Parameter-Elliptic Boundary Value Problems and
their Formal Asymptotic Solutions

ROBERT DENK AND LEONID VOLEVICH*

Abstract. We consider boundary value problems for mixed-order systems of partial
differential operators which depend on a complex parameter but which are not parameter-
elliptic in the sense of Agmon and Agranovich—Vishik. Such systems are closely related
to the theory of singularly perturbed problems. Under the condition of so-called weak
parameter-ellipticity it is possible to construct the formal asymptotic solution which
shows, in particular, the existence of boundary layers.

1 Introduction

Let A(D) = (Aij(D))ijzl v be a matrix of partial differential operators and
suppose that this matrix is eiliptic in the sense of Douglis and Nirenberg. In this
case there exist 2N integers si,...,Sn,%1,...,tn such that ord A;; < s; + ¢5.
We will assume in the following that s; and ¢; are nonnegative. Without loss of
generality we can suppose that the sequence r; := s; + ¢; is nonincreasing (in the
opposite case we change the indexing of lines and rows). Let AY;(D) denote the
principal part of the operator A;;(D) in the sense of Douglis—Nirenberg (we have
AY; = 0if ord Ag; < s; + t;). Ellipticity then means that det A°(€) # 0 for all
¢ e R"\ {0} where A°(¢) := (A?j(ﬁ))ivj stands for the principal symbol of A(D).

The aim of the present paper is to investigate boundary value problems for the
parameter-dependent operator matrix given by

An(D) - An(D)
A(D, ) = : : = A(D) — A\Ey (1.1)
Ani(D) -+ Axn(D) — A

and supplemented with general mixed-order boundary conditions. Here E stands
for the N x N matrix which differs from the zero matrix only in the element at
position (N, N) which equals 1.

There are several reasons for studying the parameter-dependent matrix (1.1) (see
[DV00], Section 1). We only want to point out one reason. In the case of constant
order matrices, the theory of ellipticity with parameter as it was developed in the
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sixties by Agmon [A62], Agranovich—Vishik [AV64] and others can be applied to
the matrix A(D) — Al x (where Iy denotes the N-dimensional identity matrix). It
was also remarked by Agranovich in [A90] that in the case of mixed order systems
for which all numbers r; are equal we can adjust a definite weight to the parameter
A. This again makes it possible to apply the theory of parameter-ellipticity (see
also the book of Roitberg [R96] for parameter-elliptic Douglis—Nirenberg systems).

The case where some of the numbers 7; are different is much more complicated and
was treated by Kozhevnikov [K96] and by the authors [DMV98]. In these papers
one can find several (equivalent) definitions of ellipticity with parameter for the
matrix A(D) — Al which lead to solvability results and to a priori estimates.
Roughly speaking, A(D) — My is elliptic with parameter if all submatrices of
the form Ay (D) — AE) are weakly parameter-elliptic in the sense defined below,
where we have set Ag)(D) := (Aij(D))m:l)wk. This definition (also called the
condition of elliptic principal minors) is essentially due to Kozhevnikov; for other
descriptions we refer to [DMV98].

In [DV0O0] boundary value problems for systems with structure very close to (1.1)
were investigated. Here the concept of weak parameter-ellipticity for such operator
matrices and corresponding boundary value problems was introduced and a priori
estimates in certain parameter-dependent Sobolev spaces were obtained. In the
present paper we want to show that the conditions appearing in the definition
of weak parameter-ellipticity are very natural from the point of view of singular
perturbation theory (here ) is replaced by e ~! with a small positive parameter ¢),
see , e.g., [VL57], [N81], [I89]. In particular, these conditions allow us to construct
the so-called formal asymptotic solutions. For simplicity, we will only consider
operators with constant coefficients and without lower order terms acting in the
whole space or in the half-space R} := {z = (2/,z,) € R" : z,, > 0}. The same
definitions and results hold for operators with variable coeflicients acting on a
bounded domain or on a compact manifold with boundary.

2 Weakly parameter-elliptic boundary value problems

We start with the definition of weak parameter-ellipticity for the matrix (1.1). As
above, we assume that r; are nonincreasing and that ry_1 > ry. We fix a closed
sector £ C C with vertex at the origin.

Definition 2.1. Let A(D, \) be of the form (1.1). Then A(D, \) is called weakly
parameter-elliptic in £ if the inequality

| det(A°(€) — AEN)| > Clg| T Trv=1(jg| + AIV™)™ (€€ R™, A€ L) (2.1)

holds, where here and in the following the letter C' denotes an unspecified constant
independent of £ and A.
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Scalar polynomials in £ and \ satisfying an estimate of the form (2.1) were treated
in [DMV00a], [DMV00b]. It is not difficult to see that (2.1) holds if and only if
A(€) is elliptic in the sense of Douglis-Nirenberg, the same holds for A y_1)(£),
and det(A°(£) — AEx) does not vanish for all £ € R™\ {0} and all A € £\ {0}.
From this we obtain in the case n > 3 that the numbers r; are even, for n = 2 we
will assume this in the following.

Now let us assume that A(D,\) acts on the half-space R}. The partial Fourier
transform with respect to the first n — 1 variables reduces this operator to the
ordinary differential operator A(¢’, Dp, A) (with & = (&1,...,&,—1) and D, =
—10/0xy,).

Lemma 2.1. Let A(D, \) be weakly parameter-elliptic in L.
a) For & #0 and \ € L the ordinary differential equation on the half-line

Ao(gl,DmA)w(xn) =0 (zn>0)

has exactly Ry solutions which tend to zero for x, — oco. Here we have set R; :=
(ri+---+r;)/2 forj=1,...,N.

b) For A € L\ {0} the ordinary differential equation in Ry
A%0,Dp, Nw(z,) =0 (2, > 0) (2.2)

has exactly rn /2 solutions which tend to zero for x, — +oo.

Proof. The dimension of the space of asymptotically stable solutions (i.e. solutions
which tend to zero for x,, — o0) in the case a) and b), respectively, coincides
with the number of zeros of det A°(¢’,-,\) and det A°(0, -, \), respectively, with
positive imaginary part, counted with multiplicities. As the first determinant has
2Ry zeros in C and no real zeros, it follows by standard homotopy argument that
it has half of its zeros in C4 := {z € C : Imz > 0}. For the second determinant
we use
det A°(0,7,A) = det A°(0,7) — Adet Ay _1,(0,7).
As both determinants are homogeneous and elliptic polynomials, there are con-
stants aj,az € C such that det A°(0,7) = a;7"7 "™~ and det A?Nil)(O,T) =
a1 FTN-1 . Therefore the zeros in Cy of det A°(0,7,)) are the zeros of the
equation
a1T™N —ay =0 in Cy.

As the last equation has no real zeros due to the condition of weak parameter-
ellitpicity and as ry is even, it has exactly rn/2 zeros in C;. ([l

Let us assume that we have a matrix of boundary operators of the form

B(D) = (Bjx(D));
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where for the boundary conditions the inequality ord Bj; < m; + t; holds, where
mi,..., Mg, are integer numbers satisfying m; <--- < mp, and

mp, <mpg,+1 (k=1,...,N—1).
The principal part BY of B is defined in the same way as for A. We also set

Bnv-1)(D) := (Bjx(D))j=1,..Rx -
k=1,..,N—1

The following definition is essentially taken from [DV00].

Definition 2.2. The boundary value problem (A(D, ), B(D)) is called weakly
parameter-elliptic in £ if the following conditions are satisfied:

(i) A(D, \) is weakly parameter-elliptic in £ in the sense of Definition 2.1.

(ii) For every & € R"" 1\ {0}, A € £ and every g = (g1,...,9ry) € CEN the

boundary value problem in R

A%E Dy, Nw(zy,) =0 (z,>0), (2.3)
B¢, Da)wlaa)|, _y = 9,
w(z,) — 0 for z, — o

has a unique solution.

(iii) For every ¢ € R*~1\{0} and every h € CE~-1 the problem
A?N_l)(f',Dn)v(a:n) =0 (z,>0), (2.5)
B?N—1)(§/aDn)U($n)‘In:0 =h, (2.6)

v(z,) — 0 for x, — oo
has a unique solution.
(iv) For every every vector h € C"™V/2 and every A € £ with |A| = 1 the problem
A%(0, Dy, \)v(a) =0 (z,>0), (2.7)
B?N,l..N)(OvDn)v(xn)hnzo = h, (2.8)

v(x,) — 0 for z, — o0
has a unique solution. Here we have set

Bn,1.n)(D) == (B (D))iill%zv—l-‘rl,..-,RN-

Note that conditions (i) and (ii) in the above definition are very natural and
correspond to similar conditions in traditional elliptic theory. Conditions (iii) and
(iv) are connected with the case ¢’ = 0 where the analog of (ii) does not hold.
In the next section the meaning of these two conditions will become clear in the
context of singular perturbation theory.
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3 Formal asymptotic solutions

Consider the boundary value problem

A(D, \u =0, (3.1)
B(D)u=g (3.2)

in the half-space R’} where we assume throughout this section that (A, B) are
weakly parameter-elliptic in the sense of Definition 2.2 with £ = [0,00). Setting
A =" and multiplying the last equation of the system (3.1) by "™, we obtain
the system

A (Dyu(2’,2,) =0 (z, > 0) (3.3)

where A.(D) := diag(1,...,1,e"™V)A(D) — Ey. For simplicity, let us now assume
that all operators coincide with their principal parts. We are interested in the case
of € — 0; more precisely, our goal is to find the formal asymptotic solution (FAS)

Zelum(x, e),
1=0

i.e. the formal power series in € for which the partial sums satisfy (3.3),(3.2) up to
an arbitrary power of €. The construction of the FAS will show the boundary layer
structure of the solution of (3.3),(3.2) and give a deeper insight to the conditions
of Definition 2.2. It seems to us that this construction cannot be found in literature
for the boundary value problem considered here.

Following the Lyusternik-Vishik method, we will construct the FAS as the sum of
the so-called exterior expansion

u(z,e) = Zalu(l)(x) (3.4)
1=0
and the so-called interior expansion or boundary layer
v(z', /e ) = ZEZOH diag(e®, ..., ™) (2 z, /¢.) (3.5)
1=0

The number [y will be chosen later.

We will now show that, due to the conditions of weak parameter-ellipticity, it is
possible to describe () and v(*) as the solutions of boundary value problems which
appear in the definition of weak parameter-ellipticity and for which the right-hand
sides can be computed recursively.
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(i) Differential equations for the exterior expansion. Substituting (3.4) into (3.3)

0 — (ugl) ug\l,) 1) we obtain

. Ain (D)
> ¢ Av—y(Dy'Y + : uy | =0,
An_1.n(D)

¢ TNZANJ W ) <o

Equate to zero all terms correspondlng to the same power of £ we obtain the
relations

and posing u

=0

uly) = =3 Ay (D)l (3.6)
A n(D)
A-1y(D)u'V = - : W) = F@©®, .. ul=v), (3.7)
An_1,n(D)

(i) Differential equations for the interior expansion. Pose t = x,, /e. Then

1
A (D)yv(z' 2 /e,e) = A (D', th)’U(CB/,t,E)
= [diag(e™',...,e *N "1, ") A(eD’, Dy)diag(e ", ...,e" ") — Ex]u(a/,t,€).

Multiplying this by diag(e®!,...,e*¥-1 e~ *~) from the left and replacing v(x,t,¢€)
by the expansion (3.5), we obtain from (3.3) the equation

S ety (AeD!, Dy) — En)® = 0. (3.8)

Now we use the Taylor expansion of A(eD’, D;) with respect to eD’ which is of
the form

A(eD', D) = A(0,Dy) + > €l™Al)(0, D)D" Jal = A(0, Dy) + Y e*Ci(D)
la|>1 E>1
and substitute this into (3.8). We get the recurrence relations
A0, D)o (2 1) = = Cu(D) R (3.9)
E>1

Note that the left-hand sides of (3.7) and (3.9) coincide with the operators appear-
ing in conditions (iii) and (iv), respectively, of the definition of weak parameter-

ellipticity. So we see that the vector functions w’ (l),u(l) and v can be found
recursively, provided that we know the boundary values

gy =B;(D)'V(',0), j=1,...,Rx_1, 1=01,...
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and
g9y = B;j(0,D)v" (2,0), j=Rn_1+1,...,Rny, 1=0,1,....

(Note that due to Definition 2.2 in the case of constant coefficients and no lower
order terms the boundary value problems for u(¥) and v") are uniquely solvable.
In the case of variable coefficients the question of unique solvability is nontrivial;
we hope to discuss this in a future paper.)

(iii) Boundary conditions. First of all note that
oo
B;(D)u(a',0,¢) = > _&'B;(D)u(a',0). (3.10)
1=0

For the inner expansion we argue as before and get

> 1

Bj(D)v(a',0,¢) = Y &t B;(D, th)diag(stl, e o)
=0
oo

=Y ethomig(eD’, D)v®(a',0).
=0

Replacing Bj(eD’, Dy) by
B;(0,Dy) + Y £*Cy(D)
k=1
and gathering terms with the same power of ¢ we finally obtain

Bj(D)v(xlv 0, 5) = Z sl |:BJ (07 Dt)v(lilOdHnj)(x/a O)
l:lofmj (3.11)

+ Oy (D)oot mi=1 (47 o) 4 . }

Now we pose lp = mpg,y_,+1. According to our assumption Iy > m; holds for

j=1,...,Ry_1, and the first Ry_1 boundary conditions are of the form
By (D)ul)(&',0) = gy @) + By(0, Do+ at0)
+ Cy (D) —lotmi=D ! 0y 4 ...
If we already know u*) and v®*) for k = 1,...,] — 1 this gives us the value of
B; (D)W (2',0), j=1,...,Rn_1.
Using the system (3.7) and these boundary conditions we can define v’ ® and,

consequently, u(®.
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For j = Ry_1 + 1 equation (3.12) gives

B;(0, D)o (2,0) = Suigr — B;(D)u (2/,0) = > Cr(D)0!' M (a’,0).
k>1

To find the boundary conditions for j > Ry_1 + 1, we apply the operator B;(D)
to the term obtained from equating to zero the coefficient before !+ fn-1+1=J I
this way we get for j = Ry_1+2,..., Ry

Bj(0, D)o = 6014 Ry, +1-j00 — B (D)u TN N (D)o R
k>1

Now we can find v and continue our process.
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