valued, non-negative, integrable functions on $[0, T]$. Then

$$
\eta(t) \leq \exp \left(\int_{0}^{t} \varphi(s) \mathrm{d} s\right)\left(\eta(0)+\int_{0}^{t} \psi(s) \mathrm{d} s\right) \quad \text { for all } t \in[0, T]
$$

In particular, if

$$
\eta^{\prime} \leq \varphi \eta \text { in }[0, T] \quad \text { and } \quad \eta(0)=0
$$

show that $\eta=0$ holds in $[0, T]$.
2.2) Show that the operator \mathcal{P}_{n}^{ℓ} defined in (2.18) is linear, bounded and satisfies $\left\|\mathcal{P}_{n}^{\ell}\right\|_{L\left(\mathbb{R}^{m}\right)}=1$.
2.3) Prove that the first-order necessary optimality condition for (2.12) is given by $\tilde{\mathcal{R}} \tilde{u}_{i}=\tilde{\lambda}_{i} \tilde{u}_{i}$, $1 \leq i \leq \ell$.
2.4) Show that $\tilde{\mathcal{R}}$ is linear, bounded, self-adjoint and non-negative provided $y \in H^{1}\left(0, T ; \mathbb{R}^{m}\right)$, i.e.,

$$
\int_{0}^{T}\|y(t)\|_{W}^{2}+\|\dot{y}(t)\|_{W}^{2} \mathrm{~d} t<\infty
$$

holds.

3 The linear-quadratic control problem

In this section we introduce the optimal state-feedback and the linear-quadratic regulator (LQR) problem. Utilizing dynamic programming necessary optimality conditions are derived. It turns out that for the LQR problem the state-feedback solution can be determined by solving a differential matrix Riccati equation. The presented theory is taken from the book [DAC95].

3.1 The LQR problem

The goal is to find a state-feedback control law of the form

$$
u(t)=-K x(t) \quad \text { for } t \in[0, T]
$$

with $u:[0, T] \rightarrow \mathbb{R}^{m_{u}}, x:[0, T] \rightarrow \mathbb{R}^{m_{x}}, K \in \mathbb{R}^{m_{u} \times m_{x}}$ so that u minimizes the quadratic cost functional

$$
\begin{equation*}
J(x, u)=\int_{0}^{T} x(t)^{T} Q x(t)+u(t)^{T} R u(t) \mathrm{d} t+x(T)^{T} M x(T) \tag{3.1a}
\end{equation*}
$$

where the state x and the control u are related by the linear initial value problem

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t) \text { for } t \in(0, T] \quad \text { and } \quad x(0)=x_{0} . \tag{3.1b}
\end{equation*}
$$

In (3.1a) the matrices $Q, M \in \mathbb{R}^{m_{x} \times m_{x}}$ are symmetric, positive semi-definite, $R \in \mathbb{R}^{m_{u} \times m_{u}}$ is symmetric, positive definite and in (3.1b) we have $A \in \mathbb{R}^{m_{x} \times m_{x}}, B \in \mathbb{R}^{m_{x} \times m_{u}}$ and $x_{0} \in \mathbb{R}^{m_{x}}$. The final time T is fixed, but the final state $x(T)$ is free. Thus, we aim to track the state to the state $\bar{x}=0$ as good as possible. The terms $x(t)^{T} Q x(t)$ and $x(T)^{T} M x(T)$ are measures for the control accuracy and the term $u(t)^{T} R u(t)$ measures the control effort. Problem (3.1) is called the linear-quadratic regulator problem (LQR problem).

3.2 The Hamilton-Jacobi-Bellman equation

In this section we derive first-order necessary optimality conditions for the LQR problem. Since generalizing the problem to a non-linear problem does not cause more difficulties in the deviation, we consider the problem to find a state-control feedback control law

$$
u(t)=\Phi(x(t), t), \quad t \in[0, T],
$$

such that the cost-functional

$$
\begin{equation*}
J_{t}(x, u)=\int_{t}^{T} L(x(s), u(s), s) \mathrm{d} s+g(x(T)) \tag{3.2a}
\end{equation*}
$$

is minimized subject to the non-linear system dynamics

$$
\begin{equation*}
\dot{x}(s)=F(x(s), u(s), s) \text { for } s \in(0, T] \quad \text { and } \quad x(t)=x_{t} . \tag{3.2b}
\end{equation*}
$$

We suppose that the functions $L: \mathbb{R}^{m_{x}} \times \mathbb{R}^{m_{u}} \times[0, T] \rightarrow[0, \infty)$ and $g: \mathbb{R}^{m_{x}} \rightarrow[0, \infty)$ satisfy

$$
L(0,0, s)=0 \text { for } s \in[0, T] \quad \text { and } \quad g(0)=0
$$

Moreover, let $F: \mathbb{R}^{m_{x}} \times \mathbb{R}^{m_{u}} \times[0, T] \rightarrow \mathbb{R}^{m_{x}}$ be continuous and locally Lipschitz-continuous with respect to the variable x. Moreover, $x_{t} \in \mathbb{R}^{m_{x}}$ holds. To derive optimality conditions we use the socalled Bellman principle (or dynamic programming principle). The essential assumption is that the system can be characterized by its state $x(t)$ at the time $t \in[0, T]$ which completely summarizes the effect of all $u(s)$ for $0 \leq s \leq t$. The dynamic programming principle was first proposed by Bellman [Bel52].
Theorem 3.1 (Bellman principle). Let $t \in[0, T]$. If $u^{*}(s)$ is optimal for $s \in[t, T]$ and x^{*} is the associated optimal state, starting at the state $x_{t} \in \mathbb{R}^{m_{x}}$, then $u^{*}(s)$ is also optimal over the subinterval $[t+\Delta t, T]$ for any $\Delta t \in[0, T-t]$ starting at $x_{t+\Delta t}=x^{*}(t+\Delta t)$.
Proof. We show Theorem 3.1 by contradiction. Suppose that there exists a control $u^{* *}$ so that

$$
\begin{align*}
& \int_{t+\Delta t}^{T} L\left(x^{* *}(s), u^{* *}(s), s\right) \mathrm{d} s+g\left(x^{* *}(T)\right) \\
& \quad<\int_{t+\Delta t}^{T} L\left(x^{*}(s), u^{*}(s), s\right) \mathrm{d} s+g\left(x^{*}(T)\right) \tag{3.3}
\end{align*}
$$

where

$$
\dot{x}^{*}(s)=F\left(x^{*}(s), u^{*}(s), s\right) \quad \text { and } \quad \dot{x}^{* *}(s)=F\left(x^{* *}(s), u^{* *}(s), s\right)
$$

hold for $s \in[t+\Delta t, T]$. We define the control

$$
u(s)= \begin{cases}u^{*}(s) & \text { if } s \in[t, t+\Delta t] \tag{3.4}\\ u^{* *}(s) & \text { if } s \in(t+\Delta t, T]\end{cases}
$$

By $x(s)$ we denote the state satisfying $\dot{x}(s)=F(x(s), u(s), s)$ for $s \in[t, T]$ and $x(t)=x_{t}$. Then we derive from (3.3) and (3.4) that

$$
\begin{align*}
& \int_{t}^{T} L(x(s), u(s), s) \mathrm{d} s+g(x(T)) \\
& =\int_{t}^{t+\Delta t} L\left(x^{*}(s), u^{*}(s), s\right) \mathrm{d} s+\int_{t+\Delta t}^{T} L\left(x^{* *}(s), u^{* *}(s), s\right) \mathrm{d} s+g\left(x^{* *}(T)\right) \\
& <\int_{t}^{t+\Delta t} L\left(x^{*}(s), u^{*}(s), s\right) \mathrm{d} s+\int_{t+\Delta t}^{T} L\left(x^{*}(s), u^{*}(s), s\right) \mathrm{d} s+g\left(x^{*}(T)\right) \tag{3.5}\\
& =\int_{t}^{T} L\left(x^{*}(s), u^{*}(s), s\right) \mathrm{d} s+g\left(x^{*}(T)\right)
\end{align*}
$$

Recall that $u^{*}(s)$ is optimal for $s \in[t, T]$ by assumption. From (3.5) it follows that the control u given by (3.4) yields a smaller value of the cost functional. This is a contradiction.

Next we derive the Hamilton-Jacobi-Bellman equation for (3.2). Let $V^{*}: \mathbb{R}^{m_{x}} \times[0, T] \rightarrow \mathbb{R}$ denote the minimal value function given by

$$
\begin{align*}
& V^{*}\left(x_{t}, t\right) \\
& =\min _{u:[t, T] \rightarrow \mathbb{R}^{m u}}\left\{J_{t}(x, u) \mid \dot{x}(s)=F(x(s), u(s), s), s \in(t, T] \text { and } x(t)=x_{t}\right\} \tag{3.6}
\end{align*}
$$

for $\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T]$, where

$$
J_{t}(x, u)=\int_{t}^{T} L(x(s), u(s), s) \mathrm{d} s+g(x(T)) .
$$

From the linearity of the integral and (3.6) we conclude

$$
\begin{align*}
& =\min _{u:[t, t+\Delta t] \rightarrow \mathbb{R}^{m_{u}}\left(x_{t}, t\right)}\left\{\int_{t}^{t+\Delta t} L(x(s), u(s), s) \mathrm{d} s+V^{*}(x(t+\Delta t), t+\Delta t) \mid\right. \\
& \left.\dot{x}(s)=F(x(s), u(s), s), s \in(t, t+\Delta t] \text { and } x(t)=x_{t}\right\} \tag{3.7}
\end{align*}
$$

for $\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T-\Delta t]$, where we have used the Bellman principle. Thus, by using the Bellman principle the problem of finding an optimal control over the interval $[t, T]$ has been reduced to the problem of finding an optimal control over the interval $[t, t+\Delta t]$.

Now we replace the integral in (3.7) by $L(x(t), u(t), t) \Delta t$, perform a Taylor approximation for $V^{*}(x(t+\Delta t), t+\Delta t)$ about the point $\left(x_{t}, t\right)=(x(t), t)$ and approximatex $(t+\Delta t)-x(t)$ by $F(x(t), u(t), t) \Delta t$. Then we find

$$
\begin{aligned}
V^{*}\left(x_{t}, t\right)= & \min _{u_{t} \in \mathbb{R}^{m_{u}}}\left\{L\left(x_{t}, u_{t}, t\right) \Delta t+V^{*}\left(x_{t}, t\right)+\frac{\partial V^{*}}{\partial t}\left(x_{t}, t\right) \Delta t\right. \\
& \left.+\nabla V^{*}\left(x_{t}, t\right)^{T} F\left(x_{t}, u_{t}, t\right) \Delta t+\mathcal{O}(\Delta t)\right\} \\
= & V^{*}\left(x_{t}, t\right)+\frac{\partial V^{*}}{\partial t}\left(x_{t}, t\right) \Delta t \\
& +\Delta t \min _{u_{t} \in \mathbb{R}^{m_{u}}}\left\{L\left(x_{t}, u_{t}, t\right)+\nabla V^{*}\left(x_{t}, t\right)^{T} F\left(x_{t}, u_{t}, t\right)+\frac{\mathcal{O}(\Delta t)}{\Delta t}\right\}
\end{aligned}
$$

for any $\Delta t>0$. Thus,

$$
-\frac{\partial V^{*}}{\partial t}\left(x_{t}, t\right)=\min _{u_{t} \in \mathbb{R}^{m_{u}}}\left\{L\left(x_{t}, u_{t}, t\right)+\nabla V^{*}\left(x_{t}, t\right)^{T} F\left(x_{t}, u_{t}, t\right)+\frac{\mathcal{O}(\Delta t)}{\Delta t}\right\} .
$$

Taking the limit $\Delta t \rightarrow 0$ and using $V^{*}\left(x_{t}, T\right)=g\left(x_{t}\right)$ we obtain

$$
\begin{equation*}
-\frac{\partial V^{*}}{\partial t}\left(x_{t}, t\right)=\min _{u_{t} \in \mathbb{R}^{m_{u}}}\left\{L\left(x_{t}, u_{t}, t\right)+\nabla V^{*}\left(x_{t}, t\right)^{T} F\left(x_{t}, u_{t}, t\right)\right\} \tag{3.8a}
\end{equation*}
$$

for all $\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T)$ and

$$
\begin{equation*}
V^{*}\left(x_{t}, T\right)=g\left(x_{t}\right) \tag{3.8b}
\end{equation*}
$$

for all $x_{t} \in \mathbb{R}^{m_{x}}$. System (3.8) is called the Hamilton-Jacobi-Bellman (HJB) equations.
To solve (3.8) we proceed in two steps. First we compute a solution u_{t} to

$$
u^{*}(t)=\underset{u_{t} \in \mathbb{R}^{m_{u}}}{\operatorname{argmin}}\left\{L\left(x_{t}, u_{t}, t\right)+\nabla V^{*}\left(x_{t}, t\right)^{T} F\left(x_{t}, u_{t}, t\right)\right\}
$$

and set

$$
\begin{equation*}
\Psi\left(\nabla V^{*}\left(x_{t}, t\right), x_{t}, t\right)=u^{*}(t) \tag{3.9}
\end{equation*}
$$

which gives us a control law. Then we insert (3.9) into (3.8a) and solve

$$
\begin{aligned}
-\frac{\partial V^{*}}{\partial t}\left(x_{t}, t\right)= & L\left(x_{t}, \Psi\left(\nabla V^{*}\left(x_{t}, t\right), x_{t}, t\right), t\right) \\
& +\nabla V^{*}\left(x_{t}, t\right)^{T} F\left(x_{t}, \Psi\left(\nabla V^{*}\left(x_{t}, t\right), x_{t}, t\right), t\right)
\end{aligned}
$$

for all $\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T)$. Finally, we can compute the gradient $\nabla V^{*}\left(x_{t}, t\right)$ and deduce the state-feedback law

$$
u^{*}\left(t ; x_{t}\right)=\Phi\left(x_{t}, t\right)=\Psi\left(\nabla V^{*}\left(x_{t}, t\right), x_{t}, t\right) \quad \text { for all }\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T)
$$

Remark 3.2. 1) In general, it is not possible to solve (3.8) analytically. However, for the LQR problem we can derive an explicit solution for the state-feedback law.
2) Note that the HJB equation are only necessary optimality conditions.

3.3 The state-feedback law for the LQR problem

For the LQR problem we have

$$
L\left(x_{t}, u_{t}, t\right)=x_{t}^{T} Q x_{t}+u_{t}^{T} R u_{t}, \quad g\left(x_{t}\right)=x_{t}^{T} M x_{t}, \quad F\left(x_{t}, u_{t}, t\right)=A x_{t}+B u_{t}
$$

for $\left(x_{t}, u, t\right) \in \mathbb{R}^{m_{x}} \times \mathbb{R}^{m_{u}} \times[0, T]$. For brevity, we focus on the situation, where the matrices A, B, Q, M, R are time-invariant. However, most of the presented theory also holds for the time-varying case.

First we minimize

$$
x_{t}^{T} Q x_{t}+u_{t}^{T} R u_{t}+\nabla V^{*}\left(x_{t}, t\right)^{T}\left(A x_{t}+B u_{t}\right)
$$

with respect to u_{t}. First-order necessary optimality conditions are given by

$$
u_{t}^{T} R \tilde{u}_{t}+\tilde{u}_{t}^{T} R u_{t}+\nabla V^{*}\left(x_{t}, t\right)^{T} B \tilde{u}_{t}=0 \quad \text { for all } \tilde{u}_{t} \in \mathbb{R}^{m_{u}} \text { and }\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T) .
$$

By assumption, R is symmetric and positive definite. Then we find

$$
\left(2 R u_{t}+B^{T} \nabla V^{*}\left(x_{t}, t\right)\right)^{T} \tilde{u}_{t}=0 \quad \text { for all } \tilde{u}_{t} \in \mathbb{R}^{m_{u}} \text { and }\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T)
$$

and

$$
\begin{equation*}
\bar{u}_{t}=-\frac{1}{2} R^{-1} B^{T} \nabla V^{*}\left(x_{t}, t\right) \quad \text { for all }\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T) \tag{3.10}
\end{equation*}
$$

For the minimal value function V^{*} we make the quadratic ansatz

$$
\begin{equation*}
V^{*}\left(x_{t}, t\right)=x_{t}^{\top} P(t) x_{t} \text { for }\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T), \quad P(t) \in \mathbb{R}^{m_{x} \times m_{x}} \text { symmetric. } \tag{3.11}
\end{equation*}
$$

Then, we have $\nabla V^{*}\left(x_{t}, t\right)=2 P(t) x$ so that

$$
\bar{u}_{t}=-R^{-1} B^{T} P(t) x_{t} \quad \text { for all }\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T) .
$$

Note that for all $\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T)$

$$
\begin{aligned}
\frac{\partial V^{*}}{\partial t}\left(x_{t}, t\right) & =x_{t}^{\top} \dot{P}(t) x_{t}, \\
L\left(x_{t},-R^{-1} B^{\top} P(t) x_{t}, t\right) & =x_{t}^{T} Q x_{t}+x_{t}^{T} P(t) B R^{-1} B^{T} P(t) x_{t} \\
& =x_{t}^{T}\left(Q+P(t) B R^{-1} B^{T} P(t)\right) x_{t}, \\
F\left(x_{t},-R^{-1} B^{\top} P(t) x_{t}, t\right) & =A x_{t}-B R^{-1} B^{T} P(t) x_{t}=\left(A-B R^{-1} B^{T} P(t)\right) x_{t}, \\
\nabla V^{*}\left(x_{t}, t\right) & =2 P(t) x_{t} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& -x_{t}^{T} \dot{P}(t) x_{t}=-\frac{\partial V^{*}}{\partial t}\left(x_{t}, t\right) \\
& \quad=x_{t}^{T}\left(Q+P(t) B R^{-1} B^{T} P(t)\right) x_{t}+\left(2 P(t) x_{t}\right)^{T}\left(A-B R^{-1} B^{T} P(t)\right) x_{t}
\end{aligned}
$$

for all $\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T)$, which yields

$$
\begin{aligned}
& -x_{t}^{\top} \dot{P}(t) x_{t} \\
& \quad=x_{t}^{\top}\left(Q+P(t) B R^{-1} B^{T} P(t)+2 P(t) A-2 P(t) B R^{-1} B^{T} P(t)\right) x_{t} \\
& \quad=x_{t}^{T}\left(2 P(t) A+Q-P(t) B R^{-1} B^{\top} P(t)\right) x_{t}
\end{aligned}
$$

for all $\left(x_{t}, t\right) \in \mathbb{R}^{m_{x}} \times[0, T)$. From $P(t)=P(t)^{T}$ we deduce that

$$
2 x_{t}^{\top} P(t) A x_{t}=x_{t}^{\top} P(t) A x_{t}+x_{t}^{\top} A^{\top} P(t) x_{t}=x_{t}^{T}\left(A^{\top} P(t)+P(t) A\right) x_{t} .
$$

Using $V^{*}\left(x_{t}, T\right)=x_{t}^{T} P(T) x_{t}$ and (3.8b) we get

$$
\begin{align*}
-x_{t}^{T} \dot{P}(t) x_{t} & =x_{t}^{T}\left(A^{T} P(t)+P(t) A+Q-P(t) B R^{-1} B^{T} P(t)\right) x_{t}, \quad t \in[0, T), \tag{3.12a}\\
x_{t}^{T} P(T) x_{t} & =x_{t}^{T} M x_{t} \tag{3.12b}
\end{align*}
$$

Since (3.12) holds for all $x_{t} \in \mathbb{R}^{m_{x}}$ we obtain the following matrix Riccati equation

$$
\begin{align*}
-\dot{P}(t) & =A^{T} P(t)+P(t) A+Q-P(t) B R^{-1} B^{T} P(t), \quad t \in[0, T) \tag{3.13a}\\
P(T) & =M . \tag{3.13b}
\end{align*}
$$

Finally, the optimal state-feedback is given by

$$
\bar{u}(t)=-K(t) x(t) \quad \text { and } \quad K(t)=R^{-1} B^{T} P(t) \quad \text { for all } t \in[0, T) .
$$

Example 3.3. Let us consider the problem

$$
\min \int_{0}^{T}|x(t)|^{2}+|u(t)|^{2} \mathrm{~d} t \quad \text { s.t. } \quad \dot{x}(t)=u(t) \text { for } t \in(0, T] .
$$

Choosing $m_{x}=m_{u}=1, A=M=0$ and $B=Q=R=1$ the matrix Riccati equation has the form

$$
-\dot{P}(t)=1-P(t)^{2} \text { for } t \in[0, T) \quad \text { and } \quad P(T)=0
$$

This scalar ordinary differential equation can be solved by separation of variables. Its solution is

$$
P(t)=\frac{1-e^{-2(T-t)}}{1+e^{-2(T-t)}} \quad \text { for } t \in[0, T)
$$

with the optimal control $\bar{u}(t)=-P(t) x(t)$.

3.4 Balanced truncation

Let us consider the linear time-invariant system

$$
\begin{array}{ll}
\dot{x}(t)=A x(t)+B u(t) & \text { for } t \in(0, \infty) \quad \text { and } \quad x(0)=x_{0}, \\
y(t)=C x(t) & \text { for } t \in[0, \infty), \tag{3.14b}
\end{array}
$$

where $x(t) \in \mathbb{R}^{m_{x}}$ is called the system state, $x_{0} \in \mathbb{R}^{m_{x}}$ is the initial condition of the system, $u(t) \in \mathbb{R}^{m_{u}}$ is said to be the system input and $y(t) \in \mathbb{R}^{m_{y}}$ is called the system output. The matrices A, B and C are assumed to have appropriate sizes.

It is helpful to analyze the linear system (3.14) through the Laplace transform.
Definition 3.4. Let $f(t)$ be a time-varying vector. Then its Laplace transform is defined by

$$
\begin{equation*}
\mathcal{L}[f](s)=\int_{0}^{\infty} e^{-s t} f(t) d t \quad \text { for } s \in \mathbb{R} \tag{3.15}
\end{equation*}
$$

The Laplace transform is defined for those values of s, for which (3.15) converges.
The Laplace transforms of $u(t)$ and $y(t)$ are given by

$$
\mathcal{L}[u](s)=\int_{0}^{\infty} e^{-s t} u(t) \mathrm{d} t \quad \text { and } \quad \mathcal{L}[y](s)=\int_{0}^{\infty} e^{-s t} y(t) \mathrm{d} t=C \mathcal{L}[x](s)
$$

where we have used (3.14b). Note that

$$
\begin{aligned}
\mathcal{L}[\dot{x}](s) & =\int_{0}^{\infty} e^{-s t} \dot{x}(t) \mathrm{d} t=-\int_{0}^{\infty}(-s) e^{-s t} x(t) \mathrm{d} t+\left.\left(e^{-s t} x(t)\right)\right|_{s=0} ^{s=\infty} \\
& =s \mathcal{L}[x](s)-x_{0} .
\end{aligned}
$$

Therefore, the Laplace transform of the dynamical system (3.14a) yields

$$
s \mathcal{L}[x](s)-x(0)=A \mathcal{L}[x](s)+B \mathcal{L}[u](s)
$$

which gives

$$
\mathcal{L}[x](s)=(s /-A)^{-1} x(0)+(s /-A)^{-1} B \mathcal{L}[u](s)
$$

Thus,

$$
\begin{equation*}
\mathcal{L}[y](s)=C \mathcal{L}[x](s)=C(s I-A)^{-1} x(0)+C(s I-A)^{-1} B \mathcal{L}[u](s) \tag{3.16}
\end{equation*}
$$

For $x(0)=0$ the expression (3.16) reduces to

$$
\begin{equation*}
\mathcal{L}[y](s)=G(s) \mathcal{L}[u](s) \tag{3.17}
\end{equation*}
$$

where

$$
\begin{equation*}
G(s)=C(s l-A)^{-1} B \tag{3.18}
\end{equation*}
$$

is called the transfer matrix of the system.
Given the initial state x_{0} and the input $u(t)$, the dynamical system response $x(t)$ and $y(t)$ for $t \in[0, T]$ satisfy

$$
x(t)=e^{t A} x_{0}+\int_{0}^{t} e^{(t-s) A} B u(s) d s \quad \text { and } \quad y(t)=C x(t)
$$

If $u(t)=0$ holds for all $t \in[0, T]$, we infer that

$$
x(t)=e^{\left(t-t_{1}\right) A} x\left(t_{1}\right)
$$

for any $t_{1}, t \in[0, T]$. The matrix $e^{\left(t-t_{1}\right) A}$ acts as a transformation from one state to another. Therefore, $\Phi\left(t, t_{1}\right)=e^{\left(t-t_{1}\right) A}$ is often called the state transition matrix.

Definition 3.5. The dynamical system 3.14a) or the pair (A, B) are called controllable if for any $x_{0} \in \mathbb{R}^{m_{x}}$ and final state $x_{T} \in \mathbb{R}^{m_{x}}$ there exists a (piecewise continuous) input u such that the solution to (3.14a) satisfies $x(T)=x_{T}$. Otherwise, (A, B) is said to be uncontrollable.

Controllability can be verified as stated in the next theorem. For a proof we refer to [ZDG96].
Theorem 3.6. The following claims are equivalent:

1) (A, B) are controllable.
2) The controllability gramian

$$
W_{c}(t)=\int_{0}^{t} e^{s A} B B^{T} e^{s A^{T}} \mathrm{~d} s
$$

is positive definite for every $t>0$.
3) The controllability matrix

$$
\mathcal{C}=\left[\begin{array}{lllll}
B & A B & A^{2} B & \ldots & A^{m_{x}-1} B
\end{array}\right] \in \mathbb{R}^{m_{x} \times\left(m_{x} m_{u}\right)}
$$

has full rank.
Definition 3.7. 1) The unforced system $\dot{x}(t)=A x(t)$ is called stable, if the eigenvalues of A are in the open left half plane, i.e., $\Re e \lambda<0$ for every eigenvalue λ. A matrix with this property is said to be stable or Hurwitz.
2) The dynamical system 3.14a) or (A, B) are called stabilizable if there exists a state-feedback $u(t)=-K x(t)$ so that $A-B K$ is stable.

The next result, which is proved in [ZDG96], is a consequence of Theorem 3.6.

Theorem 3.8. The following claims are equivalent:

1) (A, B) are stabilizable.
2) The matrix $[A-\lambda / B] \in \mathbb{R}^{m_{x} \times\left(m_{\times}+m_{u}\right)}$ has full row rank for all $\lambda \in \mathbb{C}$ with a negative real part, i.e., $\Re e \lambda<0$.

Let us now consider the dual notions of observability.
Definition 3.9. The dynamical system (3.14) or (A, C) are called observable if for any $t_{1} \in(0, T]$, the initial condition $x_{0} \in \mathbb{R}^{m_{x}}$ can be determined from the time history of the input $u(t)$ and the output $y(t)$ in the interval $\left[0, t_{1}\right] \subset[0, T]$. Otherwise, the system or (A, C) is said to be unobservable.

For a proof of the next theorem we refer the reader to [ZDG96].
Theorem 3.10. The following claims are equivalent:

1) (A, C) is observable.
2) The observability gramian

$$
W_{o}(t)=\int_{0}^{t} e^{s A^{T}} C^{T} C e^{s A} d s
$$

is positive definite for every $t>0$.
(3) The observability matrix

$$
\mathcal{O}=\left(\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{m_{x}-1}
\end{array}\right) \in \mathbb{R}^{\left(m_{x} m_{y}\right) \times m_{x}}
$$

has full rank.
We set

$$
W_{c}=\int_{0}^{\infty} e^{s A} B B^{T} e^{s A^{T}} d s \text { and } W_{o}=\int_{0}^{\infty} e^{s A^{T}} C^{T} C e^{s A} d s
$$

It can be proved that W_{c} and W_{o} can be determined numerically by solving the Lyapunov equations

$$
\begin{align*}
& A W_{c}+W_{c} A^{T}+B B^{T}=0 \in \mathbb{R}^{n_{x} \times n_{x}}, \tag{3.19a}\\
& A^{T} W_{o}+W_{o} A+C^{T} C=0 \in \mathbb{R}^{n_{x} \times n_{x}} \tag{3.19b}
\end{align*}
$$

The controllability gramian is a measure to what degree each state is excited by an input. Suppose that $x_{1}, x_{2} \in \mathbb{R}^{n_{x}}$ are two states with $\left\|x_{1}\right\|_{\mathbb{R}^{n_{x}}}=\left\|x_{2}\right\|_{\mathbb{R}^{n_{x}}}$. If $x_{1}^{T} W_{c} x_{1}>x_{2}^{\top} W_{c} x_{2}$ holds, then we say that the state x_{1} is more controllable than x_{2}. This means, it takes a smaller input to drive the system from x_{0} to x_{1} than to x_{2}. It can be proved that the gramian W_{c} is positive definite if and only if all states are reachable with some input u. On the other hand, the observability gramian W_{o} is a measure to what degree each state excites future outputs y. Let x_{0} be an initial state. If $u=0$ holds, we have

$$
\begin{aligned}
\|y\|_{L^{2}\left(0, \infty ; \mathbb{R}^{m y}\right)}^{2} & =\int_{0}^{\infty} y(s)^{T} y(s) \mathrm{d} s=\int_{0}^{\infty} x(s)^{T} C^{T} C x(s) \mathrm{d} s \\
& =\int_{0}^{\infty} x_{0}^{T} e^{s A^{T}} C^{T} C e^{s A} x_{0} d s=x_{0}^{T} W_{0} x_{0} .
\end{aligned}
$$

We say that the state x_{1} is more observable than another state x_{2} if the corresponding output $y_{1}=C x_{1}$ yields a larger value of the L^{2}-norm than for $y_{2}=C x_{2}$

The gramians depend on the coordinates. Suppose that

$$
\begin{equation*}
x=\mathcal{T} z \tag{3.20}
\end{equation*}
$$

where $\mathcal{T} \in \mathbb{R}^{n_{x} \times n_{x}}$ is a regular matrix. Then we obtain instead of (3.14) the system

$$
\begin{align*}
& \dot{z}(t)=\tilde{A} z(t)+\tilde{B} u(t) \text { for } t \in(0, \infty) \quad \text { and } \quad z(0)=z_{0}, \tag{3.21a}\\
& y(t)=\tilde{C} z(t) \quad \text { for } t \in[0, \infty) \tag{3.21b}
\end{align*}
$$

with

$$
\tilde{A}=\mathcal{T}^{-1} A \mathcal{T}, \quad \tilde{B}=\mathcal{T}^{-1} B, \quad \tilde{C}=C \mathcal{T}, \quad z_{0}=\mathcal{T}^{-1} \chi_{0}
$$

Let W_{c} solve (3.19a). The controllability gramian \tilde{W}_{c} for (3.21) satisfies

$$
\tilde{A} \tilde{W}_{c}+\tilde{W}_{c} \tilde{A}^{T}+\tilde{B} \tilde{B}^{T}=0
$$

i.e.,

$$
\begin{equation*}
\mathcal{T}^{-1} A \mathcal{T} \tilde{W}_{c}+\tilde{W}_{c} \mathcal{T}^{\top} A^{T} \mathcal{T}^{-T}+\mathcal{T}^{-1} B B^{T} \mathcal{T}^{-T}=0 \tag{3.22}
\end{equation*}
$$

Multiplying (3.22) by \mathcal{T} from the left and by \mathcal{T}^{\top} from the right yields

$$
\begin{equation*}
A \mathcal{T} \tilde{W}_{c} \mathcal{T}^{T}+\mathcal{T} \tilde{W}_{c} \mathcal{T}^{\top} A^{T}+B B^{T}=0 \tag{3.23}
\end{equation*}
$$

From (3.19a) and (3.23) we infer that $W_{c}=\mathcal{T} \tilde{W}_{c} \mathcal{T}^{\top}$ holds. Thus, the coordinate transformation (3.20) implies that the controllability gramian W_{c} is transformed as

$$
W_{c} \mapsto \tilde{W}_{c}=\mathcal{T}^{-1} W_{c} \mathcal{T}^{-T} .
$$

Now we suppose that W_{0} solves (3.19b). The observability gramian \tilde{W}_{0} for (3.21) satisfies

$$
\tilde{A}^{\top} \tilde{W}_{o}+\tilde{W}_{o} \tilde{A}+\tilde{C}^{\top} \tilde{C}=0
$$

i.e.,

$$
\begin{equation*}
\mathcal{T}^{\top} A^{\top} \mathcal{T}^{-T} \tilde{W}_{o}+\tilde{W}_{o} \mathcal{T}^{-1} A \mathcal{T}+\mathcal{T}^{T} C^{T} C \mathcal{T}=0 \tag{3.24}
\end{equation*}
$$

Multiplying (3.22) by \mathcal{T}^{-T} from the left and by \mathcal{T}^{-1} from the right yields

$$
\begin{equation*}
A^{T} \mathcal{T}^{-T} \tilde{W}_{o} \mathcal{T}^{-1}+\mathcal{T}^{-T} \tilde{W}_{o} \mathcal{T}^{-1} A+C^{T} C=0 \tag{3.25}
\end{equation*}
$$

From (3.19b) and (3.25) we infer that $W_{o}=\mathcal{T}^{-\top} \tilde{W}_{o} \mathcal{T}^{-1}$ holds. Thus, the coordinate transformation (3.20) implies that the observability gramian W_{0} is transformed as

$$
W_{o} \mapsto \tilde{W}_{o}=\mathcal{T}^{T} W_{o} \mathcal{T}
$$

The goal is to find a transformation \mathcal{T} such that

$$
\begin{equation*}
\mathcal{T}^{-1} W_{c} \mathcal{T}^{-T}=\mathcal{T}^{\top} W_{o} \mathcal{T}=\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{m_{x}}\right) \tag{3.26}
\end{equation*}
$$

The elements $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{m_{x}}$ are called Hankel singular values of the system. They are independent of the coordinate system. It can be shown that a regular matrix \mathcal{T} which satisfies (3.26) exists if the system is controllable and observable, i.e., the matrices W_{c} and W_{o} are positive definite. The coordinate transformation \mathcal{T} is said to be a balancing transformation. Computing appropriately scaled eigenvalues of the product $W_{c} W_{o}$, the matrix \mathcal{T} can be determined. In the balanced coordinates, the states which are least influenced by the input u also have least influence on the output y. In balanced truncation the least controllable and observable states having little effect on the input-output performance are truncated.

Instead of (3.21) we only consider the system for the first $\ell \in\left\{1, \ldots, m_{x}\right\}$ components of z :

$$
\begin{array}{ll}
\dot{z}_{\ell}(t)=\tilde{A}_{\ell} z_{\ell}(t)+\tilde{B}_{\ell} u(t) \text { for } t \in(0, \infty) & \text { and } \\
y_{\ell}(t)=z_{\ell}(0)=z_{0 \ell}, \tag{3.27b}\\
z_{\ell}(t) & \text { for } t \in[0, \infty),
\end{array}
$$

where

$$
\tilde{A}=\left(\begin{array}{c|c}
\tilde{A}_{\ell} & * \\
\hline * & *
\end{array}\right), \quad \tilde{B}=\binom{\tilde{B}_{\ell}}{\hline *}, \quad \tilde{C}=\left(\tilde{C}_{\ell} \mid *\right), \quad z_{0 \ell}=\binom{\tilde{z}_{0 \ell}}{\hline *},
$$

and $\tilde{A}_{\ell} \in \mathbb{R}^{\ell \times \ell}, \tilde{B}_{\ell} \in \mathbb{R}^{\ell \times m_{u}}, \tilde{C}_{\ell} \in \mathbb{R}^{m_{y} \times \ell}$ and $z_{0 \ell} \in \mathbb{R}^{\ell}$.
One big advantage of balanced truncation is that a-priori error bounds are known. These bounds are formulated for the transfer function. Suppose that $G(s)=C(s /-A)^{-1} B \in \mathbb{R}^{m_{y} \times m_{u}}$ is the transfer function of the system (3.14) and $G_{\ell}(s)=C_{\ell}\left(s /-A_{\ell}\right)^{-1} B_{\ell} \in \mathbb{R}^{m_{y} \times m_{u}}$ is the transfer function of the reduced system (3.27). Then we have

$$
\left\|G-G_{\ell}\right\|=\max \left\{\left\|\left(G-G_{\ell}\right) u\right\|_{L^{2}\left(0, \infty ; \mathbb{R}^{m_{y}}\right)}:\|u\|_{L^{2}\left(0, \infty ; \mathbb{R}^{m_{u}}\right)}=1\right\}>\sigma_{\ell+1}
$$

and

$$
\left\|G-G_{\ell}\right\|<2 \sum_{i=\ell+1}^{m_{x}} \sigma_{i} .
$$

3.5 Exercises

Let us consider the one-dimensional heat equation

$$
\begin{array}{rlrl}
\theta_{t}(t, x) & =\theta_{x x}(t, x)+u(t) \chi(x) & & \text { for all }(t, x) \in Q=(0, T) \times \Omega, \\
\theta_{x}(t, 0)=\theta_{x}(t, 1) & =0 & & \text { for all } t \in(0, T), \\
& \theta(0, x) & =\theta_{0}(x) & \tag{3.28c}\\
\text { for all } x \in \Omega=(0,1) \subset \mathbb{R},
\end{array}
$$

where $\theta=\theta(t, x)$ is the temperature, $u=u(t)$ the control input, $\chi=\chi(x)$ a given control shape function and $\theta_{0}=\theta_{0}(x)$ a given initial condition.
3.1) Apply a classical finite difference approximation for the spatial variable \times (compare Example 1.11) and derive the finite-dimensional initial value problem for the finite difference approximations.
3.2) Utilizing the trapezoidal rule deduce a discretization for the quadratic cost functional

$$
J(\theta, u)=\frac{1}{2} \int_{\Omega}\left|\theta(T, x)-\theta_{T}(x)\right|^{2} \mathrm{~d} x+\frac{\kappa}{2} \int_{0}^{T}|u(t)|^{2} \mathrm{~d} t,
$$

where $\theta_{T}=\theta_{T}(x)$ is a given desired terminal state and $\kappa>0$ denotes a fixed regularization parameter.
3.3) Formulate the matrix Riccati equation for the discretized quadratic cost functional - see part 3.2) - and the discretized heat equation - see part 3.1).
3.4) What is the matrix Riccati equation in the case if we apply a POD Galerkin approximation instead of a finite difference discretization? How can we solve the matrix Riccati equation numerically?

Literaturverzeichnis

[Bel52] R.E. Bellman. The theory of dynamic programming. Proc. Nat. Acad. Sci., USA, 38:716-719, 1952.
[DR08] W. Dahmen and A. Reusken. Numerik für Ingenieure und Naturwissenschaftler. 2nd edition, Springer-Verlag Berlin, 2008.
[DR11] R. Denk und R. Racke. Kompendium der Analysis. Band 1: Differential- und Integralrechnung, Gewöhnliche Differentialgleichungen. Vieweg+Teubner Verlag, Springer Fachmedien Wiesbaden GmbH, 2011.
[DAC95] P. Dorato, C. Abdallah, and V. Cerone. Linear-Quadratic Control. An Introduction. Prentice Hall, Englewood Cliffs, New Jersey 07632, 1995.
[HLBR12] P. Holmes, J.L. Lumley, G. Berkooz and C.W. Rowley. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics, Cambridge University Press, 1996.
[KV07] M. Kahlbacher and S. Volkwein. Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems. Discussiones Mathematicae: Differential Inclusions, Control and Optimization, 27:95-117, 2007.
[Ka80] T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1980.
[KV99] K. Kunisch and S. Volkwein. Control of Burgers' equation by a reduced order approach using proper orthogonal decomposition. Journal on Optimization Theory and Applications, 102, 345-371, 1999.
[KV01] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for parabolic problems. Numerische Mathematik, 90:117-148, 2001.
[KV02a] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM Journal on Numerical Analysis, 40:492-515, 2002.
[KV02b] K. Kunisch and S. Volkwein. Crank-Nicolson Galerkin proper orthogonal decomposition approximations for a general equation in fluid dynamics. Proceedings of the 18th GAMM Seminar on Multigrid and related methods for optimization problems, Leipzig, 97-114, 2002.
[RS80] M. Reed and B. Simon. Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York, 1980.
[Row05] C.W. Rowley. Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. on Bifurcation and Chaos, 15:997-1013, 2005.
[Sir87] L. Sirovich. Turbulence and the dynamics of coherent structures, parts I-III. Quarterly of Applied Mathematicss, XLV:561-590, 1987.
[ZDG96] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall,

Upper Saddle River, New Jersey, 07458, 1996.

