
Bicriterial Optimal Control by the
Reference Point Method

Stefan Volkwein ∗

∗ Lecture Optimization III, Department of Mathematics and Statistics,
University of Konstanz, 18 November 2022

1. PROBLEM FORMULATION

1.1 The state equation

For time T > 0 the state equation is given by

(1)

yt(t,x)−∆y(t,x) =

m∑
i=1

uiχi(t,x) for (t,x) ∈ Q,

∂y

∂n
(t,x) = 0 for (t,x) ∈ Σ,

y(0,x) = y◦(x) for x ∈ Ω,

where Ω ⊂ Rd, d ∈ {2, 3}, is a bounded domain with
Lipschitz-continuous boundary Γ = ∂Ω and n stands for
the outward normal vector. We set Q = (0, T ) × Ω and
Σ = (0, T ) × Γ. Let H = L2(Ω) and V = H1(Ω) be
endowed by the canonical inner products given as

〈ϕ, φ〉H =

∫
Ω

ϕ(x)φ(x) dx for ϕ, φ ∈ H,

〈ϕ, φ〉V = 〈ϕ, φ〉H +

∫
Ω

∇ϕ(x) · ∇φ(x) dx for ϕ, φ ∈ V.

The variable u = (u1, . . . , um) ∈ U = Rm denotes the
control and χi ∈ L∞(Q), 1 = 1, . . . ,m, are given control
shape functions. Furthermore, y◦ ∈ L∞(Ω) denotes a given
initial heat distribution. We write y(t) when y is considered
as a function in x only for fixed t ∈ [0, T ]. Recall that

W (0, T ) =
{
ϕ ∈ L2(0, T ;V )

∣∣ϕt ∈ L2(0, T ;V ′)
}

is a Hilbert space endowed with the common inner product

〈ϕ, φ〉W (0,T ) =

∫ T

0

〈ϕt(t), φt(t)〉V ′ + 〈ϕ(t), φ〉V dt

for ϕ, φ ∈ W (0, T ); see, e.g., Dautray and Lions (2000).
A weak solution y ∈ Y = W (0, T ) to (1) is called a state
and has to satisfy for all test functions ϕ ∈ V :

(2)

d

dt
〈y(t), ϕ〉H +

∫
Ω

∇y(t) · ∇ϕdx =
m∑
i=1

ui〈χi(t), ϕ〉H ,

〈y(0), ϕ〉H = 〈y◦, ϕ〉H .
It is shown in Dautray and Lions (2000) that (2) admits
a unique solution y and

(3) ‖y‖Y ≤ C
(
‖y◦‖H + ‖u‖U

)
for a contant C ≥ 0. We introduce the linear operator
S : U → Y, where y = Su is the solution to (2) for given
u ∈ U with y◦ = 0. From (3) it follows that S is bounded.
Moreover, let ŷ ∈ Y be the solution to (2) for u = 0. Then,
the affine linear mapping U 3 u 7→ y(u) = ŷ + Su ∈ Y is
affine linear, and y(u) is the weak solution to (1).

1.2 The multiobjective optimal control problem

For given ua, ub ∈ U with ua ≤ ub in U, the set of
admissible controls is given as

Uad =
{
u ∈ U

∣∣ua ≤ u ≤ ub in Rm
}
.

Introducing the bicriterial cost functional

J : Y× U→ R2, J(y, u) =
1

2

(
‖y(T )− yΩ‖2H
‖u‖2U

)
the multiobjective optimal control problem (MOCP) reads

(P) min J(y, u) subject to (s.t.) (y, u) ∈ F(P)

with the feasible set

F(P) =
{

(y, u) ∈ Y× Uad

∣∣ y solves (2)
}
.

Next we define the reduced cost function Ĵ = (Ĵ1, Ĵ2) :

U→ R2 by Ĵ(u) = J(ŷ + Su, u) for u ∈ U. Then, (P) can
be equivalently formulated as

(P̂) min Ĵ(u) s.t. u ∈ Uad.

Problem (P̂) involves the minimization of a vector-valued
objective. This is done by using the concepts of order
relation and Pareto optimality; see, e.g., Ehrgott (2005).
In R2 we make use of the following order relation: For all
z1, z2 ∈ R2 we have

z1 ≤ z2 ⇔ z2 − z1 ∈ R2
+ =

{
z ∈ R2

∣∣ zi ≥ 0 for i = 1, 2
}
.

Definition 1. The point ū ∈ Uad is called Pareto optimal
for (P̂) if there is no other control u ∈ Uad \ {ū} with

Ĵi(u) ≤ Ĵi(ū), i = 1, 2, and Ĵj(u) < Ĵj(ū) for at least one
j ∈ {1, 2}.

2. THE REFERENCE POINT METHOD

2.1 The reference point problem

The theoretical and numerical challenge is to present the
decision maker with an approximation of the Pareto front

P =
{
Ĵ(u)

∣∣u ∈ Uad is Pareto optimal
}
⊂ R2

In order to do so, we follow the ideas laid out in Peitz et
al. (2015) and make use of the reference point method :
Given a reference point z = (z1, z2) ∈ R2 that satisfies

(4) z < Ĵ(u) for all u ∈ Uad

we introduce the distance function Fz : U→ R by

Fz(u) = 1
2 |Ĵ(u)− z|2 = 1

2

(
Ĵ1(u)− z1

)2
+ 1

2

(
Ĵ2(u)− z2

)2
.

The mapping Fz measures the geometrical distance be-
tween Ĵ(u) and z.



Lemma 2. The mapping Fz is strictly convex.

Proof. The mapping Fz is of the form Fz =
∑2

i=1 gi ◦ Ĵi
where, because of (4), we have gi : (zi,∞) → R+

0 with
gi(ξ) = (ξ − zi)

2/2. Because of the affine linearity of

u 7→ y(u), Ĵ1 is convex and Ĵ2 strictly convex. Further,
gi is strictly convex and monotone increasing for i = 1, 2.
Altogether, Fz itself is strictly convex. 2

Suppose that z is componentwise strictly smaller than
every objective value which we can achieve within Uad.
The goal is that – by approximating z as best as possible
– we get a Pareto optimal point for (P̂). Therefore, we
have to solve the reference point problem

(P̂z) minFz(u) s.t. u ∈ Uad

which is a scalar-valued minimization problem.

Theorem 3. For any z ∈ R2 the reference point problem
admits a unique solution ūz ∈ Uad.

Proof. By Lemma 2 the mapping Fz is strictly convex.
Now, the proof follows by standard arguments utilizing
that Uad is bounded and closed in U. 2

Theorem 4. Let (4) hold and ūz ∈ Uad be an optimal

solution to (P̂z) for a given z ∈ R2. Then ūz is Pareto

optimal for (P̂).

Proof. We follow along the lines of Theorem 4.20 in
Ehrgott (2005): Assume that ūz ∈ Uad is not Pareto

optimal, then there exists a point u ∈ Uad with Ĵ(u) ≤
Ĵ(ūz) and Ĵj(u) < Ĵj(ūz) for j ∈ {1, 2}. Using (4) we get

0 < Ĵi(u)− zi ≤ Ĵi(ūz)− zi for i = 1, 2(5)

and strictly smaller for i = j. Together, this yields Fz(u) <
Fz(ūz) which is a contradiction to the assumption that ūz
is optimal for (P̂z). 2

By solving (P̂z) consecutively with an adaptive variation
of z, we are able to move along the Pareto front in a uni-
form manner. This way, we get a sequence {zk}k∈N ⊂ R2

of reference points along with optimal controls {uk}k∈N ⊂
Uad that solve (P̂z) with z = zk as well as {Ĵk}k∈N ⊂ R2

with Ĵk = Ĵ(uk). To be more precise, the next reference
point zk+1 is chosen as

(6) zk+1 = Ĵk +hJ
Ĵk − Ĵk−1

|Ĵk − Ĵk−1|
+hz

Ĵk − zk

|Ĵk − zk|
for k ≥ 2,

where hJ , hz ≥ 0 are chosen to control the coarseness of
the approximation to the Pareto front. The algorithm is
initialized by applying the weighted sum method to (P̂);

Zadeh (1963). This yields the first iterates Ĵ1, Ĵ2 ∈ P. We
therefore do not require z1, z2 and compute z3 by setting
hz = 0 in (6). Note that the algorithm only moves in one

direction: If Ĵ1
1 > Ĵ2

1 , then it turns to the upper left in
the R2-plane. Therefore, we perform the algorithm twice,
the second time with switched roles of Ĵ1, Ĵ2 to cover the
other direction as well.

2.2 Optimality conditions

Applying the chain rule, we get for any u ∈ U

∂Fz

∂uj
(u) =

2∑
k=1

(Ĵk(u)− zk)
∂Ĵk
∂uj

(u), for j = 1, . . . ,m

and

∇Fz(u) =

2∑
k=1

(Ĵk(u)− zk)∇Ĵk(u).

The first-order necessary optimality condition for an opti-
mal ūz ∈ Uad now reads as the variational inequality

(7)
0 ≤ 〈∇Fz(ūz), u− ūz〉U

= ∇Fz(ūz)>(u− ūz) for all u ∈ Uad.

Next, we investigate second-order derivatives: Note that
for 1 ≤ i, j ≤ m we find

∂2Fz

∂ui∂uj
(u) =

∂

∂ui

(
∂Fz

∂uj
(u)

)
=

∂

∂ui

( 2∑
k=1

(Ĵk(u)− zk)
∂Ĵk
∂uj

(u)

)

=

2∑
k=1

(
(Ĵk(u)− zk)

∂2Ĵk
∂ui∂uj

(u) +
∂Ĵk
∂ui

(u)
∂Ĵk
∂uj

(u)

)
.

Now we choose an arbitrary vector v = (vi)1≤i≤m in U.
Then, w = ∇2Fz(u)v is a vector in U and(
∇2Fz(u)v

)
i

=

m∑
j=1

(
∂2Fz

∂ui∂uj
(u)vj

)

=

2∑
k=1

(
(Ĵk(u)− zk)

m∑
j=1

( ∂2Ĵk
∂ui∂uj

(u)vj

))

+

2∑
k=1

(
∂Ĵk
∂ui

(u)

m∑
j=1

(∂Ĵk
∂uj

(u)vj

))

=

2∑
k=1

(
(Ĵk(u)− zk)

(
∇2Ĵk(u)v

)
i

)
+

2∑
k=1

((
∇Ĵk(u)

)
i

(
∇Ĵk(u)>v

))
.

Consequently, we have

∇2Fz(u)v =

2∑
k=1

(
(Ĵk(u)− z1)

(
∇2Ĵk(u)v

))
+

2∑
k=1

(
〈∇Ĵk(u), v〉U∇Ĵk(u)

)
∈ U.

We are interested in whether the second derivative of
Fz is coercive at the optimal solution ūz ∈ Uad. We set
κ = min{Ĵ1−z1, Ĵ2−z2} > 0; cf. (5). Let v ∈ U be chosen
arbitrarily. Then we estimate

〈∇2Fz(u)v, v〉U

=

2∑
k=1

(
(Ĵk(u)− zk)〈∇2Ĵk(u)v, v〉U +

∣∣〈∇Ĵk(u), v〉U
∣∣2︸ ︷︷ ︸

≥0

)

≥ κ
2∑

i=1

〈∇2Ĵk(u)v, v〉U.



Thus, if for k = 1, 2 the Hessians ∇2Ĵk(ūz) are positive
semidefinite and at least one of them postive definite, we
obtain that ∇Fz(ūz).
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