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Abstract. We consider boundary value problems for mixed-order systems of partial
differential operators which depend on a complex parameter but which are not parameter-
elliptic in the sense of Agmon and Agranovich–Vishik. Such systems are closely related
to the theory of singularly perturbed problems. Under the condition of so-called weak
parameter-ellipticity it is possible to construct the formal asymptotic solution which
shows, in particular, the existence of boundary layers.

1 Introduction

Let A(D) =
(
Aij(D)

)
i,j=1,...,N

be a matrix of partial differential operators and
suppose that this matrix is elliptic in the sense of Douglis and Nirenberg. In this
case there exist 2N integers s1, . . . , sN , t1, . . . , tN such that ordAij ≤ si + tj .
We will assume in the following that si and ti are nonnegative. Without loss of
generality we can suppose that the sequence ri := si + ti is nonincreasing (in the
opposite case we change the indexing of lines and rows). Let A0

ij(D) denote the
principal part of the operator Aij(D) in the sense of Douglis–Nirenberg (we have
A0

ij = 0 if ordAij < si + tj). Ellipticity then means that detA0(ξ) 6= 0 for all
ξ ∈ Rn \ {0} where A0(ξ) :=

(
A0

ij(ξ)
)
i,j

stands for the principal symbol of A(D).

The aim of the present paper is to investigate boundary value problems for the
parameter-dependent operator matrix given by

A(D,λ) :=

A11(D) · · · A1N (D)
...

...
AN1(D) · · · ANN (D)− λ

 = A(D)− λEN (1.1)

and supplemented with general mixed-order boundary conditions. Here EN stands
for the N × N matrix which differs from the zero matrix only in the element at
position (N,N) which equals 1.

There are several reasons for studying the parameter-dependent matrix (1.1) (see
[DV00], Section 1). We only want to point out one reason. In the case of constant
order matrices, the theory of ellipticity with parameter as it was developed in the
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sixties by Agmon [A62], Agranovich–Vishik [AV64] and others can be applied to
the matrix A(D)−λIN (where IN denotes the N -dimensional identity matrix). It
was also remarked by Agranovich in [A90] that in the case of mixed order systems
for which all numbers ri are equal we can adjust a definite weight to the parameter
λ. This again makes it possible to apply the theory of parameter-ellipticity (see
also the book of Roitberg [R96] for parameter-elliptic Douglis–Nirenberg systems).

The case where some of the numbers rj are different is much more complicated and
was treated by Kozhevnikov [K96] and by the authors [DMV98]. In these papers
one can find several (equivalent) definitions of ellipticity with parameter for the
matrix A(D) − λIN which lead to solvability results and to a priori estimates.
Roughly speaking, A(D) − λIN is elliptic with parameter if all submatrices of
the form A(k)(D)− λEk are weakly parameter-elliptic in the sense defined below,
where we have set A(k)(D) :=

(
Aij(D)

)
i,j=1,...,k

. This definition (also called the
condition of elliptic principal minors) is essentially due to Kozhevnikov; for other
descriptions we refer to [DMV98].

In [DV00] boundary value problems for systems with structure very close to (1.1)
were investigated. Here the concept of weak parameter-ellipticity for such operator
matrices and corresponding boundary value problems was introduced and a priori
estimates in certain parameter-dependent Sobolev spaces were obtained. In the
present paper we want to show that the conditions appearing in the definition
of weak parameter-ellipticity are very natural from the point of view of singular
perturbation theory (here λ is replaced by ε−1 with a small positive parameter ε),
see , e.g., [VL57], [N81], [I89]. In particular, these conditions allow us to construct
the so-called formal asymptotic solutions. For simplicity, we will only consider
operators with constant coefficients and without lower order terms acting in the
whole space or in the half-space Rn

+ := {x = (x′, xn) ∈ Rn : xn > 0}. The same
definitions and results hold for operators with variable coefficients acting on a
bounded domain or on a compact manifold with boundary.

2 Weakly parameter-elliptic boundary value problems

We start with the definition of weak parameter-ellipticity for the matrix (1.1). As
above, we assume that ri are nonincreasing and that rN−1 > rN . We fix a closed
sector L ⊂ C with vertex at the origin.

Definition 2.1. Let A(D,λ) be of the form (1.1). Then A(D,λ) is called weakly
parameter-elliptic in L if the inequality∣∣ det(A0(ξ)− λEN )

∣∣ ≥ C|ξ|r1+···+rN−1(|ξ|+ |λ|1/rN )rN (ξ ∈ Rn, λ ∈ L) (2.1)

holds, where here and in the following the letter C denotes an unspecified constant
independent of ξ and λ.
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Scalar polynomials in ξ and λ satisfying an estimate of the form (2.1) were treated
in [DMV00a], [DMV00b]. It is not difficult to see that (2.1) holds if and only if
A(ξ) is elliptic in the sense of Douglis–Nirenberg, the same holds for A(N−1)(ξ),
and det(A0(ξ) − λEN ) does not vanish for all ξ ∈ Rn \ {0} and all λ ∈ L \ {0}.
From this we obtain in the case n ≥ 3 that the numbers rj are even, for n = 2 we
will assume this in the following.

Now let us assume that A(D,λ) acts on the half-space Rn
+. The partial Fourier

transform with respect to the first n − 1 variables reduces this operator to the
ordinary differential operator A(ξ′, Dn, λ) (with ξ′ = (ξ1, . . . , ξn−1) and Dn =
−i∂/∂xn).

Lemma 2.1. Let A(D,λ) be weakly parameter-elliptic in L.
a) For ξ′ 6= 0 and λ ∈ L the ordinary differential equation on the half-line

A0(ξ′, Dn, λ)w(xn) = 0 (xn > 0)

has exactly RN solutions which tend to zero for xn →∞. Here we have set Rj :=
(r1 + · · ·+ rj)/2 for j = 1, . . . , N .

b) For λ ∈ L \ {0} the ordinary differential equation in R+

A0(0, Dn, λ)w(xn) = 0 (xn > 0) (2.2)

has exactly rN/2 solutions which tend to zero for xn → +∞.

Proof. The dimension of the space of asymptotically stable solutions (i.e. solutions
which tend to zero for xn → ∞) in the case a) and b), respectively, coincides
with the number of zeros of det A0(ξ′, ·, λ) and detA0(0, ·, λ), respectively, with
positive imaginary part, counted with multiplicities. As the first determinant has
2RN zeros in C and no real zeros, it follows by standard homotopy argument that
it has half of its zeros in C+ := {z ∈ C : Im z > 0}. For the second determinant
we use

det A0(0, τ, λ) = det A0(0, τ)− λ det A0
(N−1)(0, τ) .

As both determinants are homogeneous and elliptic polynomials, there are con-
stants a1, a2 ∈ C such that detA0(0, τ) = a1τ

r1+···+rN and detA0
(N−1)(0, τ) =

a2τ
r1+···+rN−1 . Therefore the zeros in C+ of det A0(0, τ, λ) are the zeros of the

equation
a1τ

rN − a2 = 0 in C+.

As the last equation has no real zeros due to the condition of weak parameter-
ellitpicity and as rN is even, it has exactly rN/2 zeros in C+. �

Let us assume that we have a matrix of boundary operators of the form

B(D) =
(
Bjk(D)

)
j=1,...,RN
k=1,...,N
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where for the boundary conditions the inequality ordBjk ≤ mj + tk holds, where
m1, . . . ,mRN

are integer numbers satisfying m1 ≤ · · · ≤ mRN
and

mRk
< mRk+1 (k = 1, . . . , N − 1) .

The principal part B0 of B is defined in the same way as for A. We also set

B(N−1)(D) :=
(
Bjk(D)

)
j=1,...,RN−1
k=1,...,N−1

.

The following definition is essentially taken from [DV00].

Definition 2.2. The boundary value problem (A(D,λ), B(D)) is called weakly
parameter-elliptic in L if the following conditions are satisfied:

(i) A(D,λ) is weakly parameter-elliptic in L in the sense of Definition 2.1.

(ii) For every ξ′ ∈ Rn−1 \ {0}, λ ∈ L and every g = (g1, . . . , gRN
) ∈ CRN the

boundary value problem in R+

A0(ξ′, Dn, λ)w(xn) = 0 (xn > 0) , (2.3)
B0(ξ′, Dn)w(xn)

∣∣
xn=0

= g , (2.4)

w(xn) → 0 for xn →∞

has a unique solution.

(iii) For every ξ′ ∈ Rn−1\{0} and every h ∈ CRN−1 the problem

A0
(N−1)(ξ

′, Dn)v(xn) = 0 (xn > 0) , (2.5)

B0
(N−1)(ξ

′, Dn)v(xn)
∣∣
xn=0

= h , (2.6)

v(xn) → 0 for xn →∞

has a unique solution.

(iv) For every every vector h ∈ CrN /2 and every λ ∈ L with |λ| = 1 the problem

A0(0, Dn, λ)v(xn) = 0 (xn > 0) , (2.7)
B0

(N,1..N)(0, Dn)v(xn)
∣∣
xn=0

= h, (2.8)

v(xn) → 0 for xn →∞

has a unique solution. Here we have set

B(N,1..N)(D) :=
(
Bjk(D)

)
j=RN−1+1,...,RN

k=1,...,N

.

Note that conditions (i) and (ii) in the above definition are very natural and
correspond to similar conditions in traditional elliptic theory. Conditions (iii) and
(iv) are connected with the case ξ′ = 0 where the analog of (ii) does not hold.
In the next section the meaning of these two conditions will become clear in the
context of singular perturbation theory.
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3 Formal asymptotic solutions

Consider the boundary value problem

A(D,λ)u = 0, (3.1)
B(D)u = g (3.2)

in the half-space Rn
+ where we assume throughout this section that (A,B) are

weakly parameter-elliptic in the sense of Definition 2.2 with L = [0,∞). Setting
λ = ε−rN and multiplying the last equation of the system (3.1) by εrN , we obtain
the system

Aε(D)u(x′, xn) = 0 (xn > 0) (3.3)

where Aε(D) := diag(1, . . . , 1, εrN )A(D) − EN . For simplicity, let us now assume
that all operators coincide with their principal parts. We are interested in the case
of ε → 0; more precisely, our goal is to find the formal asymptotic solution (FAS)

∞∑
l=0

εlu(l)(x, ε),

i.e. the formal power series in ε for which the partial sums satisfy (3.3),(3.2) up to
an arbitrary power of ε. The construction of the FAS will show the boundary layer
structure of the solution of (3.3),(3.2) and give a deeper insight to the conditions
of Definition 2.2. It seems to us that this construction cannot be found in literature
for the boundary value problem considered here.

Following the Lyusternik-Vishik method, we will construct the FAS as the sum of
the so-called exterior expansion

u(x, ε) =
∞∑

l=0

εlu(l)(x) (3.4)

and the so-called interior expansion or boundary layer

v(x′, xn/ε, ε) =
∞∑

l=0

εl0+l diag(εt1 , . . . , εtN )v(l)(x′, xn/ε.) (3.5)

The number l0 will be chosen later.

We will now show that, due to the conditions of weak parameter-ellipticity, it is
possible to describe u(l) and v(l) as the solutions of boundary value problems which
appear in the definition of weak parameter-ellipticity and for which the right-hand
sides can be computed recursively.
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(i) Differential equations for the exterior expansion. Substituting (3.4) into (3.3)
and posing u′

(l) = (u(l)
1 , . . . , u

(l)
N−1) we obtain

∞∑
l=0

εl

A(N−1)(D)u′(l) +

 A1N (D)
...

AN−1,N (D)

 u
(l)
N

 = 0,

∞∑
l=0

εl
(
εrN

N∑
j=1

ANj(D)u(l)
j − u

(l)
N

)
= 0.

Equate to zero all terms corresponding to the same power of ε we obtain the
relations

u
(l)
N = −

∑
ANj(D)u(l−rN )

j , (3.6)

A(N−1)(D)u′(l) = −

 A1N (D)
...

AN−1,N (D)

 u
(l)
N = F(u(0), . . . , u(l−rN )). (3.7)

(ii) Differential equations for the interior expansion. Pose t = xn/ε. Then

Aε(D)v(x′, xn/ε, ε) = Aε(D′,
1
ε
Dt)v(x′, t, ε)

=
[
diag(ε−s1 , . . . , ε−sN−1 , εtN )A(εD′, Dt)diag(ε−t1 , . . . , ε−tN )− EN

]
v(x′, t, ε).

Multiplying this by diag(εs1 , . . . , εsN−1 , ε−tN ) from the left and replacing v(x, t, ε)
by the expansion (3.5), we obtain from (3.3) the equation

∞∑
l=0

εl0+lv(l)(A(εD′, Dt)− EN )v(l) = 0. (3.8)

Now we use the Taylor expansion of A(εD′, Dt) with respect to εD′ which is of
the form

A(εD′, Dt) = A(0, Dt) +
∑
|α|≥1

ε|α|A(α)(0, Dt)D′α/α! = A(0, Dt) +
∑
k≥1

εkCk(D)

and substitute this into (3.8). We get the recurrence relations

A(0, Dt)v(l)(x′, t) = −
∑
k≥1

Ck(D)v(l−k). (3.9)

Note that the left-hand sides of (3.7) and (3.9) coincide with the operators appear-
ing in conditions (iii) and (iv), respectively, of the definition of weak parameter-
ellipticity. So we see that the vector functions u′

(l)
, u(l) and v(l) can be found

recursively, provided that we know the boundary values

g′lj := Bj(D)u′(l)(x′, 0), j = 1, . . . , RN−1, l = 0, 1, . . .
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and

g′′lj := Bj(0, Dt)v(l)(x′, 0), j = RN−1 + 1, . . . , RN , l = 0, 1, . . . .

(Note that due to Definition 2.2 in the case of constant coefficients and no lower
order terms the boundary value problems for u(l) and v(l) are uniquely solvable.
In the case of variable coefficients the question of unique solvability is nontrivial;
we hope to discuss this in a future paper.)

(iii) Boundary conditions. First of all note that

Bj(D)u(x′, 0, ε) =
∞∑

l=0

εlBj(D)u(l)(x′, 0). (3.10)

For the inner expansion we argue as before and get

Bj(D)v(x′, 0, ε) =
∞∑

l=0

εl0+lBj(D′,
1
ε
Dt)diag(εt1 , . . . , εtN )v(l)(x′, 0)

=
∞∑

l=0

εl+l0−mj Bj(εD′, Dt)v(l)(x′, 0).

Replacing Bj(εD′, Dt) by

Bj(0, Dt) +
∑
k=1

εkCk(D)

and gathering terms with the same power of ε we finally obtain

Bj(D)v(x′, 0, ε) =
∞∑

l=l0−mj

εl
[
Bj(0, Dt)v(l−l0+mj)(x′, 0)

+ C1(D)v(l−l0+mj−1)(x′, 0) + . . .
]
.

(3.11)

Now we pose l0 = mRN−1+1. According to our assumption l0 > mj holds for
j = 1, . . . , RN−1, and the first RN−1 boundary conditions are of the form

Bj(D)u(l)(x′, 0) = δ0lgj(x′) + Bj(0, Dt)v(l−l0+mj)(x′, 0)

+ C1(D)v(l−l0+mj−1)(x′, 0) + . . . .
(3.12)

If we already know u(k) and v(k) for k = 1, . . . , l − 1 this gives us the value of

Bj(D)u′(l)(x′, 0), j = 1, . . . , RN−1.

Using the system (3.7) and these boundary conditions we can define u′
(l) and,

consequently, u(l).
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For j = RN−1 + 1 equation (3.12) gives

Bj(0, Dt)v(l)(x′, 0) = δ0lgl −Bj(D)u(l)(x′, 0)−
∑
k≥1

Ck(D)v(l−k)(x′, 0).

To find the boundary conditions for j > RN−1 + 1, we apply the operator Bj(D)
to the term obtained from equating to zero the coefficient before εl+RN−1+1−j . In
this way we get for j = RN−1 + 2, . . . , RN

Bj(0, Dt)v(l) = δ0,l+RN−1+1−jgl −Bj(D)u(l+RN−1+1−j) −
∑
k≥1

Ck(D)v(l−k).

Now we can find v(l) and continue our process.
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